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Abstract

Experimental Outer surface protein (Osp) C based subunit chimeritope vaccinogens for Lyme 

disease (LD) were assessed for immunogenicity, ability to elicit antibody (Ab) responses to 

divergent OspC proteins, and bactericidal activity. Chimeritopes are chimeric epitope based 

proteins that consist of linear epitopes derived from multiple proteins or multiple variants of a 

protein. An inherent advantage to chimeritope vaccinogens is that they can be constructed to 

trigger broadly protective Ab responses. Three OspC chimeritope proteins were comparatively 

assessed: Chv1, Chv2 and Chv3. The Chv proteins possess the same set of 18 linear epitopes 
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derived from 9 OspC type proteins but differ in the physical ordering of epitopes or by the 

presence or absence of linkers. All Chv proteins were immunogenic in mice and rats eliciting high 

titer Ab. Immunoblot and enzyme linked immunosorbent assays demonstrated that the Chv 

proteins elicit IgG that recognizes a diverse array of OspC type proteins. The panel included OspC 

proteins produced by N. American and European strains of the LD spirochetes. Rat anti-Chv 

antisera also uniformly labeled intact, non-permeabilized Borreliella burgdorferi demonstrating 

that vaccinal Ab can bind to targets that are naturally presented on the spirochete cell surface. 

Vaccinal Ab also displayed potent complement dependent-Ab mediated killing activity. This study 

highlights the ability of OspC chimeritopes to serve as vaccinogens that trigger potentially broadly 

protective Ab responses. In addition to the current use of an OspC chimeritope in a canine LD 

vaccine, chimeritopes can serve as key components of human LD subunit vaccines.
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INTRODUCTION

Lyme disease (LD) is the most common tick-borne disease in the United States. Borreliella 
burgdorferi (1), a spirochete formerly classified as Borrelia burgdorferi, is a causative agent 

of LD in North America and Europe (2,3). Since the discovery of B. burgdorferi, additional 

related species have been identified and determined to be pathogenic in humans (4,5). The 

LD spirochetes are transmitted to mammals by infected nymphal or female adult Ixodes 
ticks. I. scapularis and I. pacificus are the primary tick vectors in N. America. In Europe and 

Asia, I. ricinus and I. persulcatus are dominant (6,7). Ticks alone cannot maintain LD in 

nature since the spirochetes are not transovarially transmitted. Hence, Ixodes ticks can only 

become infected by feeding on an infected mammal. Since there is no animal-to-animal 

transmission, persistence of the LD spirochetes in nature is strictly dependent on its enzootic 

cycle (8). In the eastern half of N. America, Tamias striatus (eastern chipmunk), Sorex 
brevicauda (short-tailed shrew), Peromyscus leucopus (white-footed mouse) and Sorex 
cinereus (masked shrew) are the primary sources of infection for feeding larval stage ticks 

(9). In the western US, Neotoma fuscipes (dusky-footed wood rat) and Peromyscus 
maniculatus (deer mouse) are important reservoirs (10). In Europe, several species of mice, 

voles, squirrels, woodland birds, and pheasants serve as reservoirs (11).

Estimates from the Centers for Disease Control and Prevention indicate there are ~340,000 

clinician diagnosed probable cases of LD each year in the United States (12). Due to the lack 

of uniform reporting across Europe, accurate estimates of LD incidence are not available. In 

contrast to current practices in human medicine, screening for LD and other tick-borne 

diseases is common in veterinary medicine, particularly in regions where LD is endemic or 

encroaching. The Companion Animal Parasite Council (CAPC) gathers canine LD antibody 

(Ab) test results from LD diagnostic assay manufacturers. CAPC reported 360,000 positive 

LD Ab tests in canines in 2019 in the US1. This is just a fraction of the total since <30% of 

1(https://capcvet.org).
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testing data are captured. While a positive Ab test is not always indicative of active 

infection, screening for tick-borne infections in veterinary medicine has provided critical 

information for assessing disease risk in canine and human populations (13).

The diagnosis and clinical course of LD in canines and humans has been detailed in several 

reviews and thus is not covered here (14–16). Early diagnosis of LD is important, since 

untreated infections can result in serious multi-systemic clinical complications (16). In 

veterinary medicine, acaricides and LD bacterin and subunit vaccines are widely used for 

LD prevention (17). Bacterin and subunit vaccines fundamentally differ in terms of their 

composition. Bacterins, which consist of inactivated cell lysates of laboratory adapted LD 

strains, are complex as they contain all proteins and other cellular components produced 

during laboratory cultivation. A typical LD spirochete strain produces in excess of 1000 

proteins in vitro (18,19) and the majority of these proteins are not presented on the cell 

surface and thus cannot serve as targets for vaccination induced Ab. Bacterins also lack or 

have low levels of several antigens that are selectively produced in the mammalian 

environment (20). In contrast, subunit vaccines consist of well characterized antigens that 

elicit protective or neutralizing Ab responses. At the present time, preventive strategies for 

LD in humans are largely ineffective (15) and there are no commercially available vaccines.

OspC derived proteins and OspA have been employed as vaccine antigens in canine LD 

subunit vaccines (21). OspA was also the sole vaccinogen in the only human LD vaccine to 

make it to market. After 3 years of use, LYMErix was voluntarily removed from the market 

by its manufacturer. Factors that contributed to the demise of LYMErix have been 

extensively reviewed in the literature (22–24) and hence, are only briefly discussed here. 

During the enzootic cycle, OspA is selectively produced in ticks with little to no expression 

in mammals (25,26). As a result, vaccinal OspA Ab can target spirochetes within ticks but 

not within mammals (27). In contrast, OspC is upregulated by the tick blood meal and is 

produced at high levels in infected mammals (25,26). Vaccinal Ab to OspC can target 

spirochetes both during transmission and upon entry into a host.

While the expression patterns of OspC are ideal for targeting with vaccinal Ab, its inherent 

sequence diversity and the localization of its immunodominant epitopes within variable 

domains of the protein have posed challenges in eliciting broadly protective Ab responses. It 

has been demonstrated that broad protection cannot be achieved with a single OspC protein 

(28–40). Variants of OspC, referred to as “OspC types”, have been delineated and are 

differentiated using letter, and other designations (type A, type B, etc.) (33,41,42). Sequence 

variation among OspC type proteins is clustered within the surface exposed helix 5 (H5) and 

loop5 (L5) epitopes (43) (40,41,44). Conserved domains of OspC do not contribute to 

protective Ab responses (17,21,45). In earlier studies, tetra- and octavalent OspC chimeric 

epitope based proteins (chimeritopes) consisting of L5 and H5 epitopes from different OspC 

types were developed to expand the protective range of OspC (41,44,46). Here, we extend 

and expand on that approach through the analysis of a series of OspC chimeritopes (Chv1, 

Chv2, and Chv3) that differ in their epitope organization. The Chv proteins were designed, 

produced and evaluated for structure using NMR. Immune responses were assessed by 

ELISA and immunoblot and the potential killing activity of vaccinal Ab measured using 
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bactericidal assays. This study demonstrates that chimeritope vaccinogens can elicit broadly 

cross reactive Ab responses.

MATERIALS AND METHODS

B. burgdorferi strains, cultivation and ospC sequence analyses.

All LD spirochete isolates employed in this study (Table 1) were grown at 37 C in Barbour-

Stoenner-Kelly (BSK)-H complete media supplemented with 6% rabbit serum (Sigma). 

Growth was monitored daily using simple wet-mounts and dark-field microscopy. Some 

isolates were subsurface plated (47) to obtain clonal populations (indicated in Table 1). 

Cultivation methods and media formulations have been previously described (48). The ospC 
genotype of each strain or clone was determined by PCR amplification and sequence 

analysis of the amplicons (44). Primers used in this study have been previously described 

(21).

Cloning and production of recombinant proteins.

All cloning and protein purification methods were standard and have been previously 

described (49). In brief, genes encoding full length OspC type proteins minus the leader 

peptide were PCR amplified from the appropriate strain (Table 1) with primers (21) 

harboring tail sequences that allow for ligase independent cloning (LIC; pET46 Ek/LIC 

vector; Novagen) or ligation into pET45b(+) (Novagen). Phusion polymerase (New England 

Biolabs) was used in all PCR reactions under standard conditions. For cloning into the 

multi-cloning site of pET45b(+) (Novagen), ospC genes were amplified with primers 

harboring BamHI and EagI restriction sites. Some ospC genes and the Chv1, Chv2 and 

Chv3 chimeritopes were codon optimized and synthesized on a fee for service basis. The 

Chv genes were provided by the supplier in pJ201 (DNA2.0, Inc., Menlo Park, CA) and the 

synthesized ospC genes in pET45b(+) (Genscript). The sequence of all cloned genes was 

verified on a fee for service basis (Genewiz). The physical organization of each chimeritope 

is indicated in Figure 1. The Chv genes were PCR amplified from pJ201 using primers with 

LIC tails that allow for annealing with linearized pET100 vector (Novagen). After annealing 

or ligation of the amplicons into the appropriate plasmid, the plasmids were propagated in 

Escherichia coli NovaBlue DE3 cells (Novagen), purified and transformed into E. coli 
BL21/DE3 cells (Novagen).

Protein expression was induced with IPTG (final concentration of 1 mM), the induced cells 

were lysed and fractionated into soluble or insoluble phases using standard methods. Chv2 

and all ospC genes separated with the soluble phase and were purified using non-denaturing 

conditions. Chv1 and Chv3 separated with the insoluble fraction and thus were purified 

under denaturing conditions. The soluble proteins were purified via their N-terminal 

hexahistidine tag using nickel affinity chromatography (ÄKTA purifier FPLC system, GE) 

as previously described (21). Imidazole was removed by dialysis into phosphate buffered 

saline (PBS; pH 7.4) across a 6 to 8 kDa molecular weight cut-off membrane (Spectrum 

Labs). To purify proteins from the insoluble phase, the insoluble fraction was resuspended in 

8 M urea with 40 mM imidazole. Cellular debris was removed by centrifugation (15,500 × 

g; 30 m; 4 °C) and the supernatants were loaded onto a Poly-Prep Chromatography column 
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(Biorad) pre-equilibrated in 50 mM Tris-HCl, 300 mM NaCl, pH 8, with 8 M urea. The 

protein bound resin was washed and the proteins eluted using 250mM imidazole. Urea and 

imidazole were removed by stepwise dialysis into phosphate buffered saline (PBS; pH 7.4) 

with decreasing concentrations of urea. Protein concentrations were determined using a 

BCA assay (Pierce).

Nuclear magnetic resonance spectroscopy.

Purified Chv1, Chv2 and Chv3 were exchanged into buffer (35 mM Tris-HCl; pH 7.4), 200 

mM NaCl in 90% H2O/10% D2O) at final concentrations of 8.2 μM, 10.8 μM and 10.8 μM, 

respectively. The β1 immunoglobulin binding domain of protein G (GB1) was used as a 

folded protein control of known structure. GB1 (500 μM) was exchanged into NMR buffer 

(100 mM C2H3NaO2, pH 5.4, 0.02% NaN3, 50 μM EDTA, 1 mM DTT in 95% H20/5% 

D20). NMR spectra were collected on a Bruker Avance III 850 MHz spectrometer using a 5 

mm1H (13C/15N) triple resonance probe equipped with cryogenically cooled preamplifiers 

and r.f. coils on1H and 13C channels. NMR experiments were conducted at 310K for the 

Chv proteins and at 298K for GB1. One-dimensional1H data were collected for each protein 

using 64K points (32K points for GB1), 1024 scans (32 scans for GB1), a relaxation delay 

of 1.5 seconds and excitation sculpting for solvent suppression. Data were processed using 

Bruker Biospin Topspin 3.5 software.

SDS-PAGE and immunoblot analyses.

Recombinant proteins were fractionated by SDS-PAGE using 12% Criterion precast gels or 

ANYkD gels (Biorad) and visualized by staining with Coomassie Brilliant Blue (CBB). The 

proteins were transferred to PVDF membranes (Pierce) by semi-dry blotting using a Trans-

Blot Turbo apparatus per the manufacturer’s protocol (Biorad). As a control for protein 

loading, immunoblots were screened with α-His Tag Ab (Pierce) or with specific antisera 

(as indicated in each experiment). The appropriate anti-IgG horseradish peroxidase (HRP)-

conjugated secondary Abs were added (1:40,000 dilution) and Ab binding detected by 

chemiluminescence using Clarity Max Western ECL blotting substrate (BioRad). The 

images presented in the immunoblot figures were cropped to center on the migration 

position of the recombinant proteins. All immunoblots for a given experiment were exposed 

together for an identical length of time (30 sec).

Generation of anti-Chv antisera.

Antisera were generated in C3H/HeJ mice and Sprague-Dawley rats. All animal studies 

were conducted in accordance with the Guide for the Care and Use of Laboratory Animals 

(Institute of Animal Research, National Research Council) with protocols approved by the 

Virginia Commonwealth University Institutional Animal Care and Use Committee. 

C3H/HeJ mice (Jackson Laboratories) were immunized by intraperitoneal (IP) inoculation 

with 3 doses of the individual Chv proteins in Rehydragel LV (Chemtrade Solutions) on 

days 0, 21, and 42 (25 μg per dose). Blood samples were harvested on days 0, 21, and 42 by 

tail snip and by cardiac puncture upon sacrifice on day 63. Sprague-Dawley rats (Charles 

River) were delivered a 4-dose series of recombinant protein by IP inoculation. The first 

dose consisted of 50 μg protein in Freund’s Complete Adjuvant. Booster vaccinations 

contained 25 μg protein in Freund’s Incomplete Adjuvant (Sigma) and each was delivered 2 
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weeks apart. One week after the last immunization, the rats were euthanized by CO2 

asphyxiation and terminal bleeds were conducted by cardiac puncture. Serum was harvested 

using standard methods and vaccination induced IgG titers determined as above.

ELISAs and IgG titer determination.

Single dilution ELISA analyses were conducted using the appropriate immobilized 

vaccinogen or recombinant OspC protein (500 ng per well), a primary serum dilution of 

1:100 and a HRP-conjugated secondary Ab dilution of 1:15000. IgG titers were determined 

using the vaccinogen as the immobilized antigen (500 ng per well) as previously described 

(50). Threefold serial dilutions of sera ranging from 1:50 to 1:109350 were tested and the 

titers (log transformed) calculated at 1/3 OD max (51).

Immunofluorescence assays (IFAs).

IFAs were performed using previously described methods (52). In brief, cells were collected 

from mid-log phase cultures, spotted on to Superfrost Plus slides (Fisher Scientific) and air-

dried. After blocking with PBS-TB (3% BSA; PBS; 0.5% Tween 20), the samples were 

overlaid with the desired antiserum (diluted 1:1,000 in PBS-TB; 30 min), washed, and then 

overlaid with AlexaFluor 594-conjugated goat anti-rat IgG (1:500 in PBS-TB; 30 min) 

(Molecular Probes) in a dark chamber. The slides were washed, coverslips were mounted 

(ProLong Gold Antifade Mountant; Molecular Probes), and IgG binding visualized by 

fluorescence microscopy (BX51; Olympus). Images were digitally photographed (DP71; 

Olympus). Images of the cells in the identical fields of view were visualized using dark-field 

microscopy.

Assessment of bactericidal activity of vaccination induced Ab.

The killing activity of serum from hyperimmunized rats was measured using an in vitro 
bactericidal assay as previously described (41) with some modifications. In brief, 4 μl of 

mid-log phase B. burgdorferi B31-HE-OspC cells (20% v/v) were incubated with 4 μl 

complement preserved guinea pig serum (GPS; Complement Tech; 20% v/v) and 4 μl of 

heat-inactivated (HI; 56 °C, 30 min) hyperimmune sera (20% v/v). The final reaction 

volume was adjusted to 20 μl by the addition of BSK-H media and the mixtures were 

incubated at 37°C for 18 hr. Spirochete viability/motility was assessed using dark-field 

microscopy. Controls consisted of cells incubated in BSK-H media with: 1) Rat Serum 

(Innovative Research), 2) 20% hyperimmunized sera with 20% HI GPS, or 3) cells in BSK-

H media with no additional serum added. All assays were performed in triplicate and 

multiple experimental replicates were performed. Calculations were performed by adding up 

the total number of live cells for five fields of view. Percent survival was obtained by 

dividing each group by control group 1. A One-Way ANOVA test was done using Graphpad 

Prism to evaluate statistical significance.

RESULTS

Chimeritope design rationale and production.

Schematics depicting the general organization of Chv1, Chv2 and Chv3 are provided in 

Figure 1. Each Chv protein harbors H5 and L5 epitopes (40,44) derived from the same set of 
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9 OspC types. Thus, each Chv protein is comprised of at least 18 well-characterized OspC 

epitopes (40,44). The Chv proteins differ from one another in their physical ordering of 

epitopes or by the presence or absence of intervening sequences between the L5 and H5 

epitopes. The intervening sequence linker is comprised of helix 4 (H4) and loop 6 (L6) of 

OspC (53) and is henceforth referred to as the H4L6 linker. Chv1, the largest of the three 

proteins (60.6 kDa), harbors H4L6 linkers between each L5 and H5 epitope set. Chv2 (46.1 

kDa) has the same epitope ordering as Chv1, but lacks the H4L6 linkers. The rationale for 

omitting the linkers was to reduce the size of the recombinant protein so as to allow for the 

potential inclusion of additional epitopes in downstream constructs. Relative to Chv1 and 

Chv2, the order of epitopes in Chv3 is distinctly different. For Chv3, the L5 and H5 epitopes 

from the same OspC type are not adjacent to one another, with the exception of OspC Type 

A. As in Chv2, the H4L6 linkers were omitted. The C-termini of Chv1, Chv2 and Chv3 are 

identical and consist of the C-terminal 10 amino acid residues of OspC. This C-terminal 

“cap” (C-cap) was added to protect against proteolytic degradation. The Chv proteins were 

efficiently expressed in E. coli. While all Chv proteins were predicted to be soluble upon 

expression in E. coli, Chv1 and Chv3 partitioned with the insoluble fraction and Chv2 with 

the soluble fraction. Chv1 and Chv3 were most likely packaged in inclusion vesicles. After 

purification and dialysis into PBS, all of the Chv proteins were soluble.

The Chv proteins are unstructured, extended random-coils.

To determine if the Chv proteins assume a defined structure, attempts were made to obtain 

crystals for X-ray crystallographic analysis. The determination of the structures could 

provide insight into epitope presentation. However, in spite of testing a wide range of 

conditions, crystals were not obtained. Hence, one-dimensional1H NMR was conducted to 

assess structural properties (Figure 2). The absence of1H signal dispersion in both the 

methyl (0.5 – 1 ppm) and amide (6.5 – 10 ppm) regions of the Chv proteins and overall line 

broadening throughout the spectra indicates an unstructured random-coil organization. 

Protons in the amide regions of the Chv proteins exhibited identical chemical environments, 

indicative of being solvent exposed. The NMR signal dispersion in the methyl region (−0.5–

1) and separated proton resonances throughout the spectrum shows that GB1 control protein 

exists in a folded state. The lack of organized structure of the Chv proteins is consistent with 

the original goal of designing these proteins so that all of their individual epitopes are 

accessible and presented in a manner that will trigger Ab responses.

The Chv proteins are immunogenic in mice and rats and elicit Ab that can bind to diverse 
OspC proteins.

The immunogenicity of the Chv proteins was assessed in mice and rats. Each Chv protein 

elicited similar high titer IgG responses (log transformed IgG titer values >4.0) suggesting 

that epitope ordering or the presence or absence of linkers did not significantly impact Ab 

titer to the vaccinogens (Figure 3). To determine if vaccinal Ab can recognize and bind to 

diverse OspC type proteins, a panel of OspC proteins (n=30; Table 1) were immunoblotted 

and screened with rat anti-Chv1, Chv2, and Chv3 antisera. The OspC proteins tested 

included those directly represented in the Chv constructs (A, B, C, D, H, I, K, M and N) and 

21 that are not including European OspC types from B. garinii, B. bavariensis and B. afzelii 
and OspC from B. mayonii (OspC type Mayo1) (54). All OspC type proteins were bound by 
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rat anti-Chv IgG. Figure 4 presents representative data for a subset of the OspC tested with 

complete ELISA based IgG binding results for all OspC types presented in Figure 5. The 

Chv1 and Chv2 proteins were more effective at eliciting broadly cross-reactive Ab responses 

that Chv3. The Factor H binding protein B (FhbB) from the periodontal disease pathogen, T. 
denticola, served as a negative control protein (55). As expected, FhbB was not bound by Ab 

(data not shown).

Anti-Chv IgG binding was also assessed by ELISA. Thirty different OspC proteins were 

screened. As in the immunoblots, all OspC types were bound by IgG (Figure 5). The level of 

Ab binding to different OspC types was more consistent in the ELISAs than that observed in 

the immunoblots. This could result from a more favorable presentation of the L5 and H5 

epitopes by non-denatured OspC proteins in the ELISA analyses. These analyses indicate 

that Ab elicited by the Chv chimeritopes can bind to a diverse OspC types originating from 

multiple LD spirochetes species and isolates for N. America and Europe.

Anti-Chv antisera surface labels B. burgdorferi strains.

To determine if Ab elicited by vaccination with the Chv proteins can recognize epitopes 

presented on the surface of B. burgdorferi, IFAs were performed using non-permeabilized 

intact cells. B. burgdorferi B31 wild type (wt) and B31-HE-OspC, an engineered strain that 

constitutively produces OspC during cultivation (56), were tested. The rationale for 

screening B31-HE-OspC, in addition to a wt laboratory cultivated strain, stems from the fact 

that N. American B. burgdorferi isolates (including strain B31) produce low and variable 

levels of OspC during cultivation (53). The percentage of cells in a B. burgdorferi B31 

population that produce detectable levels of OspC is ~10% (45). Hence, the use of B31-HE-

OspC facilitated efforts to assess anti-Chv IgG Ab binding to the cell surface. Consistent 

with the low level expression of OspC during in vitro cultivation, only a subset of B31 cells 

were surface-labeled by anti-Chv1, anti-Chv2 and anti-Chv3 antisera (Figure 6). In contrast, 

and as expected, all B31-HE-OspC cells were uniformly labeled with each Chv antisera. 

Surface labeling of cells was not observed when screened with preimmune rat serum (data 

not shown). The ability of Ab induced by vaccination with the Chv proteins to bind to intact 

B. burgdorferi cells indicates surface presentation of the L5 and H5 epitopes.

Bactericidal activity of anti-Chv antisera.

The killing activity of sera was measured using in vitro bactericidal assays; a standard and 

well-accepted approach for assessing correlates of protection. After incubation of cells with 

the anti-Chv antisera, bacterial viability was assessed by dark-field microscopy. Antisera 

raised against each Chv protein displayed “high level” bactericidal activity which is defined 

as >75% killing of the cell population. No killing was observed when HI-GPS was used as 

the exogenous complement source indicating that killing occurs through a strictly 

complement-dependent manner (Figure 7). Anti-OspA antisera served as a positive control, 

and as expected, displayed high-level killing activity. This is consistent with the high-level 

expression of OspA during cultivation which provides ample target for Ab binding on the 

cell surface.
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Discussion

To inform efforts to generate optimized OspC based chimeritopes for use in LD vaccines, 

the Chv1, Chv2, and Chv3 proteins were designed, produced and purified. The Chv proteins 

are comprised of the immunodominant H5 and L5 linear epitopes derived from 9 different 

OspC type proteins (Figure 1). The epitopes are joined within a single contiguous 

polypeptide (41,57). The advantage of chimeritope vaccinogens is that through careful 

selection of epitopes, they can be constructed to specifically elicit productive Ab responses 

(i.e., Ab with protective potential) (41,51,57). Earlier studies demonstrated that the physical 

ordering of epitopes in a chimeritope can influence its molecular and immunological 

properties (51). The key differences between the Chv proteins investigated here are 

described in detail above and are illustrated in Figure 1. This study highlights the need to 

consider epitope ordering and the presence or absence of linkers. The data demonstrate that 

OspC based chimeritopes are immunogenic in multiple animal models and elicit broadly 

cross-reactive IgG with potent bactericidal activity.

The first step in these analyses was to determine if the organizational differences of the Chv 

proteins influences production in E. coli. While the Chv proteins were expressed at similar 

levels, their soluble-insoluble partitioning patterns differed. Chv1 and Chv3 localized with 

the insoluble fraction (presumably due to inclusion body formation), while Chv2 localized to 

the soluble fraction. To determine if structural differences influence partitioning properties, 

NMR analyses were conducted (Figure 2). Chv1, Chv2 and Chv3 were all found to exist as 

unstructured, extended random coils. Hence, the basis for differential partitioning upon 

induction remains unclear. Importantly, after purification and dialysis into PBS, all of the 

Chv proteins were soluble.

The immunogenicity of the Chv proteins was comparatively assessed in mice and rats. High-

titer IgG responses developed against each protein (Figure 3). Anti-Chv1, 2 and 3 Ab bound 

to OspC types derived from a diverse panel of N. American and European LD isolates 

(Figures 4 and 6). This was anticipated as some of the L5 and H5 epitopes selected for 

inclusion were chosen because they share amino acid identity with L5 and H5 epitopes from 

other OspC types (45). It is noteworthy that OspC proteins of several B. burgdorferi, B. 
afzelii, B. garinii, B. bavariensis, and B. mayonii isolates were bound by anti-Chv Ab. B. 
mayonii is a recently identified LD spirochete species that was detected in I. scapularis ticks 

and cultured from the blood of two human LD patients from the upper Midwest (54). It is 

clear from these analyses that the Chv chimeritopes to are immunogenic and induce 

production of IgG that recognizes diverse OspC types.

The presentation of epitopes incorporated into a chimeritope may differ versus that of the 

structured native protein. As noted above, the Chv proteins are monomeric extended random 

coils. In contrast, native OspC is largely alpha-helical and its biologically active form is a 

homodimer (53). In addition to the linear epitopes identified in OspC (40,41,58), there is 

also evidence that some epitopes are conformationally defined or dependent on the 

formation of an OspC dimer (34,59). To determine if Ab elicited by vaccination with the 

Chv proteins can recognize the L5 and H5 epitopes as presented on the spirochetal cell 

surface, IFA analyses were conducted (Figure 5). Ab against all Chv proteins surface-labeled 
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B. burgdorferi B31. As expected, due to the low expression levels of OspC during 

cultivation, labeling was weak and not all cells were bound by Ab. To mirror in vivo 
expression levels, the B31-HE-OspC strain, which constitutively produces OspC, was 

screened by IFA. Ab raised against each Chv protein strongly labeled this strain. This is 

consistent with the known OspC structures, which indicate surface exposure of the L5 and 

H5 epitopes on the membrane distal and membrane proximal regions of OspC, respectively 

(53,60). The recognition of the Ab binding targets by anti-Chv Ab in the context of an intact 

cell is a necessary property for vaccinal Ab to have potential bactericidal activity.

The demonstration of bactericidal activity of vaccinal Ab is an important in vitro correlate of 

protective efficacy (61–65). However, as alluded to above an inherent complication in 

measuring the bactericidal activity of Ab directed at OspC is the low and variable expression 

level of OspC in laboratory cultivated wild type strains (45,66). To address this, B. 
burgdorferi B31-HE-OspC served as the test strain in the bactericidal assays. High-level 

killing (defined as >75%) was observed with anti-Chv1, 2 and 3 antisera (Figure 7). Killing 

activity was determined to occur through an Ab mediated-complement dependent 

mechanism as occurs with recombinant full length OspC (41,52,67). It is important to note 

that some studies that have sought to quantify the bactericidal activity of OspC or OspC 

derived proteins did not determine OspC expression levels in the test strains (36,68–71). 

Lack of attention to this critical variable most certainly resulted in a significant 

underestimate of bactericidal activity.

An OspC chimeritope is one of two antigens in the commercially available, USDA approved 

canine LD vaccine, VANGUARD® crLyme (Zoetis) (72). While the information derived 

from this study informed the rationale design of the OspC chimeritope in VANGUARD® 

crLyme, it is important to note that the chimeritopes studied in this report are distinct from 

that used in the canine LD vaccine, which was specifically tailored for veterinary 

applications. The Chv proteins differ in that they consist of L5 and H5 epitopes from OspC 

types that are associated with invasive infections in humans (44,73,74). While there is 

overlap, some OspC types identified that have been identified in dogs have never been 

recovered from humans (42). In summary, in this study we demonstrate that the Chv 

chimeritopes induce high titer Ab that recognizes a highly diverse group of OspC type 

proteins and is bactericidal. The data support the hypothesis that chimeritopes can provide 

protection against diverse LD spirochete species and strains. The goal of producing OspC 

based chimeritopes and vaccine formulations for use as a human LD vaccine is now within 

reach.
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Highlights

Chv chimeritopes are recombinant proteins that contain linear epitopes from multiple 

variants of outer surface protein C.

Epitope ordering and the presence or absence of inter-epitope linkers influences antibody 

responses to OspC chimeritopes.

Immunization with the Chv proteins elicits the production of broadly cross-reactive 

antibody with potent bactericidal activity.
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Figure 1. Schematic depiction of the organization of the Chv series of chimeritopes.
The top schematic is a linear representation of the Loop 5 (L5) and Helix 5 (H5) region of a 

type A OspC (B. burgdorferi B31) with the intervening sequence (Helix 4 Loop 6; H4L6) 

and structural elements shown. Coloring is used to highlight each structural domain. The 

lower schematics depict the organization of the Chv1, Chv2 and Chv3 chimeritopes. The 

color coding is the same as in the top panel and is included to highlight the organizational 

differences of each chimeritope.
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Figure 2. Nuclear magnetic resonance analyses of the Chv proteins.
One-dimensional1H NMR spectra of Chv1, Chv2, and Chv3 and of the β1 immunoglobulin 

binding domain of protein G (GB1) are shown. The peak intensities of all spectra have been 

matched to each other and the strong peak near 3.5 ppm observed in the three Chv spectra is 

a result of 35mM Tris buffer. Methods were as detailed in the text.
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Figure 3. Determination of IgG titers to the Chv proteins in C3H-HeJ mice.
IgG titers to Chv1, Chv2 and Chv3 were determined by ELISA using serum harvested at the 

time points indicated. All methods were standard and are described in detail above.
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Figure 4. The Chv chimeritopes elicit a broadly cross-reactive IgG responses.
A panel of full-length recombinant OspC proteins (types indicated at the top of the figure) 

were subjected to SDS-PAGE, and then stained with CBB or transferred to PVDF 

membranes for immunoblot analyses. Blots were screened with the rat anti-Chv antiserum 

(1:1,000) as indicated to the right. All common reagents used in these immunoblots were 

derived from the same stocks and the immunoblots were exposed for the same amount of 

time. The images were cropped to remove blank space.
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Figure 5. Vaccinal antibody binds to diverse full length recombinant OspC proteins.
An expanded set of OspC types were assessed for binding to vaccinal Ab using an ELISA 

based format. The OspC types and their species of origin are indicated along the Y axis. For 

OspC proteins that have not yet been assigned to an OspC type, the isolate of origin is 

indicated. The X axis indicates absorbance at 405nm. All methods were as detailed in the 

text.
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Figure 6. Immunofluorescence assays (IFAs) demonstrate surface exposure of the L5 and H5 
OspC epitopes.
IFA analyses were performed using non-permeabilized intact cells as detailed in the text. 

The strains investigated and the antisera tested are indicated below and to the right of the 

images, respectively. Cells were visualized by dark-field microscopy or by fluorescence as 

indicated along the top.
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Figure 7. The Chv proteins elicit production of potent bactericidal Ab.
B. burgdorferi B31-HE-OspC was incubated with Chv hyperimmune serum as indicated in 

the figure with GPS serving as the exogenous complement source. To determine if Ab 

mediated killing is complement dependent, cells were incubated with hyperimmune serum 

and HI-GPS. Antisera generated against OspA served as a positive control for bactericidal 

activity. The One-Way ANOVA with post-hoc Tukey’s Multiple Comparison test was used 

to assess statistical significance (p<0.05). α-OspA served as the statistical reference.
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Table 1.

Description of bacterial isolates employed in this study.

Species Isolate or clone OspC type* Biological source

B. burgdorferi B31–5A4 A Ixodes scapularis tick; NY, USA

LDP73 B Human blood; NY, USA

LDP84 C Human blood; NY, USA

LDP116 D Human blood; NY, USA

N40 E I. scapularis tick; NY, USA; clonal

DRI40h F Canine tissue (experimentally infected with ticks from Rl and CT); clonal

B268 G Human skin; NY, USA

DRI03a H Canine tissue (experimentally infected with ticks from Rl and CT); clonal

B331 I Human blood; NY, USA

B236 J Human skin; NY, USA

LDP89 K Human blood; NY, USA

SI-1 L Peromyscus gossypinus; GA, USA

Veery M Veery bird; USA

LDP63 N Human blood; NY, USA

DRI40e T Canine tissue, experimentally infected with ticks from Rl and CT; clonal

DRI85f U Canine tissue, experimentally infected with ticks from Rl and CT; clonal

DRI85d DRI85d Canine tissue, experimentally infected with ticks from Rl and CT; clonal

DRI85e DRI85e Canine tissue, experimentally infected with ticks from Rl and CT; clonal (note that the 
DRI85d, e and f clones all came from the same tissue biopsy).

VCU1 Not assigned Human CSF; Germany

B. garinii Pwa Pwa Human cerebrospinal fluid (CSF); Germany

VSBP Not assigned Human CSF; Germany

Jem5A Not assigned Human erythema migrans (EM) lesion; Japan; clonal; derived from isolate JEM5

Phi Not assigned Germany (biological origin not known)

FRG Not assigned Germany

B. afzelii PKo PKo Human EM lesion; Germany

B5/92 PKo Human EM lesion, Germany

SZ94 Not assigned I. ricinus; Europe (country of origin not known)

VS461 VS461 I. ricinus; Germany

B. bavariensis PBi PBi Human CSF; Germany

B. mayonii MN14–1420 Mayoi Human blood; USA

B. burgdorferi B31-HE-OspC A Derived from parental strain B31–5A3; constitutively produces OspC type A; clonal

B31-ΔospC N/A ospC gene deletion mutant

*
Note that some OspC proteins have not yet been classified as a specific OspC type and are thus indicated to be “not assigned”.
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