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Abstract: The present work demonstrates the production of chlorapatite (ClAp) through thermal
decomposition of chemically treated fish scales, originating from an Amazon fish species (Arapaima
gigas). The scales were treated with hydrochloric acid (HCl) solution for deproteinization. Afterwards,
the solution was neutralized by sodium hydroxide (NaOH) treatment to obtain an apatite-rich slurry.
The heat treatment was carried out at different temperatures including 600 ◦C, 800 ◦C, and 1000 ◦C.
The powders obtained were characterized through X-ray diffraction (XRD), Fourier transform infrared
spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy
(SEM). The XRD analysis and FTIR spectra confirmed the incorporation of chlorine into the apatite
structure. The FTIR results showed absorption bands relative to the OH–, PO4

3− functional groups
which are a characteristic of chlorapatite. Moreover, the intensity of the OH–Cl elongation could be
observed. Chlorapatite Ca5(PO4)3Cl, NaCl, and NaCaPO4 phases were identified, achieving up to
87.4 wt% for ClAp. The SEM observations show that with increasing temperature, the ClAp obtained
consists of slightly larger, more crystalline grains. Furthermore, the grains ranged in size, between
1-5 µm and ClAp1000 sample recorded crystallinity of 84.27%. ClAp and NaCaPO4 can be used in
electronics as phosphor materials due to their luminescence and biomedical applications.

Keywords: Arapaima gigas; natural resource; phosphate; NaCaPO4; luminescence

1. Introduction

Calcium phosphate-based materials have been employed in a wide range of applications such as:
biomedical [1–4]; wastewater treatment [5,6]; soil remediation [7]; foam [8]; display and solid state
lightning [9]; and heterogeneous catalysis in chemical, material and industrial industries [10]. Calcium
phosphate compounds can either be produced from inorganic precursors or from natural organic
based materials. The use of wastes or by-products to obtain such compounds has attracted attention.
Several studies have been developed using animal bones [11,12], fish scales [13], eggshells [14] and
seashells [15].
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Fish scales are formed by an organic component (collagen) and a mineral component
(hydroxyapatite, HAp). HAp (Ca10(PO4)6(OH)2) can be extracted from fish scales through a thermal
process [16], chemical treatment [17], or both [18]. Nowadays, research has been conducted towards the
modification of HAp by incorporating chemical species into the apatite structure in order to improve
chemical and physical properties.

Kannan et al. [19] investigated the synthesis of chlorine substituted hydroxyapatites by aqueous
precipitation. The substituted apatites show high thermal stability. Piccirillo et al. [20] carried out a
combined washing-annealing process using fish scales to obtain chlorapatite (Ca10(PO4)6Cl2, ClAp),
whereby the replacement of hydroxyl groups occurred, replaced with chlorine, due to the presence of
NaCl in sardine scales. ClAp can therefore be used in luminescent device applications [21] as well as in
biomedicine to improve resorption, mechanical properties and bioactivity [22].

Recently, orthophosphates have been widely studied with findings suggesting they are efficient
luminescent host materials due to their excellent thermal and charge stabilities [23–25]. NaCaPO4,
an alkali-alkaline-earth orthophosphate compound, has been reported to be a host material for
potential applications in white light emitting diodes (w-LEDs), or, in other words, the next generation
of solid-state light. NaCaPO4 exhibits strong UV absorption and higher physical and chemical
stability [26]. Furthermore, the preparation of NaCaPO4 doped with rare-earth ions provides a strong
emission intensity [27,28].

In the work presented, fish scales from an Amazon fish species (Arapaima gigas) were used
to produce phosphate-based compounds through a combined chemical-calcination process. To our
knowledge, this is the first recorded time fish scales have been used as a source of HAp in a reaction with
a chlorinating agent to produce ClAp. The materials obtained were characterized by several techniques
(X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy Dispersive X-ray Spectroscopy
and Scanning Electron Microscopy) to determine their composition and microstructural features.

2. Materials and Methods

2.1. Synthesis of Chlorapatite Powder from Fish Scale

Fish scales (FS) from freshwater fish (Arapaima gigas) were obtained from a local market located in
Manaus, Amazonas, Brazil.

Figure 1 shows the flow chart for the processing of fish scales to ClAp. The scales were isolated
from the fish and washed thoroughly firstly with tap water and then with distilled water to ensure the
removal of undesired debris. The adhering tissue was manually scraped. After washing, the scales were
dried out at room temperature. Thereafter, the scales were soaked and stirred in 4 wt% hydrochloric
acid (HCl) solution for 15 min at room temperature to achieve deproteinization. Afterwards, the
solution was neutralized by sodium hydroxide (NaOH) treatment to obtain apatite-rich slurry and
was subsequently filtered through the process of vacuum filtration. In order to produce biogenic ClAp
powder, the resulting cake was subjected to calcination at 600 ◦C, 800 ◦C and 1000 ◦C, at a heating rate
of 5 ◦C /min for 1h.

2.2. Fish Scale and Chlorapatite Powder Characterizations

Thermal behavior of the FS was analyzed from room temperature (~30 ◦C) to 1000 ◦C with a
heating rate of 5 ◦C/min in a nitrogen atmosphere, using a simultaneous thermal analyzer (SDT Q600,
TA Instruments, New Castle, USA. The functional groups in the fish scales and synthesized powders
were identified using FTIR spectroscopy (Spectrum Shimadzu, model Prestige 21, Kyoto, Japan) in the
range of 400–4000 cm−1. The XRD analysis of the synthesized powders was performed using Bruker

D2 PHASER diffractometer (Bruker AXS, Karlsruhe, Germany) with Cu Kα1 radiation (λ = 15,406 Ǻ -
30 kV - 10 mA). The scanning was done between 10 and 60◦ (2θ) with a 0.02◦ step size at 60 s each
step. The crystalline phase composition of powders was analyzed with XPert HighScore Plus Software
(3.0, PANalytical B. V., Almelo, The Netherlands) and Inorganic Crystal Structure Database(ICSD). In
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order to obtain the lattice parameters, the structural refinement was performed by the Rietveld method
using the General Structure Analysis System(GSAS). The fraction of crystallinity (xc) was estimated
using Equation (1) [29].

xc = 100 ×
[
1−

(
I300 −V112/300

I300

)]
(1)

where I300 is the intensity of 300 diffraction peak, V112/300 is the intensity of the hollow between 112
and 300 diffraction peaks of ClAp. The mean crystallite size D (Å) was calculated using the Scherrer’s
equation [30].

D(h k l) =
0.91λ
βLcosθ

(2)

where λ is the copper wavelength, βL is the integral breadths of Lorentzian part in the pseudo-voight
function of the diffraction simulated line, calculated according to Reference [31]. The morphology and
the elemental compositions of scaffolds were identified using scanning electron microscopy (VEGA3-
TESCLAN ANALYTICS, Fuveau, França) equipped with an energy-dispersive X-ray (EDX) analyzer
(Penta FET x-3 Si). The samples were coated with a thin conductive layer of gold and analyzed at 30
kV working voltage.
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3. Results and Discussion

3.1. Thermo-Gravimetric Analysis

The thermogravimetric analysis was performed on the FS to evaluate thermal stability and weight
loss, noting which calcination temperatures would be most appropriate for the material studied and
what its yield would be.

Figure 2 shows the TGA curve and the first derivative (DTG curve; rate of change in mass) of the
FS. Four different stages of weight loss can be observed in the temperature range 0–1000 ◦C, amounting
to a total weight loss greater than 60 %. The first stage of weight loss occurs in the temperature range
of 25–210 ◦C, reaching approximately 14.2 %. This can be understood to be related to the evaporation
of the adsorbed water on the surface of the scales. The second stage, the DTG peak located at 323.2 ◦C
refers to the degradation of organic compounds, principally collagen constituents. At this stage, the
largest loss of mass occurs, at 26.2%. The first and second stages are associated with the organic
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molecules present in the scales: amide I, amide II and amide III, which are characteristics of type
I collagen, or, in other words, the mineralized collagen (collagen fiber cross-linking) characteristic
of the fish scale used [32]. In addition to the possibility of trapped water in the porous structure of
the scales, there may also be a small contribution caused by the release of crystallization water in
hydroxyapatite [32,33].
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Figure 2. Thermogravimetric analysis.

The third step relates to protein loss from organic components such as guanines, representing a
total weight loss of 13.5%. The smallest loss of 8.1% can be seen between 540 ◦C and 820 ◦C. The latter
may be associated with the decomposition of the inorganic phase, due to weight loss associated with
the release of Na and Mg ions present in the scales of the species studied [34]; or, from decarbonization
of calcium carbonate for formation of calcium oxide [35]. After 800 ◦C there wasn’t a significant change
in weight recorded.

3.2. X-Ray Diffraction

Figure 3 shows XRD results for the chlorapatite samples synthesized at several temperatures
including 600 ◦C, 800 ◦C, and 1000 ◦C. Calcium phosphate (V) chloride hydroxide, ICSD card N◦ 1708,
formed at all calcination temperatures. The chlorapatite formed has a hexagonal crystal structure,
space group P63/m and chemical formula H1.37 Ca9.71 Cl0.8 O25.37 P6. The hexagonal phase formed at
temperatures above 350 ◦C. Below 350 ◦C, its structure is monoclinic [36]. The other phase formed
during chlorapatite synthesis was NaCl, ICSD card N◦ 60280. The formation of this phase is justified
according to the chemical Equation (3), since HCl was neutralized with NaOH.

HCl + NaOH → NaCl + H2O (3)

The refinement shown in Figure 4a–c records the phases of chlorapatite present in all samples:
ClAp600; ClAp800; and ClAp1000. The XRD pattern of the chlorapatite calcined samples (1 h of
overlap) was achieved through fitting according to the Rietveld refinement method method, followed
by the deconvolution of the phases in order to obtain the percentage of calculated phases. Through
analyses of the calculations of percentage by weight, it was confirmed that the ClAp1000 sample
presented the highest percentage of chlorapatite, at approximately 87.4%. wt.
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ClAp800; and (c) ClAp1000.

Table 1 shows the percentage of phases found for all synthesized samples and provides the
refinement and reliability parameters. The samples calcined at 800 ◦C and 1000 ◦C were observed
to gain a new phase formation, namely, NaCaPO4 ICSD card N◦ 5629. It is suggested that in these
calcination temperatures, the breakage occurs in apatite-linked chloride ions which, in turn, favors the
binding of sodium ions.
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Table 1. Volume fraction of phases and crystallite size of ClAp powder derived from fish scales at
different calcination temperatures.

Sample Calcination
Temperature (◦C)

ClAp
(wt%)

NaCl
(wt%)

NaCaPO4
(wt%)

Crystallite
Size (nm) Rwp (%) χ2 (%)

ClAp600 600 85.8 14.2 0 28 ± 5 6.76 3.21
ClAp800 800 74.8 16.1 9.1 78 ± 12 7.98 4.82
ClAp1000 1000 87.4 6.1 6.5 65 ± 8 9.02 5.96

The crystallite size for the chlorapatite phase was calculated for all the hkl plans using Equation (2)
and can be found in Table 1 [37,38]. This the values are represented with their standard deviations.
When comparing the crystallite sizes of the calcined samples, it can be observed that the ClAp600
sample has the smallest size, at around 28.6 nm. The ClAp800 and ClAp1000 samples have a crystallite
size of 78 (12) and 65 (8) respectively, showing a difference of about 13nm between the two. This
difference in crystallite size is within the margin of error that was calculated. Therefore, there was no
significant variation in crystallite size for the ClAp800 and ClAp1000 samples. However, all samples
had an average crystallite size of less than 78 nm. The Ganjali et al. [39] study shows the effect of heat
treatment on the structural characteristics of chlorapatite, with the authors noting an increase in the
size of crystallite due to an increase in temperature.

The crystallinity of the samples was calculated using Equation (1). The values obtained were
33.66 wt. %, 66.77 wt.% and 84.27 wt.% for the samples ClAp00, ClAp800 and ClAp1000, respectively.
Sharp peaks were observed at higher temperatures, owing to better crystallization. This increase in
crystallinity values was also observed in the work of Piccirillo et al. [20] and Paul et al. [16], where
hydroxyapatite was calcined at various temperatures.

3.3. FTIR Spectra Analysis

The formation of apatite phase in FS-derived ClAp powder was further confirmed by FTIR
analysis. Figure 5a,b shows the comparative FTIR spectra of the chemically treated FS-derived powder
calcined at 600 ◦C, 800 ◦C, and 1000 ◦C. Figure 5a shows the spectra normalized which promotes an
identification comparison the identification of the bands, while Figure 5b shows the spectra with a real
dimension of the y-axis which promotes a comparison in relation to peak intensities.
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In the FTIR spectra, the bands 1654 cm-1, 1546 cm-1 and 1242 cm-1 were assigned to amide I, II
and III of collagen [34]. The peak 1654 cm-1 is associated with the C=O stretching vibrations of the
amide I protein; the peak 1546 cm-1 is associated with bending and stretching vibrations, whereby the
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N-H and C-N correspond to amide II; the peak 1242 cm−1 is associated with bending vibrations that
also corresponds to amide II [16]. The inorganic components are associated with calcium phosphate
formation which in turn is associated with hydroxyapatite formation, which are bands for the phosphate
(562-602 cm-1 and 1034 cm-1) and carbonate anions (793 cm-1, 873 cm-1 and 1449 cm-1) groups [40,41].

Hence, the infrared spectra coincide with the results obtained from the X-ray patterns, with no
significant changes or distortions observed in the position of functional groups and thus accounting
for the formation of solid solutions in chlorine substituted apatite’s. The band of 2920 cm-1 refers to
the stretching vibration of the C-H groups. The carbon chains of the monomers chemically constitute
the scale in the peak 1636 cm−1 where carbonates formation can be observed [41]. The fundamental
vibrational modes of (PO4

3−) tetrahedra of apatite phase are witnessed in all powders in the regions of
1088 cm-1, 1046 cm-1 and 959 cm-1. whereby asymmetric deformation is identified. At bands 605 cm- 1,
565 cm-1 and 473 cm-1, the symmetric stretching modes can be seen [42,43]. These findings are shown
in Table 2.

Table 2. Infrared absorption bands at ClAp600, 800, and 1000.

Absorption Region (cm−1) Intensity Designation

3400 Strong stretch OH–Cl
2920 Weak group stretching C–H
1636 Medium 71 symmetric stretching CO3

2−

1088, 1046, and 959 Strong 73 anti-symmetric stretch PO4
3−

605, 565, and 473 Strong 71 symmetric stretching PO4
3−

According to Figure 5 (b), when comparing the spectra intensities of the FS sample in relation to
the calcined samples there is a decrease in the intensity of the stretching vibrator observed at 3430
cm-1 and a reduction in the relative intensity in the band absorption of OH-, which corresponds to the
formation of ClAp. The disappearance of the bands corresponding to collagen can also be noted. As
the calcination temperature increases, especially in the ClAp1000 sample, there is an enlargement of
phosphate bands (1034 cm-1) and a loss of carbon chains (2920 cm-1 and 1636 cm-1). This may indicate
an approximation of the mineral state of the bone and, according to recent studies, could be indicative
of good osteointegration and biocompatibility [44].

3.4. Powder Morphology

Figure 6a–c shows the micrography in the samples of ClAp. The extracted ClAp shows particles
with different morphologies.

In Figure 6 the SEM images show that with the increase in the calcination temperature there is an
increase in chlorapatite crystals. In Figure 6a shows the ClAp600 sample, where a large number of
agglomerated and ultrafine ClAp particles can be observed. In Figure 6b, the ClAp800 sample has
three visible structures, one in the shape of a stick, one agglomerated and the other polygonized. On
the other hand, in Figure 6c the ClAp1000 sample has a rather uniform morphology and polygonal
structure. Particle size is not necessarily the crystallite size, for example, in the formation of hard
agglomerates [45]. The García-Tuñón et al. [46] study shows the synthesis of ClAp with different
morphologies using the molten salt method with CaCl2 as a flux.

From the SEM observations, it can be noted that the ClAp obtained consists of grains with sizes
smaller than 1 µm in the ClAp600 sample and sizes between 1-5 µm in the ClAp1000 sample, becoming
more crystalline with increasing temperature. This same analysis shows the geometrization of the
particles becoming more regular, increasing the contact area between the grains, which leads to an
increase of mass transfer pathways related to volumetric diffusion phenomena [47]. This may favor
the transport of cells in the microstructure of the material, such as in contact with body fluid.
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Presented in Table 3, the EDS analysis confirms the presence of Ca, P and Cl. The quantitative
analysis revealed that the composition ratio of calcium and phosphorous in the sample is 1.44, which is
smaller than the stoichiometric ratio of Ca and P (1.67) in the pure HAp powder. This corroborates
previous research, proving that the ClAp obtained is more soluble than HAp. Pure ClAp, Ca10(PO4)6Cl2,
has the Ca/Cl ratio of 5 [48]. The sample ClAp1000 obtained the best Ca/Cl ratio, which suggests it was
due to the increase in ClAp phase in this sample, as shown in the XRD and FTIR results, as well as the
reduction in carbonates with the temperature increase.
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Table 3. EDS analysis of powder samples.

Sample
Atomic %

Ca/P Ca/Cl
O Ca P C Cl Na

ClAp600 39.14 ± 0.83 5.20 ± 0.23 3.81 ± 0.18 48.00 ± 1.2 1.61 ± 0.14 2.19 ± 0.07 1.36 3.22
ClAp800 51.96 ± 8.02 8.62 ± 2.28 6.00 ± 1.69 26.26 ±10.9 3.23 ± 0.55 3.95 ± 0.54 1.44 2.67
ClAp1000 64.26 ± 3.34 14.00 ± 0.90 9.93 ± 0.44 2.90 ± 3.87 3.65 ± 1.18 4.98 ± 1.12 1.41 3.84

It is worth mentioning that MEV / EDS are analyzes made on the surface of the sample, having
no relation to the size of crystallites, but rather to the size of the particles/grains, which in this case
are related to calcination temperatures. Therefore, the particle size does not significantly change its
stoichiometric structure [45,49].

4. Conclusions

In the presented work, chlorapatite was synthesized by a simple thermal decomposition of
chemically treated fish scales. In all of the samples, XDR analysis identified ClAp as the main
component (87.4 wt%), whilst two of the samples had NaCaPO4 as the secondary component and
all had NaCl as the third component. The degree of crystallinity and the particle size of fish scales
derived ClAp increased with increasing calcination temperature. All samples recorded crystallite sizes
of less than 78 nm. FTIR results show the incorporation of Cl in channel sites of the apatite. SEM has
confirmed a non-homogeneous growth of particles with temperature, showing more uniform particles,
with grains ranging in sizes between 1-5 µm in the ClAp1000 sample. EDS analysis has confirmed a
Ca/Cl ratio of 3.84 close to the stoichiometric ClAp ratio. ClAp and NaCaPO4 can be used as phosphor
materials in electronics on account of to their potential for luminescence. Further, chlorine-substituted
HAp is a compound with an interesting potential in biomedical applications due to the fact that the
presence of chlorine in the HAp lattice may improve its resorption as well as mechanical properties [22].
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