Skip to main content
. Author manuscript; available in PMC: 2020 Oct 1.
Published in final edited form as: J Magn Reson Imaging. 2019 Jul 5;52(4):998–1018. doi: 10.1002/jmri.26852

TABLE 1.

Review of Machine-Learning Breast Anatomic Segmentation Techniques

Study N= Sequences Segmentation Deep-learning method Similarity metrics
Wang 2013 4 T1, T2, PD, Dixon FGT Hierarchical SVM 1. Overlap ratios93.25–94.08%
Dalm1ș 2017 66 Pre T1W WOFS Anatomic, FGT 1. 2C U-Net x 2
2. 3C U-Net
1. FGT DSC = 0.811
2. FGT DSC = 0.850
Xu 2018 50 Pre, post T1W Anatomic 2D U-Net DSC 0.9744
Fashandi 2019 85 Pre T1W WOFS, FS T1W Anatomic 1. 2CU-Net with WOFS, FS, mixed, multi-channel input
2. 3C U-Net, same inputs
1. 2C U-net NonFS DSC = 0.96
2. 3D multi-channel DSC = 0.96
Ha 2019 137 Pre, post, sub FGT, BPE Modified 3D CNN/2D U-Net 1. FGT DSC 0.813
2. BPE DSC 0.829
Ivanovska 2019 40 Pre T1W WOFS Anatomic, FGT 2C 2D U-Net x 2 3. Anat DSC 0.98
4. FGT DSC 0.932
Zhang 2019 114 Pre T1W WOFS Anatomic, FGT U-Net x 2 1. Anat DSC 0.86
2. FGT DSC 0.83

FS = fat saturated; WOFS = without fat saturation; +FGT = fibroglandular tissue; BPE = background parenchymal enhancement; Anat = anatomic segmentation (breast/chest wall/air).