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Abstract

Machine-learning techniques have led to remarkable advances in data extraction and analysis of 

medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as 

increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-

level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging 

techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature 

extraction have led to rapid dataset analysis, which offers promise in large pooled 

multiinstitutional data analysis. The object of this review is to provide an overview of machine-

learning and deep-learning techniques for breast MRI, including supervised and unsupervised 

methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of 

machine learning, current limitations, and future applications to texture analysis, radiomics, and 

radiogenomics.

DYNAMIC CONTRAST-ENHANCED BREAST magnetic resonance imaging (MRI) plays 

an integral role in the detection and characterization of breast cancer, along with 

mammography and ultrasound. The main indications for a breast MRI examination are 

screening to detect occult breast cancer in women at increased risk, preoperative assessment 

of the extent of disease in women with a known breast cancer, and assessment of treatment 

response to neoadjuvant chemotherapy.1,2

Breast MRI is the most sensitive imaging modality to detect breast cancer, including ductal 

carcinoma in situ (DCIS). However, lesion identification can be limited by background 

enhancement, which may mask or mimic lesions. Additionally, errors in perception, 

interpretation, and management contribute to false-negative examinations, as retrospective 

reviews of screen-detected cancers demonstrate that 34–47% of cancers were present on 

prior studies.3 In addition, specificity of MRI is only moderate, with positive predictive 

values of 35–64% for screening MR in high-risk women.4 Note that these results are from 

high-volume centers, and may not be generalizable to different levels of expertise. The high 
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cost and long exam time are also barriers to wider clinical implementation of breast MRI. 

Machine learning (ML) is poised to address some or all of these limitations. Similar to 

artificial intelligence (AI) tools that increase the diagnostic performance of screening 

mammography, ML tools will likely increase the diagnostic performance of breast MRI by 

shifting away from the subjective and qualitative assessment of images. Until now, 

radiologist interpretation involved visual interpretation of a static picture. Emerging ML 

techniques, in contrast, allow for higher-order statistical analysis of patterns within the 

image, converting images into data and allowing for subsequent, high-volume analysis of the 

pooled data extracted from hundreds of thousands of images. As ML techniques bring 

together data from large numbers of studies, they may first be of use in standardizing MR 

interpretation across radiologist levels of experience and geographic practice patterns. ML 

tools then may be used as computer vision to see beyond what is apparent to the radiologist; 

highlighting lesions from background enhancement to improve sensitivity, and separating 

benign from malignant lesions to improve specificity. ML tools may sufficiently improve 

accuracy from interpretation of one or a few MR sequences, such that the number of 

necessary sequences is reduced, overall improving scan time, and cost.

Given the growing number of publications on ML in breast MRI, this article aims to review 

the current literature with respect to techniques and clinical applications. Specifically, we 

describe supervised and unsupervised methods for anatomic breast segmentation and lesion 

segmentation, and techniques for texture analysis. Additionally, we discuss possible clinical 

applications with their current limitations and areas for future study.

Machine-Learning Methods

The emergence of AI tools that may learn and continuously improve their diagnostic 

performance has generated enormous interest in the medical imaging community. Therefore, 

it is important to understand how these machine-learning tools work and how they can be 

adapted to perform a variety of functions.

ML, which falls under the umbrella of AI, is a branch of data science that enables computers 

to learn from existing “training” data without explicit programming. ML applications for 

medical imaging are divided into two broad paradigms: unsupervised learning and 

supervised learning. Unsupervised learning aims to discover the structure in the data that has 

no labels or categories assigned to training examples. The most common unsupervised 

learning task is clustering, which consists of grouping similar examples together according 

to some predefined similarity metric. The goal is to discover novel patterns in the data, 

which would otherwise be difficult to notice.

In contrast, supervised ML methods arrive at a classification decision without learning any 

intermediate representation of the data. Therefore, these methods can work well only if the 

input features are very predictive to begin with; for example, being trained on “ground truth 

labels.” These methods are not based on neural networks and are routinely used in the 

medical and nonmedical community. Examples of supervised ML classifiers include logistic 

regression, decision trees, and support vector machines (SVM).

Reig et al. Page 2

J Magn Reson Imaging. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neural Networks and Deep Learning

Neural networks are ML models that consist of many layers and are more structurally 

complex than the supervised ML models described above. The study of neural networks is 

often referred to as deep learning. Three recent technological advances have allowed for the 

rapid growth of deep-learning applications in medical imaging. First, graphical processing 

units (GPUs) exponentially increased the computing power and allowed neural networks to 

be trained quickly. Second, the introduction of backpropagation allowed for an efficient way 

of computing the gradient of the training loss with respect to the parameters of the model.5 

Third, neural networks are flexible models and allow for complex relationships between 

inputs and outputs. This flexibility allows an ML model to learn how to make difficult 

predictions. However, this flexibility also means that, with a small amount of data, there is a 

risk of overfitting where a neural network will simply memorize the training sample cases, 

rather than learn patterns relevant to the prediction problem. The easiest way to alleviate 

overfitting is to collect more data and to have properly “held out” validation samples. 

However, most available datasets are too small for neural networks to be useful. A big 

catalyst to the AI field was the introduction of the large ImageNet dataset.6 GPUs and 

improved mathematical optimization methods enabled upscaling the architectures of these 

neural network models with enough intermediate layers to achieve superhuman 

performance, as demonstrated by the ImageNet challenge in 2012.7

Recently, deep-learning-based methods have surpassed more traditional machine-learning 

segmentation methods for image-based learning problems. Convolutional neural networks 

(CNNs) are a type of neural network that has a special connectivity structure in its hidden 

layers, which aids in image recognition tasks. The special property of CNNs is the 

introduction of the convolutional layer and the pooling layer. Within the convolutional layer, 

neurons in two consecutive layers are only connected if they are spatially close to each other. 

The parameters in the convolutional layer are also shared between spatial locations, which 

accelerates learning. The pooling layer does not have any parameters. It is only averaging 

values of hidden neurons in spatially adjacent locations. More complex versions of CNNs, 

deep convolutional neural networks (DCNN),7 improved their diagnostic performance even 

further. DCNNs vary in their total number of layers, the architecture of convolutional and 

pooling layers, the number of parameters (depending on the shape of the filter), and their 

hyperparameters (such as dropout and learning rate). Examples of these DCNNs, in order of 

increasing number of layers, are AlexNet, VGG, GoogleNet, and ResNet. These DCNNs 

have shown increasing accuracy in image classification, as each has successively won the 

ImageNet competition.

For example, AlexNet, which won the ImageNet challenge in 2012, has five convolutional 

layers alternating with three pooling layers, doing the work of feature extraction. The final 

three layers are fully connected, which are the layers where the classification task occurs. A 

unique feature of AlexNet is that it was the first DCNN to use the Rectified Linear Unit 

activation function. The activation function simulates the firing rate of a neuron and can be 

modeled using different functions. Historically, sigmoid functions were used, but AlexNet 

uses a linear function that therefore has the advantage of being nonsaturating. The AlexNet 

architecture has 60 million parameters. To minimize overfitting, heavy data augmentation 
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was used, increasing the training set by a factor of 2048. Dropout of 0.5 was also used to 

minimize overfitting; in this technique half of the hidden neurons have an output of zero and 

this forces adjacent neurons to learn more robust features than those simply related to the 

presence of particular other neurons.7

VGGNet improved on AlexNet by using more layers (16 instead of 8) and smaller filters, for 

more than double the number of parameters (138 million).8

GoogleNet surprisingly improved classification with more layers22 but much fewer 

parameters (5 million total). This architecture made use of an Inception module, which is a 

network within a network that can be stacked, increasing the depth and width of the 

network.9

ResNet staggeringly increased depth of the network to 152 layers. Historically, deeper 

networks had higher training errors. ResNet addressed this problem by using a deep residual 

learning framework, in which layers were given residual identity maps from earlier layers.10

DenseNet addresses the problem of very deep networks, as information passes through many 

layers it washes out by the time it reaches the end of the network. The DenseNet architecture 

therefore connects all layers directly with each other. This decreases the number of overall 

parameters and makes the network easier to train.11

The DCNNs listed above are rich feature extractors, and can be used for any computer 

vision task. However, V-Net and U-Net are particularly suited to the task of image 

segmentation. These have a contracting path and a symmetric expanding path connected by 

a bottleneck, giving them a U or V shape.12,13 Both the contracting and expanding paths are 

composed of multiple blocks of layers. The contracting path captures context but loses its 

location information, so the features extracted from this path are forwarded to the expanding 

path via horizontal connections. The expanding path enables precise localization along with 

the contextual information fed from the contracting path. These methods use heavy data 

augmentation by applying elastic deformations to the training images, and therefore can 

train from only a few (20–35) annotated images. A difference between V-Net and U-Net is 

that U-Net is a nonresidual learning network, while V-Net has a residual function learned at 

each stage. In addition, V-Net uses volumetric convolutions (as opposed to processing input 

volumes slicewise) to process 3D data. U-Net applications to segmentation are further 

discussed below.

Emerging DCNN models are profoundly different from traditional computer-aided detection 

(CAD). Since the multi-layered DCCN is capable of extracting salient features directly from 

the data, manual feature design and its associated challenges are now obviated. Through 

incorporation of digital data beyond imaging, such as patient-level information, and tumor-

level information, DCCN models are capable of identifying not only known correlations but 

also novel imaging biomarkers that have enormous potential to enhance clinical 

performance. This has become possible because of breakthroughs in computer processing, 

data storage, and algorithm design in recent years, reenergizing the field of computerized 

image analysis, as reflected by an exponential rise in the number of publications on CAD, 

machine learning, and deep learning in PubMed since the year 2000.14
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Radiomics

Radiomics is the field in which large numbers of quantitative features are extracted from 

medical images and pooled in large-scale analysis to create decision support models.15 The 

image data may be combined with patient-level data; known as radiogenomics when the 

imaging data is combined with genetic data. Radiomics studies overall follow a 

methodology of 1) image acquisition, 2) image segmentation, 3) feature extraction, 4) 

feature selection, and 5) predictive modeling. An example of this workflow is shown in Fig. 

1. Supervised and unsupervised ML methods may be used at any step of this process. In this 

review we focus on some of the steps where there is sufficient literature. We will also 

highlight some of the more common clinical scenarios where radiomics and ML tools have 

been used, such as predicting the likelihood of malignancy and developing imaging 

biomarkers associated with tumor aggressiveness. It is important to emphasize that all the 

studies show an association and not causation.

Breast Anatomic Segmentation

Large-scale imaging analysis of breast MRI requires a number of steps, often varying across 

medical centers and hardware. MR images must be acquired and reconstructed to the 

requirements of the clinical protocol, processed for viewing with assistance from 

technologists and/or vendor software, and then have anatomic boundaries delineated by 

computer-assisted contouring, ie, segmentation. Anatomic segmentation allows for analysis 

of what is of interest to the breast imager (the breast tissue, immediate chest wall, and axilla) 

while discarding that which is not clinically useful (surrounding air, thoracic cavity, and 

abdomen). After identifying and discarding irrelevant information, the segmented breast 

image is smaller in size, decreasing postprocessing time and computing power. It can be 

further dissected and refined as required for analysis.

Breast MRI segmentation can be divided into three consecutive tasks: the delineation of 

breast–chest wall and breast–air, the separation of breast fibroglandular tissue (FGT) from 

fat, and distinguishing abnormal enhancement from normal background parenchymal 

enhancement (BPE) (Fig. 2). Unlike breast boundary and breast FGT segmentation, breast 

lesion evaluation requires T1-weighted pre- and postcontrast sequences, which offer specific 

technical challenges, including B0 and B1 inhomogeneity across the parenchyma at the 

breast–air boundary and across the coil gradient.16 This must be corrected as part of image 

postprocessing. Finally, routine fat-suppression in many clinical breast MRI protocols 

introduces additional artifact that must also be corrected.

Delineation of the breast FGT in pre- and postcontrast imaging allows quantification of 

breast BPE. Mammographic breast density, which correlates with FGT, is a known risk 

factor for breast cancer risk and decreased mammographic sensitivity for breast cancer.17 

FGT is a 3D volumetric measurement of breast density, allowing more accurate 

quantification than mammographic density. BPE, which measures the physiologic 

postcontrast degree of enhancement within FGT, has been shown to be sensitive to 

physiological changes in estrogen and to estrogen suppression.18,19 As a biomarker for 

systemic estrogen levels within the breast, BPE has been shown to be an independent risk 

factor for breast cancer.18,19 Since radiologist assessments of BPE are subject to interreader 
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variability,20 precise quantification similar to mammographic density evaluation is of 

interest for large-scale analysis.

Previous approaches to breast MRI segmentation of FGT and BPE often used a hybrid 

approach of atlas-based and statistical methods, which result in highly accurate correlation 

when compared with manual segmentation.21 Fat-water separation approaches have also 

demonstrated high accuracy for FGT separation22 but are not routinely used in many clinical 

breast MRI protocols, limiting availability.

Anatomic breast FGT/BPE segmentation using deep-learning techniques has resulted in high 

Dice similarity coefficients and relatively fast processing times. Early work using a 

hierarchical SVM in a small cohort demonstrated statistically significant improvement in 

overlap ratios compared to FCM segmentation.23 More recent breast segmentation work has 

relied primarily on U-net approaches, which can allow for whole image processing without 

the need for use of smaller “patches,” where the image is divided into much smaller sections 

for analysis. Dalmis et al compared a two consecutive (2C) U-net approach to a single three 

class (3C) U-net approach and found that the consecutive U-net approach outperformed 3C 

and conventional segmentation methods for FGT segmentation, but 3C U-net segmentation 

results correlated better with breast density on mammography.24 Of interest, no 

inhomogeneity artifact correction was applied, suggesting that the use of deep learning may 

eliminate the need for initial bias correction. However, the routine use of bias correction 

prior to segmentation may speed processing times.25 Similar high similarity metrics have 

been seen in various U-net approaches for FGT and BPE segmentation25,26 with processing 

times of 0.42–8.3 seconds per case and no significant difference between scanner types.27 

Although many U-nets use a combination of fat-suppressed and nonfat-suppressed images, 

studies have demonstrated comparable results for breast FGT segmentation with or without 

fat suppression.28

Current approaches have primarily compared segmentation results to ground truth as defined 

by manual segmentation (Table 1). Future directions in BPE segmentation include the 

application of large-scale, proven anatomic segmentation techniques to evaluate quantified 

BPE as an imaging biomarker for breast cancer risk (Fig. 3).29

Lesion Segmentation

Breast lesion segmentation is an emerging technique in machine learning. Early approaches 

to lesion segmentation often used region-growing algorithms, where a seed region of interest 

(ROI) was selected by an experienced radiologist and adjacent pixels matching seed ROI 

intensity were automatically included by the algorithm. Later refinements included 

statistical-based techniques, with improved similarity metrics. Fuzzy c-means (FCM) 

approaches in particular have been widely popularized due to ease of implementation and 

accuracy of results,30 although different approaches, including level set techniques, may 

outperform FCM in overall accuracy.31 In general, these segmentation methods work best 

with lesions that display a sharp contrast between lesion borders and surrounding BPE, and 

are less accurate with lesions with low enhancement, lesions with indistinct or vague borders 

(ie, diffuse nonmass enhancement), or lesions in the setting of moderate to marked BPE. 
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Many studies using deep learning in breast analysis have therefore used statistical-based 

algorithms or manual annotation by radiologists to select the lesion of interest before feature 

extraction and model training, in what can be termed a CADx approach to lesion analysis 

(Fig. 4).

While FCM and similar lesion segmentation techniques offer high accuracy30 and allow for 

relatively quick annotation of large datasets, many rely on the initial placement of an ROI 

around the lesion borders or a small enhancing portion of the lesion, usually on a single slice 

of interest. Such radiologist-driven ROI approaches raise the concern for the introduction of 

interreader bias. An evaluation of interreader reliability of radiomic features generated by 

such techniques found that the placement of initial ROI by expert radiologists resulted in a 

moderate change in the resulting extracted radiomic features.32 This suggests that initial 

seed ROI selection by the radiologist may be subject to bias and therefore have decreased 

interreader reliability. In contrast, deep-learning lesion segmentation techniques offer greater 

reliability and the possibility of high reproducibility across different machines33 and 

institutions, allowing for larger dataset analysis (Table 2).

A less subjective approach to lesion segmentation includes boundary box approaches, which 

allow for faster dataset labeling34,35 and are less prone to bias than ROIs placed within the 

lesion itself. In this CADx-style approach, a radiologist denotes a general ROI by selecting a 

box that includes both the lesion and nonlesion surrounding tissue. A deep-learning method 

is then used to identify and segment the lesion within the bounding box. While U-net whole 

image analysis still predominates for this type of segmentation, patch-based approaches are 

more feasible given the smaller area to be analyzed. A limitation of this approach is that 

boundary boxes are often placed on single slices and may therefore still be prone to error 

when the choice of slice differs between radiologists.

One limitation of breast lesion segmentation is the analysis of nonmass enhancement. 

Machine-learning approaches, including patch-based CNNs and U-net approaches, are 

traditionally trained with annotations of mass-type lesions. Many studies specifically 

exclude NME and asymmetric BPE lesions from these training sets,34 leading to a paucity of 

studies evaluating the more difficult to segment NME. These may require much larger 

training datasets or novel approaches. One novel graph-modeling approach to NME using 

CNN segmentation requires CADx-style placement of an initial ROI, but offers improved 

accuracy compared to prior attempts at NME identification and segmentation.35

As techniques continue to evolve, it is likely that lesion-level analysis will give way to 

image-level analysis. In image-level analysis, the training sets are designated as “benign” or 

“malignant” but the precise lesion in question is not delineated for training purposes. Given 

sufficient processing power and layers, CNNs can be trained to identify the area of interest 

and then analyze features to determine percentage of malignancy. Image level annotations 

have been rarely tested to date, but a recent large study of 1537 patients using a 3D 

DenseNet CNN and image level annotations identified breast cancer with 83.7% accuracy 

(Fig. 5).36 The chief advantage of image-level annotations as a training set is that the time-

consuming step of expert lesion annotation can be bypassed; the drawback of such an 

approach is that patch-based approaches that incorporate lesion annotations generally 
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produce higher accuracy. Additional limitations of this study included its exclusion of breast 

MRIs with multiple findings (a more clinically common scenario) and asymmetric BPE.

Texture Analysis

Texture analysis in radiomics refers to mathematically extracted quantitative statistical 

features of an image, which span a large group of related features. First-order statistical 

texture features, often referred to as histogram features, evaluate the grayscale intensity of 

pixels. Second-order and higher-order texture features evaluate the relationship between 

these pixels in the x and y direction (Laws energy), edge detection after filter application 

(Gabor), co-occurrence matrix (Haralick), or dominant intensity gradient orientations 

(CoLIAGe), all essentially measuring various pixel relationships in terms of heterogeneity, 

correlation, and entropy.37 Texture features can further be subdivided into static texture 

features and textural kinetics; the former usually measured from peak signal intensity of a 

lesion or on first postcontrast images, and the latter evaluating the change in texture 

parameters over time.38 First- and higher-order texture features have been shown in prior 

works to correlate with tumor molecular subtypes39 and pathologic complete response after 

neoadjuvant chemotherapy.40 These studies have demonstrated that measurements of margin 

irregularity and entropy correlate with malignancy. However, texture analysis is not 

standardized across different machine parameters and field strengths.

Breast lesions can potentially have hundreds of texture features extracted after segmentation. 

As a result, overfitting is a common concern and sufficient sample size for testing and 

validating a model is necessary. Deep learning is particularly helpful in analysis of the large 

volume of data generated from computer-extracted imaging features, and often incorporated 

with other features in radiomic analysis. In most texture studies to date, lesions have been 

manually annotated by radiologists or segmented by semiautomated or automated statistical 

algorithms, particularly FCM-based techniques.

Texture analysis is most often applied to T1-weighted imaging, including precontrast, 

postcontrast, and/or generated subtraction images.40–42 While texture features appear to 

show promise in distinguishing benign from malignant, it is also clear that they are 

complementary to, but do not replace, current BI-RADS descriptors of internal enhancement 

patterns and lesion margin.42,43 This may reflect the previous emphasis on static texture, as 

textural kinetics over time may offer more important dynamic information. For example, in 

one study, triple-negative breast cancers demonstrated increased heterogeneity at peak 

contrast enhancement (a static texture feature), but also increased homogeneity over time (a 

textural kinetic feature), when compared with other lesion types.38 While texture as 

evaluated on T1-weighted postcontrast imaging has shown to have high discrimination 

between benign and malignant lesions, the additional information from multiparametric 

texture approaches incorporating T2-weighted and other imaging sequences improves 

accuracy.44

The chief advantage of breast MRI over other breast imaging modalities is the functional 

information offered by the washin of contrast. Most deep-learning texture analysis therefore 

evaluates postcontrast T1-weighted imaging. However, recent studies of noncontrast breast 
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imaging, particularly T2-weighted and diffusion-weighted imaging, have shown the utility of 

texture analysis using noncontrast imaging alone (Fig. 6).45 It is likely that these imaging 

sequences are best utilized when combined with postcontrast imaging for further analysis.

Traditional limitations of texture analysis have included the exclusion of lesions less than 1 

cm3 in size. However, in screening breast MRI of high-risk populations, many suspicious 

lesions are smaller than this. Recent studies specifically evaluating lesions smaller46 than 1 

cm3 (Fig. 7) or with a mean lesion size of less than 1.2 cm45 have nonetheless found texture 

features can discriminate between benign and malignant lesions, suggesting size may not be 

a limitation in future analysis.

As whole breast segmentation and lesion segmentation deep-learning approaches continue to 

evolve, evaluation of breast FGT and BPE may offer contextual clues to the breast tumor 

microenvironment, helping predict pathologic complete response (pCR) and risk of 

recurrence (Fig. 8). Braman et al cross-correlated peritumoral texture features to pathology 

analysis from core biopsy specimens, finding an association between high peritumoral 

heterogeneity in higher-order texture features and densely packed stromal tumor-infiltrating 

lymphocytes, with these tumors more likely to achieve pCR after neoadjuvant chemotherapy.
40 Similar studies of peritumoral FGT/BPE on T1-weighted images have demonstrated a 

correlation between peritumoral texture features and pCR41 and tumor molecular subtype.47

The role of textural kinetics remains underexplored. Preliminary data have suggested that 

washin textural kinetics may be more important than washout textural kinetics,46 particularly 

in small lesions. Initial studies of ultrafast temporal kinetics show similar high accuracy of 

washin kinetics (Fig. 9) and texture features.48 This remains to be confirmed in larger-scale 

studies of larger lesions, but is of interest as abbreviated/FAST breast MRI becomes more 

widespread.

Future directions in deep-learning texture analysis involve the incorporation of both 

multiparametric imaging sequences and whole-breast analysis (lesion, peritumoral region, 

and BPE). Standardization of texture parameters and large-scale, multiinstitutional trials will 

allow for generalizability of future results as texture analysis increasingly becomes 

incorporated into radiomics analysis.

Lesion Classification

Dynamic contrast-enhanced MRI is highly sensitive (89–100%) but variably specific (35–

64%) in the detection of breast cancer.4 There is strong interest in developing imaging 

models to differentiate benign from malignant lesions to decrease the number of benign 

biopsies.

Radiomics studies classifying lesions into benign or malignant have most frequently used 

dynamic contrast-enhanced (DCE)-MRI features.31,42,49–51 These include morphological 

features including 2D and 3D features such as compactness and sphericity,31,42,49–51 and 

texture features such as GLCM,31,42,49,50 and Laws’ features.49 Pre- and multiple 

postcontrast time points can also be treated as a 4D dataset from which kinetic features can 

be extracted.50,51
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Antropova et al52 used only the maximum intensity projection (MIP) for classification. By 

using the MIP image, the investigators sought to incorporate volumetric information in a 

single image, since most pretrained CNN models demand a 2D image as an input. They 

found that training the CNN with the MIP images improved classification as compared with 

training on single slices from the postcontrast sequence.

Other than DCE-MRI, MR sequences such as nonenhanced T1-weighted images,53 

diffusion-weighted images,45,54 and T2-weighted images45,55 have been used to improve 

lesion characterization. Investigators have also developed multiparametric models 

combining diffusion-weighted imaging with DCE-MR44,56–58 for lesion discrimination, with 

accuracies up to 0.93. Specific features that were significantly different between benign and 

malignant lesions included entropy44 and signal enhancement ratio.58 Jiang et al56 found 

that adding additional parameters to a multiparametric model improved accuracy of 

discrimination between benign and malignant lesions. For example, adding kinetic features 

to a model using shape and texture features from DCE-MR improved accuracy, and adding 

an ADC threshold to this model improved accuracy again.

While most studies investigate tumor features only, Kim et al59 incorporated features from 

tumor and background parenchyma and found that the Ktrans in the fibroglandular 

(nontumor) tissue was significantly different between the malignant and benign groups, and 

was as predictive of malignancy as lesion Ktrans.

The accuracy and generalizability of the classifier will depend on the types of benign and 

malignant lesions that are included in the study. Whitney et al51 narrowed the classification 

task to benign lesions vs. luminal A breast cancers, which are a subtype of cancer that 

typically manifests as a spiculated and irregular mass. This is potentially an easier task than 

classifying benign from malignant lesions that include different histologies such as invasive 

ductal, invasive lobular, mixed ductal lobular, and DCIS.52,58 For the classification task to be 

clinically meaningful, the dataset should include malignancies that can mimic benign 

lesions, and benign lesions that mimic malignancy. For example, a study evaluating breast 

cancers vs. fibroadenomas specifically evaluated the accuracy of classifying fibroadenomas 

from triple-negative cancers, which are known to sometimes manifest as round or oval 

masses with circumscribed margins.60 It is therefore important to be explicit about what 

lesions were analyzed. Only Truhn et al61 explicitly included a significant number of 

nonmass enhancement cases in addition to masses. Their results suggest that, with a 

sufficiently large number of training cases, a deep-learning algorithm could learn to 

correctly classify a wide range of lesions.

The classifiers used in these studies include linear discriminant analysis,51 Bayesian,50 

difference-weighted local hyperplane,56 and SVM.31,44,52–54 Cai et al58 evaluated four 

machine-learning models and found that SVM was the best classifier among the machine-

learning models (less accurate algorithms were Naïve Bayes, k-nearest neighbors, and 

logistic regression).

Studies comparing radiomics-style handcrafted feature extraction against deep-learning-

based feature extraction shows that the deep-learning techniques outperform the radiomics 
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features in classifying benign vs. malignant tumors.61,62 Truhn et al61 noted that the 

performance of their deep-learning classifier improved when the number of training cases 

increased, although the accuracy of the radiomics algorithm did not. This suggests that the 

radiomics approach may reach a ceiling of attainable accuracy, but that a deep-leaning 

model, with its more complex and expandable structures, may continue to improve with 

larger datasets.

Predicting Occult Invasive Cancer in DCIS

DCIS is a noninvasive lesion bound by the mammary duct basement membrane. As it is 

most commonly identified by core-needle biopsy, there is a risk that associated invasive 

disease will be discovered at the time of surgical excision. A review of the literature showed 

that the upgrade rate ranges widely, reported as 3.5–56%.63 Multiple studies have attempted 

to predict upgrade to invasion using descriptive MR features.63,64 Radiomic and machine-

learning models have the potential to improve our ability to predict invasion from MR 

images.

This is a relatively underexplored area. Harowicz et al,65 using radiomics features of 

morphology, texture, and enhancement, found that a textural feature had the highest 

predictive value of upstaging. A more homogeneous texture predicted invasion, which 

reflects the “sponge-like” appearance of DCIS as opposed to the more mass-like appearance 

of invasion. This same group66 used deep-learning techniques to predict upstaging, with 

only moderate success, with an area under the curve (AUC) of 0.68. Both of these studies 

used postcontrast MR images only, and required image annotation by a radiologist.

Rather than predict invasion, radiomics analysis has been used to evaluate high-risk features 

of DCIS.67 For example, nuclear grade is an important clinical factor, as high nuclear grade 

DCIS has a different prognosis than low and intermediate nuclear grade DCIS, and is more 

likely to progress to invasive cancer. Chou et al showed that there was no difference in MRI 

parameters or BI-RADS descriptors between high-risk DCIS and low-risk DCIS.67 

However, a single heterogeneity metric of surface-to-volume ratio was significantly smaller 

in high-risk DCIS, suggesting that it is a more compact and consolidated disease. This study 

demonstrates that unaided visual perception is unable to decode the underpinning biological 

variability of disease, for which deep learning shows promise.

Lymph Node Status and Markers of Aggressiveness

There are multiple clinical predictors of tumor aggressiveness and patient outcome. These 

include stage, lymph node involvement, Ki-67 expression, and the presence of tumor-

infiltrating lymphocytes. These are clinically important, as they are prognostic and may help 

determine the patient’s therapy.

Lymph node involvement is among the most important prognostic markers, as axillary 

lymph nodes are usually the first site of metastasis from breast cancer. Investigators have 

sought to predict axillary lymph node metastasis based on the radiomics of the primary 

tumor.50,68–70 DCE-MRI features that were predictive of lymph node involvement included 

morphologic irregularity,68 texture homogeneity,68 and peritumoral texture.70 In addition to 
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DCE-MRI, noncontrast texture features obtained from T2-weighted imaging and DWI can 

be predictive.69 Incorporation of clinicopathologic features as well as radiomics feature may 

result in the most accurate model.70

While the previous studies extracted imaging features from the primary tumors, several 

studies have evaluated imaging features of the lymph nodes themselves.71–73 All of these 

studies evaluated postcontrast T1-weighted images on which radiologists identified index 

lymph nodes. Morphologic features were found to be more predictive than kinetic and 

texture features.71,72 Only one study followed a deep-learning approach73 in which 

handcrafted radiomics features were not obtained. A strength of this study is its independent 

test set that was not used for training of the neural network, which is a more robust 

evaluation than the leave-one-out cross validation technique.

Ki-67 is a protein associated with cell proliferation and has been found to be a predictive and 

prognostic marker in breast cancer. Radiomics features from DCE-MRI have been used to 

demonstrate that tumors with high Ki-67 expression are larger and more homogeneous than 

those with low expression,74 and to demonstrate that imaging features of intratumoral 

subregions are more predictive than whole-tumor features.75 A study showing that a 

classifier based on T2-MR features was better able to predict Ki-67 status, compared than 

one with DCE-MR features,76 suggesting that additional work needs to be done regarding 

which MR sequences would result in best feature selection.

Tumor-infiltrating lymphocytes (TILs) are an immunological biomarker that are associated 

with improved response and prognosis after neoadjuvant chemotherapy.77 They are also 

associated with improved prognosis after adjuvant chemotherapy in certain tumor subtypes. 

Wu et al78 sought to investigate the appearance of DCE-MR and TILs. In addition to 

imaging features, they included the mean expression of two genes related to immune 

infiltration and DC8+ T-cell activation. The addition of the genetic information improved the 

accuracy of the model. They tested the prognostic significant of their model in a group of 

patients with triple-negative disease, and found that lower TILs predicted by the model was 

associated with worse recurrence-free survival, demonstrating the predictive value of this 

work.

Predicting Prognosis and Likelihood of Recurrence

Breast cancer is a heterogeneous disease, and long-term survival is not well predicted for 

any individual. The recurrence rate is ~20% at 10 years, and the majority of patients with 

recurrence present with metastatic disease.79 Recurrence is itself an important prognostic 

indicator, as 10-year overall survival is 82% for patients without recurrence, 61% for women 

with local recurrence, 41% for regional recurrence, and 20% for distant recurrence 

(metastatic disease). There are numerous patient and tumor features associated with 

recurrence, including tumor molecular subtype. An imaging feature that has been associated 

with recurrence is an increase in relative tumor enhancement rate (relative to background).80

Quantitative radiomics approaches to predicting survival and recurrence-free survival have 

evaluated texture features from T2-weighted and DCE-MR.81,82 Park et al82 demonstrated 
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that adding clinicopathological variables such as lymph node involvement and molecular 

subtype improved accuracy of the model. In these studies, the time span for follow-up of 

recurrence-free survival should be correlated with the molecular subtype, as estrogen 

receptor (ER)-positive tumors can recur up to 20 years after diagnosis, while human 

epidermal growth factor receptor (HER2)-enriched and triple-negative tumors recur much 

earlier.83

In patients undergoing neoadjuvant chemotherapy, the most enhancing tumor volume on 

either the pretreatment or early posttreatment MR was found to predict recurrence-free 

survival.84 Interestingly, the change in volume from baseline to early posttreatment MR did 

not have any predictive ability for recurrence-free survival. This is in contrast to the change 

in tumor size that has been used as an indicator of response to therapy, which is a short-term 

measure.85 The more longterm measure of treatment success in terms of recurrence-free 

survival can be measured from a single timepoint.

Dashevsky et al86 correlated quantitative MR features with surgical outcome. They 

specifically focused on resectability of HER2-positive breast tumors undergoing breast 

conservation therapy. They found that shape-based features were associated with reexcision; 

as can be expected, a more irregularly shaped tumor was more likely to require reexcision. 

The investigators suggest that MR features may assist surgical planning and encourage wide 

margins in patients who are at risk for reexcision.

Radiogenomics

Molecular Subtypes of Breast Cancer

Using gene expression patterns, Perou et al87 classified breast cancer into four intrinsic 

molecular subtypes: luminal A, luminal B, HER2-enriched tumors, and triple-negative/

basallike tumors. Immunohistochemical surrogates, consisting of estrogen and progesterone 

positivity, HER2 positivity, and Ki-67 positivity are commonly used to correlate with the 

molecular subtypes. Luminal A patients have the most favorable prognosis, followed by 

Luminal B patients, who have an intermediate prognosis, while the triple-negative subtype is 

associated with an unfavorable prognosis.88 HER2-enriched subtypes are associated with 

response to targeted therapy. All subtypes have unique responses to therapy, disease-free 

survival, and overall survival. As a result, conventional systemic therapies are implemented 

based on the molecular subtype.

As imaging features are related to gene signatures, the goal is to classify genetic breast 

cancer subtypes from MRI. Radiomics-style approaches using large numbers of quantitative 

imaging features were shown to be superior to the qualitative approach.89 Naturally, the 

methodology has evolved to using ML models to improve classification.

These studies commonly evaluate DCE-MR images,extracting morphologic and texture 

features.39,60,90 Morphologic features are most useful for differentiating subtypes that are 

commonly circumscribed (such as triple negative) from subtypes that are commonly 

spiculated (such as HER2-enriched).60 Texture is most useful in separating subtypes with 

similar morphology but different internal heterogeneity, such as luminal A from luminal B.90 
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Adding commonly-obtained clinical information such as nuclear and histologic grade can 

improve the accuracy of the model.39 In addition to postcontrast imaging, precontrast T1 

images90 and DW-MR images54 have been evaluated, both of which have shown promise in 

representing intratumor heterogeneity.

In addition to tumor features, several investigators have included background parenchymal 

features in their evaluation.47,91–93 Wang et al47 found that background parenchymal 

enhancement (BPE) texture features were more accurate than clinical and tumor features. 

They found a significant association between BPE heterogeneity and triple-negative breast 

cancers. Fan et al92 found that fusing intratumoral and peritumoral characteristics increased 

prediction accuracy.

These radiomics-style studies depended on feature engineering using semiautomated feature 

extraction. In contrast, deep-learning approaches have been attempted in which features are 

automatically extracted.94,95 Both of these studies used postcontrast MR images that were 

annotated by a radiologist. Ha et al94 used a customized neural network as feature extractor 

and classifier. Zhu et al95 used VGGNet, which is a neural network that is freely available 

and can be pretrained with an online image database, as a feature extractor and then an SVM 

as a classifier.

While the prior studies have used imaging to predict underlying tumor biology, the 

integration of radiomic and genomic features may allow more sophisticated and accurate 

modeling of tumor biology. A study96 of radiomics features obtained from DCE-MRI as 

well as genomic features obtained from 70 breast cancer genes attempted to model the 

radiogenomic features against predictive clinical outcomes. The radiomic features predicted 

pathologic stage, while the genomic features predicted ER and PR status. This suggests that 

radiomic and genomic features are complementary in describing tumor biology.

Radiogenomics also shows promise in the discovery of new genetic signatures.97–100 In 

these studies, correlations between radiomic and genomic profiles are explored in an 

unsupervised way. These can lead to new associations; for example, that a certain MR 

feature (enhancing rim fraction score) is associated with expression of a long noncoding 

RNA that is known to be associated breast cancer progression and metastasis.98,101 This 

reveals a possible link between a molecular pathway and its manifestation at a macroscopic 

imaging level.

Genomic Predictors of Recurrence

Advances in adjuvant chemotherapy, hormonal agents, and radiotherapy have contributed to 

improved breast cancer mortality over the past 30 years. However, on an individual level, 

there is concern for overtreatment of patients who may have excellent long-term survival 

without chemotherapy. The personalization of breast cancer treatment is therefore an 

essential topic as researchers and clinicians seek to predict each patient’s risk of relapse and 

individually tailored therapy.

Commercially available gene expression assays can now predict prognosis and/or 

effectiveness of treatment in certain breast cancers. Commonly used assays are MammPrint, 
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Oncotype DX, and PAM50. These are in current clinical use for identifying patients with 

low-risk tumors who would not benefit from chemotherapy. The downsides of these tests are 

their cost and the time needed to wait for results. There has therefore been interest in using 

MRI to similarly predict patient outcome and tumor genomics.

Quantitative radiomics approaches have compared imaging features with recurrence scores 

from commercially available assays.102–105 Features found to be associated with higher risk 

of recurrence include large size and more heterogeneous enhancement,105 and increased 

kurtosis on postcontrast series.103

Saha et al104 compared computer-extracted features from contrast-enhanced MR to 

Oncotype DX recurrence scores. They trained ML models to predict high and low scores, 

yielding an AUC of 0.77. The strength of this study was its larger number of patients (261 

total) and the use of separate training and test sets.

Response to Neoadjuvant Chemotherapy

Neoadjuvant or preoperative chemotherapy use can have several potential advantages, 

including shrinking tumor size to permit breast-conserving surgery in patients who would 

have needed mastectomy, as well as a prognostic indicator, since patients with pathologic 

complete response (pCR) after therapy have improved survival compared with those with 

residual disease.106

Response to neoadjuvant therapy can be mixed, with large studies showing an average pCR 

rate of 19%.107 The pCR rate depends on cancer subtype, ranging from 0.3–38.7%. Given 

these low pCR rates, and that pCR can only be evaluated once the patient has had surgery, 

there has been great interest in using imaging as a surrogate marker for response to therapy. 

DCE-MRI is considered more accurate and sensitive for the detection of residual disease 

than other imaging modalities, with sensitivity 83–87% and specificity of 54–83%.108 More 

important, MRI shows promise in predicting response to therapy. The landmark I-SPY trial 

compared the tumor volume on pretreatment MR to volume after some cycles of 

chemotherapy and showed a change in tumor volume early in therapy could predict pCR.109

Supervised ML studies comparing pretreatment MR to MR performed after one or two 

cycles of chemotherapy have found that changes in lesion size in three dimensions,110 

percentage change in DCE-MRI parametric maps,111 and change in heterogeneity of the 

most-enhancing tumor subregion112 were good predictors of early response to therapy. Other 

studies evaluating pCR found that models incorporating data from pretreatment MR and 

early posttreatment MR outperformed models using only pretreatment data.113,114

Despite this, the ability to predict the response to therapy on pretherapy imaging alone is the 

ultimate goal. This would allow clinicians to better plan the timing of surgery and 

chemotherapy, and to provide more individualized prognosis for the patient. Multiple 

supervised ML studies have sought to predict pCR using pretreatment MR images alone 

(Table 3). Most of these have focused on DCE-MR imaging, evaluating kinetic, textural, and 

morphologic tumor features.41,115,116 In an example of the large number of features that can 

Reig et al. Page 15

J Magn Reson Imaging. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be extracted, Braman et al40 used Gavor wavelet, co-occurrence measures and energy 

measures to generate 1980 features from DCE-MR images.

In using kinetic features of the tumor itself to predict pCR, Aghaei et al115 found that 

including and excluding the necrotic regions of the tumor resulted in different performance, 

and that the features computed from the active enhancing tumor are most salient. Similarly, 

Wu et al112 partitioned the tumor into subregions with similar enhancement patterns and 

found that a subregion associated with rapid washout of contrast agent played a dominant 

role in predicting response to therapy.

Adding multiparametric data to DCE-MRI data increases the type and diversity of features 

available for modeling and shows promise in increasing accuracy.117 A study including T2-

weighted and DWI imaging as well as DCE demonstrated that T2 features (peritumoral 

edema) and DWI features (minimum ADC) were among the most relevant features for 

predicting residual cancer burden.110 There is also evidence that precontrast imaging may be 

more predictive than postcontrast imaging.118

Evaluating peritumoral features or background parenchymal features in addition to tumor-

specific features has been found to improve performance. Braman et al40,119 found that 

combining texture features from the intratumoral and peritumoral spaces yielded the best 

performance in predicting pCR. In a study of peritumoral features of HER2-positive tumors, 

the authors posit that the peritumoral microenvironment may be among the most important 

factors in breast cancer and development, particularly since tumor-infiltrating lymphocytes 

in the stroma surrounding these tumors have been strongly associated with improved 

therapeutic outcomes.119 A study of 10 global kinetic image features, which included both 

breasts and were not specific to the tumor, showed that several features from the global 

breast MR images including average contrast enhancement and standard deviation of the 

contrast enhancement improved accuracy when added to a parameter that reflected the tumor 

itself.120 Similarly, a study of morphologic, kinetic, and texture features of the tumor and 

background parenchyma found that the most accurate model included six tumoral and six 

background features, of which five were from the contralateral breast.121

In evaluating response to therapy, patient selection is important, as the different tumor 

subtypes have different probabilities of response to therapy and different underlying biology 

of response to therapy. A study of textural features obtained from DCE-MRI showed that 

separating hormone receptor-positive tumors and triple-negative/HER2-positive tumors into 

two groups improved accuracy.40 Interestingly, the radiomic features most predictive of 

response vary across different receptor subtypes.40,41 In a study of pCR in hormone 

receptor-positive, HER2 positive, and triple-negative subgroups, the model was most 

accurate in the triple-negative subgroup.117

Attention to the outcome classifier is important, as some studies have used imaging response 

or RECIST criteria to classify patients.115,120,121 However, the gold standard should be 

comparison with surgical pathology, as MRI is only 83–87% sensitive in detecting residual 

disease.108 It may also be useful to separate the category of partial response from 

nonresponder/progressive disease, as these categories are clinically relevant.122
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A limitation of multiple supervised ML studies is their small sample size that precludes 

using separate training and test sets. The larger studies of 117 patients,40 288 patients,41 and 

414 patients117 did use independent test sets, meaning that those tumors were not used in the 

training of the ML classifier and could therefore be more reliable tests of model performance 

and generalizability. Use of an independent validation cohort from a different institution can 

be used to demonstrate generalizability of the ML model performance.117,119 Even a 

relatively small study can create an independent test set, as a study of 55 patients used 15 as 

its validation set.111

Beyond the supervised ML studies described, a few investigators have used unsupervised 

ML techniques to predict response to therapy.123,124 Using deep learning in this way allows 

investigators to skip the selection of radiomics features, their extraction, and subsequent 

analysis to select the most predictive features. Using computing power and MR images as 

training data, a deep neural network can be trained to identify predictive imaging features in 

an unsupervised fashion. In these studies, a radiologist either segmented the tumor or chose 

the DCE-MR slice with the largest tumor area, and these images were then fed to the CNN 

for training. A separate validation set is required to evaluate the model. Clinical information 

can also be added to the model, and HER2 status has been found to improve accuracy.124 

This is particularly important, as these studies evaluated a mix of breast cancer subtypes, and 

either separating the subtypes or providing clinical information to reveal the underlying 

subtype will be important to further refine the models.

A last area of study is whether imaging can predict response to therapy in the axillary lymph 

nodes. This is an emerging field of study, as sentinel lymph node surgery is becoming 

accepted after neoadjuvant therapy in node-positive patients.125 Ha et al126 trained a CNN 

on the pretreatment MRI of the primary tumor in patients who had a biopsy-proven lymph 

node metastasis prior to neoadjuvant chemotherapy. 38.6% of patients achieved a pCR in the 

axilla, and the CNN achieved an accuracy of 83% with AUC of 0.93 in predicting axillary 

response.

Discussion

The field of ML in breast MRI is rapidly evolving, with advances in lesion detection, lesion 

classification, radiogenomics, and prediction of response to neoadjuvant chemotherapy. Both 

supervised and unsupervised ML techniques require continued study, as they have not yet 

achieved clinical applicability. A major hurdle is the current lack of standardization; as we 

have demonstrated in this review of the current literature, there is no standard method of 

segmentation, feature extraction, feature selection, or classification. In addition, the clinical 

relevance of these techniques has not yet been demonstrated; this will require large datasets, 

with subgroup analysis by patient group and/or tumor type, and subsequent independent 

testing. The problem of small sample sizes is notable, as ML techniques require large 

datasets for training, particularly when the image class to be identified (ie, malignancy) is 

rare compared with the other classes (ie, benign lesions). An inherent limitation of ML is 

that the decision-making process of the model is so complex that why or how a model gave a 

certain answer is difficult to understand, resulting in these models sometimes being called a 

“black box.” Future directions include: 1) decreasing scan time by using ML in MR 
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acquisition and reconstruction techniques, 2) unsupervised ML from raw (unprocessed) MR 

images, 3) expanding the uses of noncontrast MRI, possibly to replace DCE-MRI, 4) 

improving personalized risk assessment with BPE texture analysis, 5) incorporating more 

clinical, genetic, and pathologic information including genetic and pathologic data extracted 

by ML,127 and 6) prediction of patient’s response to therapy and outcome, for individualized 

treatment planning.
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FIGURE 1: 
Example of radiomics study workflow. In all, 163 breast cancer patients with DCE-MRI 

scans were included in this study. The ROIs were identified on (a) the first postcontrast 

image; (b) the corresponding intratumoral and peritumoral ROIs: the yellow region is the 

original intratumoral ROI covering the enhancing tumor drawn by the radiologist, while the 

red region indicates the peritumoral ROI after dilation; radiomic features were extracted 

from (c) washin map, (d) washout map, and (e) SER map. The dataset was then randomly 

separated into a training set (~67%) and a validation set (~33%). The prediction model was 

built in the training set after combining clinical and histopathological information and was 

further tested in the completely independent validation set. (Reprinted and adapted with 

permission from Liu et al. J Magn Reson Imaging 2019;49:131–140.)
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FIGURE 2: 
Automatic breast segmentation pipeline incorporating machine learning. Axial T1-weighted 

precontrast images are automatically segmented at breast-air (blue) and breast-chest wall 

(red) boundary (a). Breast is further subdivided into fibroglandular breast tissue (FGT, 

green) and fat. Background parenchymal enhancement (BPE) is calculated as FGT 

enhancement over baseline and is 12% (minimal) in this 66-year-old screening patient, as 

demonstrated on the first postcontrast subtraction images (b).
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FIGURE 3: 
Images from a patient who subsequently developed cancer (a) and the two matched controls 

(b,c, respectively) The MIPs are presented in the first column and the breast masks are 

shown in the second column. The third column represents enhanced FGT on the MIP in 

green, vessels in red, and remaining breast mask in blue. The FGT for these images was 

extracted from the corresponding T1 nonfat-saturated sequence. (Reprinted and adapted with 

permission from Saha et al. J Magn Reson Imaging 2019.)
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FIGURE 4: 
SVM analysis of known cancers offers promise in evaluating extent of disease. Maximum 

washin-slope and peak enhancement were associated with malignancy in SVM analysis of 

predictors of malignancy in ipsilateral and contralateral breast lesions. A 63-year-old woman 

had a new diagnosis of 8 mm right retroareolar papillary carcinoma with planned breast 

conservation. Breast MRI demonstrated two irregular masses and two additional foci (blue 

arrows) of abnormal enhancement (a, first postcontrast images). Manual volumes of interest 

annotating these foci on high temporal resolution MRI (b, high temporal resolution T1-

weighted subtraction images at 45 seconds postcontrast) demonstrated early peak 

enhancement (c). Subsequent MR-directed ultrasound and MRI biopsies yielded additional 

papillary carcinoma and papillary lesions, leading to surgical decision for mastectomy 

instead of breast conservation.
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FIGURE 5: 
Visualization of (a) the MRI slices from three different samples, (b) the corresponding 

heatmap obtained from the GMP model, (c) the corresponding refined weak label using 

DenseCRF, and (d) the manual annotation. Fired color indicates higher values for the 

activations in (b). Red color indicates the annotation by model and human in (c,d). The Dice 

coefficients of each sample were: 0.823, 0.683, and 0.091, respectively. (Reprinted and 

adapted with permission from Zhou et al. J Magn Reson Imaging 2019.)
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FIGURE 6: 
Schematic depiction of image processing. Left: 3D segmentations of lesions shown on single 

T2w slices (left) and as surface shaded 3D renderings (right). I: Segmentations (red) are 

shown overlaid on the four imaging sequences (T2w, DWIBS1500, ADCDWIBS, and 

ADCDWI). II: Intensity normalization transforms variable MR signal intensities on T2w and 

DWI images (top) into comparable image intensities (bottom). III: Radiomic feature 

extraction uses first-order statistics, volumetric and texture features as defined in Data 

Supplement S1 to generate a multidimensional imaging signature. IV: The radiomic feature 

matrix and corresponding outcome data (histopathological results) are combined and used 

for supervised training of the Lasso regularized logistic regression model. Performance of 

the constructed model is compared to the performance of known standard parameters using 

ROC analysis. T2w = T2-weighted; DWI = diffusion-weighted imaging; DWIBS = diffusion-

weighted imaging with background suppression (DWIBS); ADC = apparent diffusion 

coefficient: ROC = receiver operating characteristics. (Reprinted and adapted with 

permission from Bickelhaupt et al. J Magn Reson Imaging 2017;46:604–616.)
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FIGURE 7: 
Initial enhancement (a,d), overall enhancement (b,e), and area under the enhancement curve 

(c,f) maps for a benign papilloma (a–c) and a malignant invasive ductal carcinoma (d–f). It is 

evident that spatially heterogeneous enhancement is present, which can thus be quantified 

using texture analysis. (Reprinted and adapted with permission from Gibbs et al. J Magn 

Reson Imaging 2019.)
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FIGURE 8: 
A 52-year-old woman with triple positive (ER, PR, and HER2+) high-grade invasive ductal 

carcinoma evaluated with breast MRI before and after four cycles neoadjuvant 

chemotherapy (a: first postcontrast subtraction, b: T2-weighted). 3D whole lesion volume of 

interest (VOI) was annotated using a seed-growing semiautomated segmentation technique 

on subtraction images (c, red lesion) with peritumoral region (c, blue lesion) automatically 

generated based on VOI. Tumor and peritumoral VOIs were then propagated to coregistered 

T2 images (c) and first-order texture features were analyzed. Lesions that demonstrated high 

T2 whole lesion entropy, T1 core lesion entropy, and T2 peritumoral skewness and kurtosis 

were more likely to exhibit pathologic complete response (pCR; accuracy = 74%). The 

patient demonstrated complete imaging response on post-neoadjuvant therapy imaging (e,f) 
and had pCR at final surgical pathology. (Reprinted and adapted with permission from 

Heacock et al. RSNA 2017.)
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FIGURE 9: 
A 52-year-old woman with CHEK2 mutation undergoing high-risk screening MRI. A new 4 

mm focus of enhancement (blue arrow) at left 7:00 (a,b, first postcontrast axial subtraction 

and sagittal images) was manually segmented in a 3D volume of interest. The segmented 

lesion demonstrated early washin on high temporal resolution sequences acquired in the first 

60 seconds (c) but persistent temporal kinetics on washout curve analysis (d). MRI-guided 

biopsy yielded high-grade invasive ductal carcinoma. Early maximum slope on high 

temporal resolution images is associated with malignancy in SVM analysis.
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