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Most replicated genetic determinants for type 1 diabe-
tes are common (minor allele frequency [MAF] >5%).
We aimed to identify novel rare or low-frequency
(MAF <5%) single nucleotide polymorphisms with large
effects on risk of type 1 diabetes. We undertook deep
imputation of genotyped data followed by genome-wide
association testing and meta-analysis of 9,358 type
1 diabetes case and 15,705 control subjects from 12 Eu-
ropean cohorts. Candidate variants were replicated in
a separate cohort of 4,329 case and 9,543 control
subjects. Our meta-analysis identified 27 independent
variants outside the MHC, among which 3 were novel
and had MAF <5%. Three of these variants replicatedwith
Preplication < 0.05 and Pcombined < Pdiscovery. In silico analysis
prioritized a rare variant at 2q24.3 (rs60587303 [C], MAF

0.5%) within the first intron of STK39, with an effect size
comparable with those of common variants in the INS and
PTPN22 loci (combined [from the discovery and replica-
tion cohorts] estimate of odds ratio [ORcombined] 1.97, 95%
CI 1.58–2.47, Pcombined 5 2.9 3 1029). Pharmacological
inhibition of Stk39 activity in primary murine T cells aug-
mented effector responses through enhancement of in-
terleukin 2 signaling. These findings provide insight into
the genetic architecture of type 1 diabetes and have
identified rare variants having a large effect on disease
risk.

Type 1 diabetes accounts for 5–10% (1) of diabetes
cases, affecting ;20 million individuals worldwide, and
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represents the majority of diabetes diagnoses in individ-
uals ,20 years of age (2,3). Its prevalence is consistently
rising worldwide at an annual rate of ;2–5% (3,4) and it
is estimated that by 2050, 5 million people, among whom
more than half a million youths, will be living with type
1 diabetes in the U.S. (5). Type 1 diabetes is a chronic
autoimmune disorder caused by destruction of the insulin-
producing pancreatic b-cell, which generally occurs in
genetically susceptible individuals (6) and may be pre-
cipitated by environmental factors (7). Thus, understand-
ing the genetic determinants of type 1 diabetes and their
effects can provide a better understanding of the patho-
physiology of the disease and enable new treatment
approaches, with potentially important public health
benefits.

Our knowledge on the genetic architecture of type
1 diabetes has expanded substantially with the emergence
of genome-wide association studies (GWAS). In the pre-
GWAS era, the few genetic loci established to contribute
to type 1 diabetes risk were identified primarily through
linkage studies, such as the human leukocyte antigen
(HLA) class II genes in the MHC, or through candidate
gene studies, such as the genes encoding insulin (INS),
cytotoxic T-cell–associated protein 4 (CTLA4) (8), protein
tyrosine phosphatase, nonreceptor type 22 (PTPN22) (9),
and interleukin 2 receptor a (IL2RA) (10). In comparison,
recent GWAS comprising thousands of type 1 diabetes cases
have identified 57 loci associated with risk of type 1 diabetes
(11–13). However, with a few exceptions (14), the identified
variants by GWAS are common (defined as variants with
a minor allele frequency [MAF] .5%) and have modest
effects on type 1 diabetes risk (odds ratios [ORs],1.5) (13)
compared with those of the previously identified HLA, INS,
and PTPN22 variants (ORs.6 for the HLA and.2 for the
INS and PTPN22 loci, respectively). Evaluation of rare and
low-frequency variants for association with type 1 diabetes
is an important area, and a recent study (15) showed the
utility of rare variants for identifying potential causal genes
in type 2 diabetes. In addition, understanding the biology
of most GWAS loci remains challenging, as fine mapping
and functional validation are typically lacking (13). Further-
more, the small effect sizes attributed to most common
variants decreases the ability to dissect their function
through approaches such as genome editing via CRISPR-
Cas9, since the anticipated effect sizes on relevant phe-
notypes would be smaller than variants of larger effect.
Therefore, larger effect size variants may help us to better
understand the genetic pathways that increase risk of
type 1 diabetes.

It has been shown that known loci explain;80% of the
heritability of type 1 diabetes (16), with the HLA variants
accounting for the largest portion of this variance (17).
Therefore, about 20% of the genetic risk of type 1 diabetes
remains unexplained (13). The rest of this unidentified
genetic component has been attributed to undetected
susceptibility loci (17), possibly due to the inability of
past studies to interrogate loci containing low-frequency

or rare genetic variants (defined as variants with an
MAF #5% and .1% or #1%, respectively), despite the
strong effects that some of them may have. Interest-
ingly, among the 57 known type 1 diabetes loci, only
3 loci include low-frequency or rare variants, specifically
in the tyrosine kinase 2 (TYK2), interferon induced with
helicase C domain 1 (IFIH1), and RNA binding motif
protein 17 (RBM17) (in the same locus as IL2RA) genes,
which were identified mainly through fine mapping of
previously known autoimmune loci (14,18). The recent
availability of large human whole-genome sequencing
data sets has enabled the interrogation of rare genetic
variation by imputation from directly genotyped data,
allowing identification of rare single nucleotide poly-
morphisms (SNPs) with large effects on complex traits
(19,20). Here, we sought to apply these recent advances
in genomics to type 1 diabetes, with the aim of identi-
fying additional low-frequency and rare loci of large
effect. To do so, we undertook a GWAS of;9 million SNPs
in 9,358 type 1 diabetes case and 15,705 control subjects
from 12 cohorts of predominantly European descent and
replicated our findings using de novo genotyping in a sep-
arate cohort of 4,329 type 1 diabetes case subjects from the
Type 1 Diabetes Genetics Consortium (T1DGC) and 9,543
control subjects from the UK Biobank. In addition, poten-
tial biological effects of the top low-frequency locus were
explored using in vitro functional experiments.

RESEARCH DESIGN AND METHODS

Cohorts and Overview of GWAS
For our ascertained case-control association study, similar
to a previous type 1 diabetes GWAS (11), we used data
from multiple type 1 diabetes case cohorts and control
cohorts. In the discovery stage, the cohorts who were
genotyped on Affymetrix or Illumina platforms were pooled
separately and genotypes were imputed using the Haplotype
Reference Consortium reference panel (21), which allows
improved imputation of rare variants. Next, association
studies were performed separately for each one of the two
platform types. The summary statistics of the two asso-
ciation studies were then meta-analyzed to generate the
final discovery GWAS estimates (Supplementary Fig. 1).
Individual-level genotype data for the discovery meta-
analysis were drawn from 12 cohorts of predominantly
European descent totaling, before quality control, 9,684
type 1 diabetes case and 17,153 control subjects. Specif-
ically, among 3,173 type 1 diabetes case subjects geno-
typed on the Affymetrix 500K array, 1,173 subjects were
from the Genetics of Kidneys in Diabetes (GoKinD) study
and 2,000 were from the Wellcome Trust Case Control
Consortium (WTCCC). These were then compared with
5,998 similarly genotyped control subjects from WTCCC,
specifically, 1,999 subjects from the type 2 diabetes
(T2D) study, 2,001 subjects from the hypertension
(HT) study, and 1,998 individuals from the bipolar dis-
order (BD) study. Among the 6,511 type 1 diabetes case
subjects genotyped on Illumina arrays (HumanHap550 or
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Human1-2M-DuoCustom_v1_A), 514 individuals were
from McGill University, 483 from Children’s Hospital
of Philadelphia (CHOPTDT), 1,385 from the Diabetes Con-
trol and Complications Trial–Epidemiology of Diabetes
Interventions and Complications (DCCT-EDIC) cohort, and
4,129 from T1DGC. These were compared with 9,745
similarly genotyped control subjects recruited from
TwinsUK (n 5 2,249), and two WTCCC studies (2,836
individuals from the 1958 British Cohort [58BC] and 2,633
individuals from the U.K. National Blood Service sample
[NBS], respectively). In the replication stage, we used
4,329 type 1 diabetes case subjects from T1DGC and
9,543 randomly selected control subjects of white-British
ancestry from the UK Biobank (22).

All participating studies in the GWAS meta-analysis
were approved by the institutional review boards and the
ethics committees of the respective institutions. Written
informed consent was obtained from each participant in
accordance with institutional requirements and the Dec-
laration of Helsinki principles.

For a detailed description of the discovery study cohorts,
see Supplementary Data and Supplementary Table 1.

Quality Control and Assessment of Population
Stratification
Genotype quality assessment was performed according to
published guidelines (23). This quality control removed
individuals with problematic sex assignment, increased
genotype missingness, increased proportion of identity
by descent, and extreme heterozygosity rate. It also re-
moved low-quality genetic variants, by retaining only
array SNPs with an MAF .1%, missingness ,0.05, and
Hardy-Weinberg equilibrium P. 13 1025. In the CHOPTDT
case-parent trios cohort, we retained the single type
1 diabetes case per trio for association analysis, as the
model used does not adjust for familial relatedness. A
detailed description of the quality-control pipeline appears
in the Supplementary Data. All individuals from cohorts
genotyped on the same platform (Affymetrix or Illumina)
were merged into a single data set, with only SNPs retained
that were in common between all cohorts being merged
(337,727 and 456,168 markers for Affymetrix- and Illumina-
based arrays, respectively). Population stratification was
assessed using EIGENSTRAT, version 6.0.1 (24). This
assessment was performed for the merged cohorts geno-
typed by the same platform that passed quality control
(Supplementary Table 1 [N(total) 5 25,063]). For the
Affymetrix- and Illumina-based data sets, 52,598 and
99,742 SNPs, respectively, were used as input into the
analysis for population stratification, which were those
that passed the aforementioned genotype quality con-
trol, followed by further filtering steps described in the
Supplementary Data. Low-frequency and rare variant
associations can be prone to bias from population strat-
ification; therefore, additional steps were taken to decrease
such potential effects. Specifically, analysis for popula-
tion stratification removed 268 and 545 individuals

identified as ancestral outliers from the Affymetrix-
and Illumina-based arrays, respectively. The top 10 prin-
cipal components for the remaining individuals were
used as covariates in the GWAS to adjust for potential
residual population stratification. An additional principal
component analysis was conducted by projecting study
samples to 2,504 samples from 1000 Genomes phase 3.
This additional analysis revealed that the EIGENSTRAT-
based population stratification analysis successfully re-
moved individuals of non-European ancestry and that
remaining individuals across case/control status or across
individual cohorts are of European ancestry (Supplemen-
tary Fig. 2). The quality-control and population stratifi-
cation analysis resulted in a total of 24,250 individuals
used for genotype imputation. This included 2,903/5,678
case/control subjects and 6,093/9,576 case/control
subjects for the Affymetrix- and Illumina-based data
sets, respectively (Supplementary Table 1).

Genotype Imputation, GWAS, Meta-analysis, and
Conditional Analysis
The Sanger Institute online service (25) was used to impute
the available genotypes to the Haplotype Reference Con-
sortium, version R1.1, on;39 million SNPs, separately in
the Illumina and Affymetrix data sets. Association testing
was undertaken using logistic regression as implemented
in SNPTEST, version 2.5.2 (26), on samples from the
same genotyping platform and including the top 10 prin-
cipal components from EIGENSTRAT (24,27) to adjust
for population stratification. We then combined the
association results from the Affymetrix and Illumina
cohorts in a fixed effects inverse variance meta-analysis
using METAL (28) to generate the discovery cohort total-
ing 25,063 type 1 diabetes case and control subjects. We
retained SNPs with an MAF in control subjects.0.5% and
those with an imputation quality score (INFO) .0.3,
resulting in 9,061,522 SNPs. The MAF cutoff was decided
based on a power calculation using the genetic analysis
calculator (https://zzz.bwh.harvard.edu/gpc/) and the
following assumptions: perfect LD between the caus-
ative variant and the markers that were genotyped, an
additive genetic model, a disease prevalence of 0.0033,
and an a of 13 1025 (similar to previous GWAS [11,12]).
We declared genome-wide statistical significance at P #

1.2 3 1028 to account for the increased number of
statistical tests compared with a common variant–based
GWAS (29). Conditional analysis was performed using the
GCTA-COJO package (30). Among the SNPs that remained
genome-wide significant after conditional analysis, we
considered as candidates for replication only variants
that were not within 1 Mb of MHC and that had at least
three SNPs with discovery P value ,0.0001 within 40 kb,
henceforth referred to as satellite SNPs (Supplementary
Data).
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Replication of Discovery Association Signals
Replication de novo genotyping was performed in a co-
hort consisting of 4,329 type 1 diabetes case subjects
from the sibling-pair set of T1DGC and 9,543 control
subjects from UK Biobank. A detailed description of the
replication cohort and of its assessment for population
stratification is provided in the Supplementary Data. De
novo genotyping of the lead SNPs for the replication
in type 1 diabetes case subjects from the T1DGC was
performed by LGC Genomics applying KASP genotyping.
Association testing for the replication cohort was per-
formed using GMMAT (31), using a relatedness matrix
built using GEMMA (32). SNPs achieving a P value#0.05 in
the replication cohort and same direction of effect were
combined with the discovery cohort in a fixed effects
inverse variance meta-analysis (33) to create combined
estimates of OR (ORcombined) and P values (Pcombined) and
heterogeneity statistics from the discovery and repli-
cation cohorts.

Admixture Analysis
Since low-frequency and rare variants can be strongly
influenced by subtle differences in frequency across

ancestral populations, we undertook an admixture anal-
ysis using PCAdmix (34).

Specifically, the local admixture analysis was per-
formed on 16,124 Illumina-based imputed genotypes
on a 2 Mb region surrounding rs60587303 (STK39)
(21,380 SNPs). Admixture of each individual was de-
termined in comparison with genotype data from the
European (CEU) (N 5 99), African (YRI) (N 5 108), and
Asian (CHB/JPT) (N 5 207) populations in 1000 Genomes
phase 3. The distribution of probabilities of CEU, YRI, and
CHB/JPT ancestries was stratified by dosage of the effect
allele (C) at rs60587303 and type 1 diabetes case/control
status.

Fine Mapping and In Silico Functional Exploration
We undertook fine mapping using FINEMAP (35) to
prioritize variants at all GCTA-COJO conditionally in-
dependent loci. Putative functional targets were identi-
fied in silico as genes mapping in the same topological
domain as the fine mapped SNPs or genes with fine
mapped SNPs overlapping transcription factor binding
sites and DNase I hypersensitivity clusters (Supplemen-
tary Data).

Figure 1—Discovery meta-analysis. A: Manhattan plot depicting genome-wide association of 9.06 million genetic variants with type 1
diabetes risk [y-axis is truncated at –log10(P value) of 100]. Blue diamonds represent lead independent genetic variants at known type 1
diabetes loci, red diamonds represent the novel low-frequency/rare loci, and white diamonds represent the remaining GCTA-COJO
independent loci.B: Quantile-quantile plot depicting the observed versus expected2log10P values for the genome-wide association of 9.06
million genetic variants with type 1 diabetes risk.
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Exploration of In Vitro Function of STK39

Murine T cells
Given the commercial availability of an antiparasitic agent,
closantel, which has been shown to specifically inhibit
stk39 activity in cell lines and in mice (36), we tested
the effects of this agent on cytokine responses in murine
CD41 T cells. Cytokine secretion assays for interferon g
(IFNg) and interleukin-2 (IL-2) were performed on acti-
vated CD41 T cells in the presence or absence of closantel
at titrated doses (see Supplementary Data for further
details).

Data and Resource Availability
The GWAS summary-level results will become available
through GRASP (Genome-Wide Repository of Associations
Between SNPs and Phenotypes) (https://grasp.nhlbi.nih
.gov/).

RESULTS

GWAS
After quality control, imputation to 9,061,522 SNPs, and
platform-specific case-control GWAS performed separately
for the Affymetrix and Illumina genotyped samples, our
discovery meta-analysis included a total of 9,358 type
1 diabetes case and 15,705 control subjects. The power of
our meta-analysis to find variants with an MAF of 0.5%
and a relative risk of 2.0 was 98% at an a of 1 3 1025.
After controlling for population stratification, the l for
this meta-analysis was 1.19 (Fig. 1), which is similar to that
reported in previous type 1 diabetes GWAS (11). Based on
our criteria for prioritization of our independent lead
variants (MAF in control subjects .0.5%, INFO .0.3, P
value,1.23 1028 after conditional analysis, not being in
the MHC region, and presence of at least three satellite
SNPs), our list of lead variants included 27 independent
variants in 27 loci (Supplementary Table 3). Among these,
23 were common, mostly at known autoimmune loci (n 5
15) reported in ImmunoBase (available from https://genetics
.opentargets.org/immunobase). Five were low-frequency or
rare variants, four of which were located in loci not

previously described to be associated with an autoimmune
trait. One low-frequency variant (rs34536443) was located in
the TYK2 locus, which has previously been associated
with type 1 diabetes risk (11).

The four novel low-frequency/rare variants were brought
forward to the replication stage (Supplementary Table 4). In
addition, two novel common variants with .40 satellite
SNPs were tested for replication by de novo genotyping in
4,329 case and 9,543 control subjects.We used two variants,
in TYK2 (rs34536443) and INS (rs689), as positive controls
in the replication stage. One of the two novel common SNPs
(rs61944716) failed replication genotyping. Four of the five
novel SNPs replicated at Preplication , 0.05. For these four
variants, we combined the “discovery” and “replication” P
values to create a Pcombined. We considered as “replicated”
the SNPs that presented a Preplication , 0.05, Pcombined ,
Pdiscovery, and Pcombined # 1.2 3 1028 with consistent
direction of association. Based on these criteria, three out
of the four novel low-frequency/rare SNPs and the single
novel common variant replicated (Fig. 2, Table 1, and
Supplementary Table 5).

In Silico Functional Exploration and Fine Mapping
To prioritize variants for in vitro and in vivo functional
exploration among the four novel variants that successfully
replicated, we performed an in silico analysis of the four SNPs
by considering their spatial proximity to putative functional
elements and target genes (Fig. 3). Specifically, the top
candidate genes were determined as genes within a region
of elevated chromatin interactions with the lead SNP or, if
lacking, nearby genes. Further, expression of these genes
was assessed in type 1 diabetes–relevant cell types. These
approaches converged upon STK39, since it resides in
a region of elevated chromatin interaction with the lead
SNP. The local chromatin interaction map for the STK39
locus and its proximity to regulatory elements are shown
in Fig. 3.

The lead variant with the most compelling in silico
functional evidence was rs60587303 (C), a rare variant
(MAFcontrol subjects 0.5%) that resides in the first intron of

OR [95% CI]

Figure 2—Forest plot with the effects on type 1 diabetes of the variants from the discovery and replication meta-analysis. The variants used
as positive controls appear in blue. For facilitation of comparison, the novelSTK39 variant appears in red. EAF, effect allele frequency; OR, OR
of type 1 diabetes after combining discovery and replication results.
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the STK39 gene. With an ORcombined of 1.97 (95% CI 1.58–
2.47, Pcombined5 2.93 1029), the magnitude of its effect is
comparable with that of the lead INS common variant in
our analysis (rs689 [A], MAF 14%, OR 2.21, 95% CI 2.26–
2.67, Pcombined 5 1.44 3 102160). rs60587303 overlaps
a DNase I hypersensitivity cluster of 68 cell types, as well
as a cluster of transcription factor binding sites (Fig. 3).
Statistical fine mapping experiments also prioritized
rs60587303 as one of the five top plausibly causal SNPs at
the 2q24.3 locus (Fig. 3). Another low-frequency variant
was located in the second intron of the LDL receptor–
related protein 1B gene (LRP1B). With an MAFcontrol subjects
of 1.3%, rs192324744 (G) had an ORcombined of 1.63 (95%
CI 1.41–1.87, Pcombined 5 2.43 10211). Fine mapping also
prioritized this variant in the 2q22.2 locus (Supplemen-
tary Fig. 4), but there was less compelling in silico func-
tional evidence from the TAD (topologically associating
domain) analysis. The third low-frequency variant that
successfully replicated was intergenic (rs2128344 [A]) at
the 21q22.1 locus, with an MAFcontrol subjects of 0.55% and
an ORcombined of 2.12 (95% CI 1.71–2.63, Pcombined 5
8.0 3 10212). In silico functional evidence in support of
this variant was lacking. Finally, the single common
variant that successfully replicated was an SNP in the
7th intron of the phosphoglucomutase 1 (PGM1) gene.
rs2269247 (T) had an MAFcontrol subjects of 18% and an
ORcombined of 1.19 (95% CI 1.12–1.26, Pcombined 5 7.3 3
1029). Fine mapping prioritized this variant at the 1.p31.3
locus, and this SNP appeared to be in the same TAD as
PGM1 (Supplementary Fig. 4).

Assessment for Population Stratification and
Admixture Analysis
Since rare and low-frequency variants are more prone to
confounding by population stratification than common var-
iants, we undertook a principal component analyses sepa-
rately in the Affymetrix and Illumina discovery cohorts and in
the replication cohort. While the population structure be-
tween case and control subjects is unlikely to be similar, given
that case and control subjects come from different cohorts,
our analysis found no evidence for ancestral differences
between case and control subjects in the discovery Affymetrix
data (Supplementary Fig. 2A), in the Illumina data (Supple-
mentary Fig. 2B), or in the replication cohort (Supplementary
Fig. 3). Moreover, using seeds from the 1000 Genomes phase
3 data set, our principal component analysis demonstrated
that the outliers removed by EIGENSTRAT lie outside the
1000 Genomes European superpopulation, whereas the
inliers largelyoverlapor are in closeproximity to theEuropean
superpopulation in the Affymetrix, Illumina, and replication
data (Supplementary Figs. 2 and 3).

We also undertook an admixture analysis, where we
queried the MAF of the rs60587303 (C) in different
ethnicities in the 1000 Genome phase 3 release V31. We
found that its MAF varied by ancestry (East Asian MAF
0.250, American MAF 0.030, African MAF 0.248, Euro-
pean MAF 0.007, and South Asian MAF 0.053). Since this
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Figure 3—The STK39 locus. A, top: A regional view of the 2q24.3 locus in the UCSC Genome Browser with tracks showing chromatin
state in various immune cell types (green means active). From this, we can see that STK39 is active in immune cells but also nearby genes
such as CERS6. A, middle: Topological associated domains for the STK39 region. Deeper red color indicates that there is increased
pairwise interaction within the genomic interval. A topologically associated domain, a region of increased interaction, is clearly visible that
encompasses both the associated variant, rs60587303, and the promoter of STK39 but excludes CERS6. A, bottom: Zoomed-in view of
region around rs60587303 shows clear overlap with active regulatory elements containing numerous transcription factor binding sites and
open chromatin sites in 68 cell types. B: Regional Manhattan and fine mapping plots centered on rs60587303. Top panel depicts the
results from the discovery meta-analysis of a region centered on rs60587303. This genetic variant is the lead signal and is supported by
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variant is common in East Asians and Africans, but almost
absent in Europeans, we undertook an admixture analysis in
our GWAS population to interrogate whether there was an
enrichment of Asian or African descent among case subjects,
which could have influenced the association signal from the
STK39 variant. The distributions of probabilities of CEU, YRI,
and CHB/JPT ancestries were stratified by dosage of the
effect allele (C) at rs60587303 and case/control status (Fig.

4). This analysis showed that the type 1 diabetes case subjects
of our GWAS had less African or Asian admixture compared
with control subjects. This strongly decreases the probability
that this finding has arisen due to population stratification
or admixture because these effects would bias results at
rs60587303 near STK39 toward the null. Interestingly,
when we looked at the MAF of rs60587303 in European
subpopulations available from the gnomAD database

Figure 3—Continued

multiple genome-wide suggestive genetic variants. In the bottom panel, statistical fine mapping of this further locus supports rs60587303
as the lead putatively causal genetic variant (yellow diamond with 3), accompanied by two highly correlated genetic variants of lower
log10 Bayes factor (open yellow diamonds). chr, chromosome.
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(version 2) (https://gnomad.broadinstitute.org/variant/2
-169046632-T-C?dataset5gnomad_r2_1) we obtained the
following results: Ashkenazi Jewish, 0.03793; European
(Finnish), 0.01900; and European (non-Finnish), 0.009853.
In the newest version, version 3, of gnomAD (https://gnomad
.broadinstitute.org/variant/2-168190122-T-C?dataset5
gnomad_r3), which is not overlapping with the previous
version, we obtained the following results: Ashkenazi Jew-
ish, 0.03101; European (Finnish), 0.01518; European
(non-Finnish), 0.006926; and Amish, 0.000. These results
suggest differences in MAF in different European subpopu-
lations, and in particular, the MAF is double in the Finnish
population compared with the non-Finnish European pop-
ulation. This is an interesting observation, considering Fin-
land has the highest rate of type 1 diabetes in the world.

In Vitro Functional Exploration of Differential Stk39
Activity in T Cells
We next sought to explore the functional effects of Stk39
using a commercially available specific STK39 inhibitor

(closantel) (36) to determine whether inhibition of Stk39
activity would affect murine T cell activation and func-
tions in vitro. In T-cell receptor–activated, primary
freshly isolated murine CD41 T cells, treated with ti-
trated concentrations of closantel, STK39 inhibition had
no significant impact on T-cell activation or proliferation
at doses that did not affect cell viability. However, we
observed that closantel treatment enhanced the secretion of
IFNg and IL-2 by effector T (TEFF) cells. Closantel also
increased the level of expression of the IL-2 receptor a
chain (CD25), the high-affinity binding component of the
functional IL-2 receptor, indicating that closantel might
augment the sensitivity of activated T cells to IL-2 (Fig. 5).

DISCUSSION

In an effort to discover new loci harboring not previously
identified low-frequency and rare variants, we have carried
out a large GWAS for type 1 diabetes, including the largest
number of SNPs to date. Our analysis revealed the pres-
ence of three novel low-frequency/rare variants, the

Figure 4—Admixture analysis for rs60587303, showing the probability of European (CEU), African (YRI), and Asian (CHB/JPT) ancestry of the
individual from the Illumina platform from our discovery meta-analysis, further stratified by type 1 diabetes case/control status and alleles at
rs60587303. Admixture analysis was conducted for a 2Mbp region centered on rs60587303.We observed limited non-CEUancestry for case
subjects, whereas there is an elevated number of individuals with likely YRI ancestry among control subjects who carry one or more minor
alleles at rs60587303.
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intergenic variant rs2128344, the rs60587303 in STK39,
and the rs192324744 in LRP1B—all validated by replication
using de novo genotyping and all with ORs $1.5, effects
comparable with those of the lead non-MHC common
variants at INS and PTPN22 loci. Functional exploration of
the STK39 locus provided evidence supporting a role for
STK39 in type 1 diabetes.

Our in silico exploration approach prioritized rs60587303
in the STK39 gene for our in vitro experiments. Specifically,
carrying one risk allele of this variant appears to approximately
double the risk of type 1 diabetes in individuals of European
ancestry. This gene encodes a serine/threonine kinase that is
thought to function in the cellular stress response pathway
(37). Although not previously associated with autoimmunity,
STK39 is linked in protein-protein interaction networks to
protein kinase C u (PRKCQ), which then interacts with CD28
(38). The IL2RA and PRKCQ loci on chromosome 10 are well-
replicated type 1 diabetes GWAS gene loci. Our in vitro
experiments using a cellular murine model of immunity
provided evidence that STK39 could be involved in T-cell
activation and effector functions. Pharmacological inhi-
bition of STK39 in vitro appeared to enhance inflammatory
responses from TEFF, providing a mechanistic hypothesis for
a possible role of STK39 in type 1 diabetes. We emphasize that
further functional validation of STK39’s role in immunity is
required.

Additional association signals were identified from
variants near LRP1B and PGM1—genes with known roles in
metabolism: specifically, LRP1B encodes the LDL receptor
protein 1B, which has been previously involved in tumor
suppression pathways (39). PGM1 encodes the phospho-
glucomutase-1 enzyme, which catalyzes the transfer of
phosphate between the 1 and 6 positions of glucose (40).
The novel PGM1 variant (rs2269247) identified in our
study is in linkage disequilibrium with a variant (rs2269241)
in the same locus, previously shown to present a genome-
wide suggestive P value for type 1 diabetes (12). These
findings provide rationale for further functional studies
investigating the role of both LRP1B and PGM1 genes in
type 1 diabetes pathophysiology.

Our study has limitations. Similar to previous type
1 diabetes genetic association studies (11,18), the case-
control design of our GWAS meta-analysis did not allow
for matching of case subjects to control subjects within
the same European population because of the lack
of availability of control samples in each participating
case cohort. Instead, we matched case subjects to control
subjects from different cohorts of similar ancestry. Also,
case and control samples were not matched for demo-
graphics, such as age and sex. This approach could induce
bias from population stratification; however, control for
population stratification was applied. Also, most studies

mol/L

mol/L

mol/L

Figure 5—STK39 inhibition regulates TEFF functions. A: Secretion of IFNg and IL-2 by TEFF cells 72 h following anti-CD3 activation in the
presence of indicated concentrations of closantel. Gated on viable CD41 Foxp32 cells. B: Expression of cell surface CD25 on TEFF cells 72 h
following activation in the presence of indicated concentration of closantel. Gated on viable CD41 Foxp32 cells. Plots shown from one
representative experiment of three, done in triplicate. Error bars represent SD for that experiment. Unpaired parametric t test done for all
comparisons. *P # 0.05; **P # 0.005; ***P , 0.0005.
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included adult individuals, and most cases of type 1 di-
abetes are manifested in childhood and early adulthood,
making the likelihood of misclassification of control sub-
jects very low. Moreover, the likelihood of similar popu-
lation stratification issues being present in discovery and
replication is low. Thus, given that both discovery and
replication cohorts showed similar effects, the probability
that both were biased by population stratification in the
same direction is unlikely. Further, in the case of STK39,
the increased allele frequency in non-Europeans should
have biased our results toward the null, since control
subjects were demonstrated to have a higher component of
admixture from non-Europeans. On the other hand, differ-
ences in allele frequency of the STK39 variant within
European populations (for instance, in the Finnish pop-
ulation compared with the general European population)
could present residual population stratification, but the
likelihood that this phenomenon has biased both the
discovery and replication results is very low. Although we
applied a liberal imputation INFO cutoff of 0.3 to select
variants to include in our GWAS, all results replicated in
separate cohorts using direct genotyping, which does not
depend on imputation. Finally, ideally, the design of this
study should have included, along with imputed GWAS
data, exome chip or whole-exome sequencing data, which
provide more insight on rare variants. Unfortunately, to
date, large-scale exome studies, providing adequate statis-
tical power to study less common diseases, such as type
1 diabetes, are not available.

In summary, our findings demonstrate the utility of
deep imputation to enable the characterization of low-
frequency and rare genetic variation, offering new insights
into the pathophysiology of type 1 diabetes and enabling
the identification of new potential drug targets.
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