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Chronic occupational exposure to organophosphorus pesticides (OPs) is consistently associated
with deficits on behavioral tests when compared to unexposed comparison groups. However, a
dose-response relationship has yet to be established, leading some to doubt an association between
occupational OP exposure and behavioral deficits. Pesticide application teams in Egypt who are
primarily exposed to one OP, chlorpyrifos (CPF), were recruited into a field assessment. Trail
Making A and the more challenging Trail Making B tests were administered to 54 engineers (who
supervise the pesticide application process, usually from the side of the field), 59 technicians (who
guide the pesticide applicators in the field), 31 applicators (who mix and apply pesticides using
knapsack sprayers), and 150 controls (who did not work in the fields) at two different times during
the OP application season as well as immediately after applications had ended and 1.5 months
later. All participants were males since only males work on pesticide application teams in Egypt.
Urinary levels of 3,5,6-trichloro-2pyridinol (TCPy), a specific metabolite of CPF, confirmed the
pattern of lower to higher CPF exposures from engineers to technicians to applicators, and these
were all greater than urinary metabolite levels in controls. A consistent relationship between job
title and performance speed on the behavioral task was observed: Controls had the best (fastest)
performance on Trail Making A and B tests throughout the application season, and applicators had
significantly slower performance than engineers on Trail Making A (p= 0.015) and B (p =0.003).
However, individual urinary TCPy, blood acetylcholinesterase (AChE) and butyrylcholinesterase
(BUChE) levels did not predict individual performance. This study identifies a dose-related effect
based on job title, which serves as a surrogate for chronic exposure in that differing job titles
exhibit varying group exposure levels. The results establish that chronic occupational exposure to
chlorpyrifos is neurotoxic and suggest that the classic biomarkers of recent CPF exposure are not
predictive of chronic exposure effects.
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1. Introduction

Human occupational exposures to organophosphorus pesticides (OPs), including
chlorpyrifos (CPF), have been studied extensively in cross-sectional studies, and several
meta-analyses or systematic analyses of these data have concluded that adverse behavioral
effects are associated with occupational exposure to OP pesticides in adults (Ismail et al.,
2012; Meyer-Baron et al., 2015; Munoz-Quezada et al., 2016; Rohlman et al., 2011; Ross et
al., 2013) and developmental OP exposures in children (Gonzalez-Alzaga et al., 2014;
Jurewicz and Hanke, 2008). However, only a few studies in adults have reported an
association between biomarkers of exposure and behavioral outcomes in occupationally-
exposed cohorts (e.g., Abdel Rasoul et al., 2008; Ismail et al., 2017b; Rohlman et al., 2016;
Rothlein et al., 2006). One study in children (Rauh et al., 2011) identified declines in full
scale 1Q on the Wechsler Intelligence Scale for Children (WISC) in 7-year-olds that were
correlated with individual CPF levels in umbilical blood plasma that had been collected
prenatally. The association between OP exposures and behavioral deficits in humans, and
specifically adults, is still questioned by some, in part because of the paucity of evidence of
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a correlation between the behavioral changes and biomarker(s) of exposure (as noted by
Meyer-Baron et al., 2015), and because a dose-response relationship has yet to be
demonstrated. Other reviews have emphasized inconsistent findings and limited exposure
assessments as reasons for the continued uncertainty (Burns et al., 2013; Li et al., 2012) as
summarized by Rohlman et al. (2016). A significant limitation of these assessments is that
each of the epidemiological studies compared a single OP-exposed population to an
unexposed or control population.

Thus, there is a need to identify workers with a range of OP exposures that allows an
examination of the relationship between different occupational exposure levels and
behavioral performance and to test their relationship with biomarkers of exposure collected
at the time of testing: urinary 3,5,6-Trichloro-2-pyridinol (TCPy), a specific metabolite of
CPF, and blood acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). All these
are established biomarkers of recent OP exposure (Alexander et al., 2006; Wang et al.,
2016).

Pesticide application teams working for the Ministry of Agriculture (MOA) in Egypt apply
CPF and pyrethroids to the cotton crop (see Fig. 1). The MOA regulates pesticide
applications to the cotton crop by supplying and maintaining the equipment; dictating the
pesticides and concentration levels to be applied, as well as the application schedule; and
monitoring the effects on pest infestation of the cotton plants. The pesticide application
teams consist of applicators who mix, load and apply the pesticides, technicians who support
the applicators by walking next to the applicators and directing their walking speed in areas
of heavier vs. lighter pest infestation, and engineers who oversee the pesticide application
process, including pesticide mixing and applications. CPF is the primary pesticide that is
used in cotton production in Egypt, and it is applied in a routine of daily applications for up
to 4 weeks, followed by an application of a pyrethroid pesticide, then an additional
application cycle of CPF depending on the degree of infestation (T. M. Farahat et al., 2003;
Rohlman et al., 2011). This cycle has been followed for at least 15 years prior to the time of
this study. Adult engineers and technicians from the Egyptian MOA had been studied
previously, revealing a broad range of adverse behavioral test deficits relative to control
performance (T. M. Farahat et al., 2003). However, in that earlier study, comparisons were
between exposed workers and non-exposed controls, so it was not possible to delineate a
dose-response relationship.

The purpose of this study was to assess the impact of CPF exposures on the Trail Making
Test, a prototypical behavioral test of search, scanning, processing speed, mental flexibility
and executive function (Tombaugh, 2004) used in many prior studies examining OP effects
and considered a valuable screening test for cognitive effects of pesticides (Lucero et al.,
2019). The overall study was designed to assess cognitive and motor speed performance of
worker job categories with different exposure histories and to test our primary hypothesis
that the mechanisms mediating the behavioral effects of long-term or chronic exposures are
unrelated to the classic biomarkers of recent CPF exposures. To address our primary
hypothesis, we describe the results as a series of tests of eight hypotheses: 1) Higher urinary
TCPy concentrations will be detected in applicators who walk directly into the pesticide
spray than in technicians who walk beside them or engineers who are not often in the field
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during applications; 2) The average activity of blood cholinesterase, a biomarker of recent
OP exposure, will be lower in applicators than in technicians or engineers during periods of
CPF application; 3) Pesticide workers will demonstrate deficits (slower performance) on the
Trail Making Test compared to controls, and job titles with higher CPF exposures will have
greater deficits in performance than those with lower CPF exposures; 4) A greater number of
years working for the MOA, and thus more years of exposure to CPF, will be associated with
greater deficits on the Trail Making Test; 5) Peak exposures defined by urinary TCPy
measures will be negatively associated with post-exposure Trail Making performance; 6)
Higher CPF exposure concentrations (based on actual 2009 urinary TCPy concentrations)
multiplied by years applying pesticides (i.e., cumulative exposure) will be associated with
greater deficits in post-exposure Trail Making Test performance; 7) Trail Making
performance will correlate in a dose-response fashion with urinary TCPy levels and both
BChE and AChE cholinesterase inhibition; and 8) Trail Making Test deficits will persist
after CPF exposure ends.

2. Materials and methods

2.1. Overview

A field study was conducted in 2009 and 2010 to examine the impact of CPF exposure on
behavioral performance in pesticide application teams employed in Egyptian cotton fields
for the Ministry of Agriculture (MOA) and controls working for the MOA but not in the
fields.

2.2. Recruitment

The MOA in the Menoufia Governorate in Egypt’s Nile Delta provided access to the
population that included members of pesticide application teams (applicators, technicians
and engineers) and controls who had the same job titles as technicians and engineers but did
not work in the agricultural fields. A team typically consisted of 1 engineer, 1 technician and
3 applicators, although additional technicians or applicators were assigned to a team
depending on availability and the size of the field to be sprayed on any given day. Control
participants worked in office jobs recording crop and pesticide application data and
preparing informational materials for the local farmers or performing other job activities not
related to pesticide application. Members of pesticide application teams were recruited at the
MOA offices in the Menoufia governorate or at field stations operated by the MOA and
tested in 2009 (the “2009 cohort™), with a subset retested in 2010 (the “2010 cohort™). The
controls were recruited and tested in 2010. The applicators, engineers, technicians and
controls were employed by the MOA year-round. However, some applicators who worked at
these stations were adolescents who worked for the MOA only during the summer pesticide
application season. Some participants also reported applying pesticides on family and
neighbors’ farms (Lein et al., 2012; Rohlman et al., 2016). Only males work in these job
categories in Egypt. In addition, a sample of 101 Menoufia University employees were
recruited in 2009 to provide urine samples from Egyptians who did not work near the cotton
fields.
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2.3. Study setting

Study activities were conducted by staff in an open room with tables arranged along the
walls in MOA offices in Menoufia Governorate. Participants received compensation
equivalent to a day’s pay for the lower-paid workers. The project was approved by the Ethics
Committee at Menoufia University and the IRB of Oregon Health & Science University. All
participants signed a consent form prior to data collection.

2.4. Application/exposure schedule/study design

Five test sessions were conducted during the two years of the study that corresponded with
specific time points within the application cycle (Fig. 2). Annually, CPF was applied from
July 1 until July 15, pyrethroids were applied from mid-July to the end of July, and CPF was
again applied from approximately August 1 until August 10. The exact dates on which
applications occurred depended on the number of cotton fields assigned to a particular field
station and the level of insect infestation in the cotton crop in those fields. Thus, the initial
round of pesticide applications each summer began at some field stations on July 1 while at
others it started as late as July 5, and the applications continued until all the assigned fields
were treated, by July 15. The pyrethroid and second round of CPF applications followed the
same pattern. Each field station director had control over the exact schedule of application
on their assigned farms in collaboration with the MOA directorate. However, the pesticides
and the concentrations to be applied were set by the MOA and these were constant from year
to year.

Test session 1 was conducted prior to the beginning of pesticide applications and represented
baseline (although some applicators may have applied pesticides on private farms during this
time). Sessions 2 and 3 were conducted in mid-July and early August during the CPF
application. Session 4 was conducted shortly after CPF applications had ended (2" to 3"
week of August, started one week earlier in 2010 than in 2009 because of the start of
Ramadan), and Session 5 was in late September or early October, shortly after Ramadan had
ended (several weeks after applications had concluded). Application team participants
applied pesticides daily during the afternoons. All testing sessions were conducted in the
morning when there were no pesticide applications.

At the start of each workday, technicians collected approximately 100 cotton bolls from
different locations in each field scheduled to be sprayed that day to determine the number of
weevils per boll in each field. This determination in turn led to adjustments in the pace
walked by the applicators. The pesticide was applied at a standard walking pace using mist-
blowers to apply 80 Liters of Pestban (CPF) to a feddan (0.42 ha, or 1.04 acres) in 20 min.
This was designed to produce an application rate of 0.02 liters of diluted CPF per square
meter (F. M. Farahat et al., 2011; Singleton et al., 2015, 2014). In areas of heavier
infestation, technicians would direct applicators to walk more slowly in order to increase the
concentration in those areas (the technicians are seen walking ahead and to the side of the
applicators in Fig. 1). Engineers who oversaw the process typically observed from the side
of the field where mixing/loading of the backpack sprayers occurred, although some would
stand with the technicians and applicators during spraying in the field. Depending on the
individual and the field station directives or traditions, the engineers may have participated
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in mixing/loading and/or walked in the fields near the applicators (which we observed in
some instances).

2.5. Behavioral test

The Trail Making Test, parts A and B (US Army Individual Test Battery developed in 1944
(M. Lezak et al., 2004) was administered in Years 1 and 2 using the same protocol described
in the prior study of this same population (T. M. Farahat et al., 2003) but to different people
at different field stations. Non-standard instructions were used in Session 1 (2009) (viz., the
instruction “try not to lift the pen as you move from one number or letter to the next” was
not clear and participants were observed to lift the pen during testing), but this was corrected
in sessions 2-5; the Year 1 data from Session 1 were discarded. The Trail Making Test
measures complex visual scanning with a motor component. It assesses rapid visual search,
visuospatial sequencing and cognitive set shifting; these are factors related to attention.
Motor speed and agility contribute strongly to test performance. Performance on the test is
particularly affected by brain injury, such as head trauma (M. D. Lezak, 1995).

Other behavioral tests were also administered, but they are not included here. Time to
complete the Trail Making Test is the primary outcome measure. As this is a timed test,
faster times reflect better performance. Errors were relatively infrequent, but not described
here.

2.6. Urinary 3,5,6-trichloro-2-pyridinol (TCPy)

Urine samples were collected at the same time as behavioral testing (see Fig. 2) to analyze
for 3,5,6-trichloro-2-pyridinol (TCPy), a CPF-specific metabolite excreted in the urine
(Fenske et al., 2012). Once collected, urine samples were placed on wet ice in a cooler and
transported to Menoufia University (Shebin EI-Kom, Egypt), approximately 20 min from the
study field stations, where they were stored at —20 °C. Urine samples were shipped on dry
ice and analyzed for TCPy at the University at Buffalo (Buffalo, NY, USA) by negative-ion
chemical ionization gas chromatography—mass spectrometry, using 13C-15N3,5,6 TCPy as an
internal standard (described previously by F. M. Farahat et al., 2011; T. M. Farahat et al.,
2003). Creatinine concentrations were measured using the Jaffe reaction (Fabiny and
Ertingshausen 1971). Urine TCPy concentrations are expressed as micrograms TCPy per
gram creatinine.

2.7. Quantification of cholinesterase activity in the blood

Blood samples were collected at the same time as behavioral testing was conducted to
analyze for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), which are
biomarkers of both exposure and effect (Rohlman et al., 2011). To establish the baseline
ChE activity for each worker, a single pre-exposure blood sample was collected in June 2009
prior to the start of the MOA-regulated CPF application season (Session 1 in Fig. 2). Two
additional blood samples were collected during the period of CPF applications (during
behavioral testing sessions), and two post-CPF exposure blood samples were collected after
CPF spraying had ended.
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Blood samples were collected by venipuncture into 10 mL lavender top (EDTA) vacutainer
tubes and immediately placed on wet ice in a cooler and transported to Menoufia University,
where they were analyzed in triplicate for AChE and BuChE activity using an EQM Test-
Mate kit (EQM Research Inc., Cincinnati, OH, USA). The EQM Test-Mate Kit is a portable
spectrophotometric analyzer developed for the determination of ChE activity in whole
blood, based on the original Ellman method (McConnell et al., 1992). The intraclass
correlation coefficient for BUChE with this method is 0.987 and for AChE is 0.898,
indicating that there is very little variation among replicates relative to total variation.

2.8. Statistical analysis methods

Estimating equations (GEE) were used to model and test for differences in key responses of
interest over multiple testing sessions while controlling for potential demographic and
occupational characteristics. Specific analyses are described in each Results section.

3. Results

In Year 1 (2009) 144 members of pesticide application teams—31 applicators, 59
technicians, and 54 engineers—were recruited and tested in five sessions (Fig. 2). A subset
of 4 applicators, 19 technicians, and 21 engineers was retested in 2010 (Year 2). Also in
2010, 150 subjects were recruited to serve as controls. Demographic characteristics of these
groups are summarized in Table 1.

3.1. Association of urinary TCPy concentration with job title

Among the 144 participants from the 2009 cohort, 142 (30 applicators, 58 technicians, 54
engineers) had measurable concentrations of urinary TCPy (ng/mg creatinine) in at least one
of the five sessions during which urine samples were collected. Urinary TCPy concentration
was log-transformed prior to the GEE analysis to improve symmetry, stabilize variance, and
lessen the influence of outliers in the test of hypothesis 1.

The geometric mean (GM) concentration of urinary TCPy for engineers did not differ
significantly (p = 0.43) from the GM concentration in technicians for any session, while the
GM concentration for applicators was significantly higher than both engineers (p = 0.018)
and technicians (p = 0.013) during Sessions 1-4. For Session 5, during which urine samples
were collected in September (approximately 6 weeks after applications ended), there were
no differences between the job type groups (p > 0.30 for each comparison) (Fig. 3). Urinary
TCPy measures were not available for the 2010 cohort. The sample of 101 Menoufia
University employees who did not work near the cotton fields, recruited in 2009, provided
urine samples on June 28 and August 12-13 (corresponding respectively to the testing time
of Session 1 and 4 in the 2009 field sample collection). The GM concentration of urinary
TCPy from these two time points were 5.5 (95 % CI = 4.8-6.3) and 6.3 (95 % CI = 6.4-8.7)
ng/mg creatinine; the difference between the time points was significant (p = 0.004). Even
the high end of the CI for the control values is lower than the GM of urinary TCPy for
applicators on all sessions except Session 1, whereas the GM of the University group is
close to the levels seen in the technicians and engineers.
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These data support Hypothesis 1: Higher urinary TCPy concentrations will be detected in
applicators who walk directly into the pesticide spray than in technicians who walk beside
them or engineers who are not often in the field during applications. Based on the urinary
TCPy measures in 2009, there are essentially two exposure groups: applicators and
technicians + engineers.

3.2. Association of blood cholinesterase activity with job title

AChE activity (U/gram of hemoglobin [gHgb]) and BuChE (U/mL) was quantified for 139
(31 applicators, 54 engineers, 54 technicians) of the 144 workers from Year 1 (2009) at
Session 1 (pre-application), Session 3 (during [the second period of] application), and
Session 5 (post application); Session 3 was judged to be more representative of a
chlorpyrifos application period than Session 2. Blood cholinesterase activity was measured
in Year 2 (2010) for the 150 controls, but for only a few applicators and none of the
engineers or technicians. Hypothesis 2, which focused on cholinesterase activity (AChE,
BuChE) was also analyzed using GEE following log-transformation of these data. GEE
models applied to these transformed outcomes estimate behavior of the geometric mean
(GM) after transformation back to the original scale with additive changes estimated on the
log scale becoming multiplicative effects (i.e., fold changes) concerning the GM when back
transformed.

Occupation/job title did not significantly affect the GM of AChE activity over time (p =
0.43; test of occupation x session interaction), implying all three occupations shared a
similar AChE profile over time. The GM of AChE activity for all three job titles decreased
steadily over the pesticide application period compared to pre-application levels. Pre-
application GM activity was 28.4 (95 % CI: 27.8-28.9) U/gHgb, and decreased 2.7 % (95 %
Cl: 1.9-3.4 %; p < 0.001) at each successive session (e.g., 2.7 % decrease at Session 3,
followed by a further 2.7 % decrease from Session 3-5). The final concentration post-
application (Session 5) was 94.7 % (95 % C1:93.2-96.2 %) of the initial pre-application
level (Fig. 4, A). The sample of controls (2010) had an estimated GM AChE activity of 27.5
(95 % CI:27—28) U/gHgb over a period spanning Sessions 1-3.

BuChE activity for the same cohort exhibited a somewhat different pattern. Pre-application
GM activity of BuChE was similar (p = 0.47) for all occupations, estimated to be 1.73 (95 %
Cl: 1.64-1.81) U/ml overall. Post-application activity levels also did not significantly differ
(p = 0.41) among groups, though the GM activity post-application for all groups was 8.7 %
(95 % CI: 6.0-11.3 %; p < 0.001) less than baseline. During Session 3 (application period),
applicators had a GM activity decrease of 22 % (95 % Cl: 11.4-31.4 %; p < 0.001) from
baseline, which was 14.6 % (95 % CI: 2.7-25.0 %; p = 0.017) less than final post-
application levels (in Session 5). For comparison, the sample of 150 controls (2010) had
BUChE activity that remained relatively constant [X2(2df) = 3.77, p = 0.15; test for change
over time] for Sessions 1-3, with a GM of 1.88 (95 % CI: 1.81-1.94) U/ml. All three job
title groups had consistently lower levels of BuChE activity during 2009 than even the lower
confidence limit for these controls (Fig. 4B).
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These data partially support Hypothesis 2: The average activity of blood cholinesterase, a
biomarker of recent OP exposure, will be lower in applicators than in technicians or
engineers during periods of CPF application, was supported for BuChE, but not for AChE.

3.3. Association of job title with trail making performance

Of 144 pesticide team members recruited in Year 1 (2009) and described in Table 1, 139 (30
applicators, 58 technicians, 51 engineers) completed both Trail Making tests A and B at
Sessions 2-5. Trail Making performance (A and B; Hypotheses 3, 4, 6, 7) over repeat testing
sessions did not require any transformation prior to analysis by GEE. All GEE models
presumed the (transformed) response followed an approximately normal distribution with
exchangeable correlation structure of repeated measures taken over multiple testing sessions.
Robust standard errors were used to guard against potential misspecification of the actual
correlation structure.

For both Trail Making A and B, increasing age was significantly (p < 0.005) associated with
slower performance; each additional decade of age was associated with an approximate 13 s
increase in time to complete the test. After controlling for age, there was no indication that
performance over time, compared to performance at Session 2, was modified by occupation
for either Trail Making A [X?2 (6 df) = 4.62, p = 0.59] or B [.X'2 (6df) = 4.67, p = 0.57; test
of time x occupation interaction], thereby implying all three occupations shared parallel
performance profiles over time. That is, across all job titles, and in controls, performance got
faster with each successive session and slower with increased age of the participants.

Among those of similar age, and regardless of session, applicators completed the Trail
Making A test an average of 19.7 (95 % CI: 3.8-35.6; p = 0.015) s slower than engineers
and 12.7 (95 % CI: 1.1-24.4; p = 0.032) s slower than technicians. Technicians averaged 7 s
slower than engineers, which was an insignificant (p = 0.28) difference. Performance at
Sessions 3, 4, and 5 was, respectively, 35.7 (95 % CI: 22.6-48.8), 41.9 (95 % CI: 29.0-
54.8), and 32.3 (95 % CI: 14.8-49.8) s faster than at Session 2 (p < 0.001 for each).
Compared to controls from 2010, applicators were slower at all sessions (p < 0.001 for each
comparison) and technicians were also slower at each of the same four sessions (p < 0.04 for
each); engineers only showed slower performance (p < 0.001) than controls at Session 2 but
not at any later sessions (p > 0.15 for Session 3-5) (Fig. 5, left).

For Trail Making B, controls had faster performance (p < 0.001) at each session when
compared to all other occupations, with only performance at Session 3 being significantly
different from the other sessions (approximately 18 s slower, p < 0.001). Adjusted for age,
engineers were 30 (95 % CI: 6.5-53; p = 0.012) s faster than applicators and 26 (95 % CI:
9-44; p = 0.003) s faster than technicians at each of the testing sessions. Performance for
applicators and technicians did not significantly differ (p = 0.75). As was the case for Trail
Making A, performance at Session 4 was fastest, being 45 s better than at Session 2 (95 %
Cl: 31-60 s; p < 0.001). Sessions 3 and 5 also had faster times than Session 2, by 16 and 37
s, respectively (p < 0.05 for each) (Fig. 5, right).

These data support Hypothesis 3: Pesticide workers will demonstrate deficits (slower
performance) on the Trail Making Test compared to controls, and job titles with higher
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exposures will have greater deficits in performance than those with lower exposures. These
data also support Hypothesis 8: Trail Making Test deficits will persist after exposure ends.
Hypothesis 8 is the subject of a more extensive analysis later in the Results (3.8).

3.4. Association of years working for the MOA with trail making performance

The hypothesis that an increased number of years of occupational CPF exposures is
associated with greater deficits in Trail Making performance was tested by examining data
from 2009 for the same subjects described in section 3.3 using GEE analyses that presumed
the (transformed) response followed an approximately normal distribution with
exchangeable correlation structure of repeated measures taken over multiple testing sessions.
Robust standard errors were used to guard against potential misspecification of the actual
correlation structure. Both years of work at the MOA (and thus exposure) and education are
addressed. For both Trail Making A and B, after adjusting for age and occupation, neither
years of work for the MOA nor years of education were significantly associated with
performance (Trail Making A: p = 0.60 for years of education, p = 0.91 for years of work for
MOA,; Trail Making B: p = 0.70 for years of education, p = 0.25 for years of work for
MOA). Each 5 years of experience working for the MOA was associated with a 0.2-s
increase in Trail Making A performance, emphasizing the lack of impact of years working
for the MOA on test performance.

These data do not support Hypothesis 4: A greater number of years working for the MOA,
and thus more years of exposure to CPF, will be associated with greater deficits on the Trail
Making Test.

3.5. Association of peak urinary TCPy levels with post-exposure trail making
performance

We examined whether performance was associated with an individual’s peak urinary TCPy
concentration observed over Sessions 1-5, to test whether this peak concentration was
associated with average performance from Sessions 4 and 5, after exposure had ended. We
thought peak exposure might be a better predictor of persistent effects than average
exposure. Trail Making performance was tested using ordinary multivariable regression with
robust standard errors.

Of the 144 subjects from 2009, 142 (30 applicators, 58 technicians, 54 engineers) had at
least one urine sample collected for TCPy quantification during the five sessions from which
a maximal or peak value could be obtained. Session 2 was most frequently associated with
the highest urinary TCPy level, regardless of job title. The sample size decreases to 124
when peak urinary TCPy concentration is correlated with average performance from those
participants who completed behavioral testing during Sessions 4 and 5, and these are the
same subjects described in Section 3.6 and Table 2. Over the entire sample, the median and
inter-quartile range (IQR) for peak TCPy concentration was 22.3 [13.0-46.2] ng/mg
creatinine with a marginally significant (p = 0.05) difference among the three occupations.
The median [IQR] peak was 38.8 ([15.6—102.4] for applicators, 21.7 [12.8-34.0] for
technicians and 21.2 [11.8-40.2] for engineers.
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There was some evidence to suggest that peak urinary TCPy concentration had a differential
effect on Trail Making A performance according to job title (p = 0.09; test of TCPy x
occupation interaction). After adjusting for age, the approximate 3.55-fold increase in TCPy
from 13 to 46.2 ng/mg creatinine is associated with a 7.7 s decrease in completion time for
applicators (p = 0.08), a 25.6 s increase in completion time for engineers (p = 0.19), and a
1.8 s increase in completion time for technicians (p = 0.59). This analysis also relied on GEE
models and was expanded to contain all collected measures of CPF exposure (TCPy, AChE,
BuChE) to explore their influence after controlling for other known demographic/
occupational factors.

For Trail Making B, there was no indication that the effect of peak TCPy concentration was
modified by occupation (p = 0.57; test of TCPy x occupation interaction), implying a similar
trend for all occupations, after adjusting for age. This trend was associated with an increased
completion time (i.e., worse performance) of approximately 10.6 (95 % CI: 1.1-20.2; p =
0.03) s over the central half-sample from 13 to 46.2 ng/mg creatinine. By comparison, this
effect is only slightly smaller than the estimated effect associated with a 10 year increase in
age, which was estimated to be a 12.3 (95 % CI: 2.4-22.1) s increase in time needed to
complete Trail Making B. Even after adjusting for peak TCPy and age, there still remain
persistent effects due to job, with applicators and technicians respectively taking an average
of 26.6 (p = 0.06) and 24.4 (p = 0.005) s longer to finish than engineers.

Thus, Hypothesis 5: Peak exposures defined by TCPy measures will be negatively
associated with post-exposure Trail Making performance, was not supported by the data.

3.6. Association of estimated cumulative exposures with post-exposure trail making
performance

As employees have the same job and job title from year to year, years of work in the MOA
served as the basis for defining cumulative exposure. The concept for this analysis was
predicated on the assumption that TCPy exposure during the application periods (Sessions 2
and 3) in 2009 was reflective of a person’s typical exposure experience in all years they
worked for the MOA (i.e., a person who carefully avoided skin exposure to pesticides during
2009 would have behaved similarly over their working lifetime, and those who, for example,
stirred the pesticide mixture with their hands in 2009 would have done so over the years;
these hypothetical application team members would have vastly different skin exposures).
Thus, years working in the MOA was multiplied by their GM urinary TCPy concentration
from the two application periods (Sessions 2 and 3 in 2009) to estimate each person’s
cumulative exposure over their lifetime of working. This measure has units of ng
TCPy*year/mg creatinine and was square-root transformed prior to analysis to improve
symmetry. This transformation preserves order, so the ranking of individuals on the
transformed scale is identical to that on the original scale. For this analysis, we created an
additional explanatory variable defined as the product between the application specific
(Sessions 2 & 3) GM TCPy concentration and years working for the MOA. GEE models of
the sort previously described were then fit to Trail Making A / B performance over time
while including this new composite predictor in addition to other demographic and
occupational explanatory variables. Again, the models presumed the (transformed) response

Neurotoxicology. Author manuscript; available in PMC 2021 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Anger et al.

Page 12

followed an approximately normal distribution with exchangeable correlation structure of
repeated measures taken over multiple testing sessions. Robust standard errors were used to
guard against potential misspecification of the actual correlation structure.

Fig. 6 shows the distribution of this cumulative exposure measure among the three job titles
for a sample of 137 subjects. These are the same subjects examined in Section 3.3, but
missing two applicators for whom there was no TCPy measures during the two sessions in
question. The same models described in Section 3.3 (examining age and occupation) were
used here as well, but with inclusion of the (transformed) cumulative exposure measure as
well as an interaction between this cumulative exposure measure and session. Thus, the
cumulative measure of exposure for each person derived from Sessions 2-3, was used as a
predictor for performance at all sessions. This interaction was used to assess whether any
trend associated with cumulative exposure fluctuates according to session. However, no
difference was noted among job titles.

Transformed cumulative exposure was not associated with job title (p = 0.38), and overall
had a median of 15 units (IQR from 9 to 20 units). Adjusted for job title and age, we found a
significant (p = 0.05) interaction between cumulative exposure and session in relation to
performance on Trail Making A, but not for Trail Making B (p = 0.67). The interpretation of
the interaction was made by considering the observed IQR for the exposure and reporting
the change in the average performance on Trail Making A over this range from 9 to 20 units
(i.e., change in performance over the central half-sample of transformed cumulative
exposure) at Sessions 2—5.

The effect associated with cumulative exposure alternates between (insignificant) increases
and decreases in performance, with the trend for an 11 unit gain in cumulative exposure
varying from just under a 3 s worsening in performance to a little more thana 2 s
improvement. These measured effects related to cumulative exposure, however, are
considerably smaller than the 13.2 (95 % CI: 8.3-18; p < 0.001) s increase in completion
time per 10-year increase in age, and they are thus far less important than age.

These data do not support hypothesis 6: Higher CPF exposure concentrations (based on
actual 2009 TCPy exposures) multiplied by years applying pesticides (i.e., cumulative
exposure) will be associated with greater deficits in post-exposure Trail Making Test
performance.

3.7. Association of TCPy, BUChE, and AChE with trail making performance

We tested whether Trail Making performance correlates with established biomarkers of CPF
exposure (i.e, blood AChE, blood BuUChE, and urinary TCPy) in a dose-response manner.
The analysis used the same GEE models described in the methods, with Trail Making
performance as the response and percent cholinesterase inhibition (or log-TCPy
concentration), occupation, session, and age as explanatory characteristics. The analyses for
hypothesis 7 also relied on GEE models and were expanded to contain all collected
measures of CPF exposure (TCPy, AChE, BuUChE) to explore their influence after
controlling for other known demographic/occupational factors. Cholinesterase inhibition was
determined by dividing each participant’s BuChE and AChE activity at Session 2, 3, and 5
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by his activity at Session 1. Session 4 was excluded because no participant had
cholinesterase activity measured during that session.

Of 144 participants described in Table 1, 132 (30 applicators, 51 technicians, 51 engineers)
had blood BuChE and AChE activity recorded for Sessions 2, 3 and 5, and 138 (30
applicators, 57 technicians, 51 engineers) also had urinary TCPy recorded for Sessions 2, 3
and 5 [not every applicator provided a viable sample at each time point]. Mean years of age,
education, and work experience for this slightly smaller cohort was not different from values
given in Table 1 (differences were always less than 0.4 years).

Controlling for age, occupation, and session, we found no association between percent
BuChE inhibition and performance on Trail Making A (p = 0.24) or B (p = 0.65). For AChE,
each 10 percentage point increase in inhibition was associated with a marginally significant
(p = 0.073) 1.5 s increase in Trail Making A completion time and a 2.4 s decrease (95 % CI:
0.2-4.4; p = 0.029) in Trail Making B completion time (Fig. 7). To be suggestive of an
effect, the direction of change would be expected to be in the same direction for Trail
Making A and B, but it was not.

Individual urinary TCPy concentration was not associated with contemporaneous participant
performance on either Trail Making A (p =0.95) or B (p = 0.83).

Thus, the data do not support Hypothesis 7: Trail Making Test performance will correlate in
a dose-response fashion with the urinary TCPy biomarker and both BuChE and AChE
biomarkers.

Persistence in trail making performance effects after exposures had ended

Data from Session 4 (7-10 days after CPF applications and occupational exposures ended)
and Session 5 (~1.5 months post exposure in the cotton fields) were examined to test
whether Trail Making A or B performance at these specific post-exposure periods was
associated with job title or biomarkers of exposure/effect (urinary TCPy, blood AChE, blood
BuChE) measured during Sessions 2 and 3 (mid-July, early August) when pesticide
application teams were applying CPF. Prior analyses (Section 3.3) revealed no significant
differences between Session 4 and 5 for any occupation with respect to Trail Making
performance, after accounting for age (p = 0.11, Trails A; p = 0.22 Trails B). We
subsequently averaged each participant’s performance from these two sessions and tested
this average post-exposure performance measure for association with job title and three
averaged measures of exposure from Session 2 and 3. The GM TCPy concentration from
those two periods during CPF application and GM AChE and BuChE activity from those
same sessions relative to activity at Session 1 were calculated to generate a percent
inhibition of cholinesterase activity. Although the prior analyses found a strong effect due to
age, but no effects due to education or years working at the MOA, we included these
variables in this new analysis since it relies on a specific subset of testing sessions and
involves a more limited cohort of individuals. Since this analysis involves summary
measures of performance and exposure computed at the level of the individual subject (i.e.,
no longer any longitudinal component), ordinary multivariable regression was used to
estimate and test the associations of interest, with models using robust standard errors to
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accommodate heteroscedasticity. Multivariable regression was used to model average post-
exposure Trail Making performance (A / B; Sessions 4 and 5) as a function of average CPF
exposure measures (TCPy, AChE, BuChE) from active application periods (Session 2 and 3)
while controlling for other demographic/occupational factors.

Table 2 gives descriptive characteristics for the 124 subjects (30 Applicators, 47
Technicians, 47 Engineers) who met the criterion of having all the data used to address the
hypothesis that post-exposure performance varies by job title and exposures. We considered
several models in the process: Model 1 includes occupation and age (already known to be
non-negligible) without adjustment for other factors; Model 2 expands Model 1 by also
including years of education and years of work for MOA; Model 3 expands Model 2 by also
including all exposure characteristics. These nested models allow for testing of differences
among job titles with varying degrees of adjustment, and also determine whether inclusion
of demographic or exposure characteristics significantly affects performance. The Bayesian
Information Criterion [BIC], which quantifies the balance between model accuracy and
parsimony/complexity, was computed (lower values preferred) to help determine when
additional terms were irrelevant (Schwarz, 1978).

Without controlling for any other factors, post-exposure performance on Trail Making A
does not differ significantly by job title (p = 0.60), while post-exposure performance on Trail
Making B has some suggestive but inconclusive evidence of an effect due to job title (p =
0.09). All demographic characteristics show robust differences among job titles (p < 0.02 for
each), while exposure differences appear, at least in an unadjusted sense, limited to urinary
TCPy (p = 0.03) and blood BuChE inhibition (p = 0.01). These last conclusions regarding
exposure are similar to outcomes reported in Section 3.3 for the larger cohort of 139 or 144
participants.

By contrast, regression models for Trail Making A that accounted for age found applicators
to be almost 20 s slower than engineers (p = 0.06) and just over 15 s slower than technicians
(p = 0.05), with no real difference between engineers and technicians (less than 4 s of
separation; p = 0.64). Each decade of age was associated with an average increase of 10
additional s to complete the task. Further attempts to include education, years working at the
MOA, and the three measures of exposure found those five variables didn’t have a
significant impact [F(5,115) = 1.12, p = 0.35] beyond the initial model, and more
specifically, the exposures had no additional influence [F (3,115) = 0.60, p = 0.62] beyond a
model that fully-adjusted for all demographic characteristics. The comparative size and
direction of differences between job titles differs by almost 1.5 s between the crude (Model
1) and fully-adjusted model, suggesting the other demographic and exposure variables are
not strong confounders with performance on Trail Making A. These results are summarized
in Table 3.

Similar models for Trail Making B found age-adjusted performance was best for engineers,
who were on average 33 (p = 0.02) and 25 (p = 0.01) s faster than applicators and
technicians, respectively. Each additional decade of age was associated with an approximate
12-s increase in completion time. Although additional demographic and exposure-related
variables were not significant [F(5,115) = 0.62, p = 0.68], they are confounded with
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occupation and performance such that controlling for these five variables closes the
performance gap between applicators and engineers by nearly 13 s while the performance
gap between Engineers and Technicians is narrowed by 7 s. Table 4 summarizes these
findings for Trail Making B.

In sum, the differences in job title, which are associated with different exposure levels to
CPF (section 3.3), differ at Sessions 4 and 5 (when exposures had ended) once age
differences are taken into account in the analysis. Fig. 5 also depicts the differences between
the job title groups, with a slightly larger N (because that analysis did not include all the
variables and thus all the measures used in these more comprehensive models). Taking all
other relevant variables (viz., education, years at the MOA, TCPy, AChE, BuUChE) into
account in the analysis, which was not done in the prior sections, does not add anything to
the outcome of the analysis. Comparisons of model 2 vs. model 1 (p = 0.35), model 3 vs.
model 2 (p = 0.96), or model 3 with model 1 (p = 0.68) are not significant and therefore do
not improve on the explanatory power of model 1. As the analysis controls for more and
more variables, the adjustments had little effect. In the M3 vs. M1 comparison, there is no
real difference in the model performance (i.e., the lowest BIC is M1 and there is little
difference in that added complexity without any added benefit). That is, the more
comprehensive models don’t improve the explanatory power of the model - the added
variables just don’t matter.

Hypothesis 8. Trail Making Test deficits will persist after exposure ends, is confirmed.

3.9. Trail making performance over time

While too few of the pesticide applicator group in 2009 returned for testing in 2010 to
provide the same level of analysis that could shed light on the possibility of a year-to-year
decline in performance, it is possible to illustrate applicator team performance relative to the
Controls who were only tested in 2010 by combining the applicator team job titles (viz,
applicators, technicians, engineers) into a single group. Trail Making Test performance is
described for the 44 subjects (4 applicators, 19 technicians, 21 engineers) who completed
both tests A and B during Years 1 and 2, together with 150 controls who took both A and B
for the first time in Year 2 (2010). The mean time to complete the Trail Making Test was
computed according to control (n = 150) and pesticide application teams (n = 44) (Fig. 8).
Session 1 is included only for controls because they, unlike the application team members,
received the correct testing instructions in Session 1. Though controls were tested only in
2010, the impact of learning the skill of Trail Making Test performance necessitates that
their performance in 2010 be compared to agriculture workers from 2009 as both groups
were experiencing testing for the first time. Fig. 8 shows the improvement over time with
succeeding administrations of the test, reflecting learning and increasing familiarity with test
performance. This is consistent with the neuropsychological literature (Duff et al., 2012;
Fernandez-Ballesteros et al., 2005; Nguyen et al., 2015) and with test results from
adolescent Egyptian pesticide applicators who worked in the cotton fields, and were tested
repeatedly (Ismail et al., 2017b). The Egyptian Trail Making Test scores are considerably
higher (slower) than those collected on community members in North America of roughly
the same age and educational background (as reported by Tombaugh, 2004), though cultural
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differences may make comparisons to results from other geographical/cultural areas moot
(Stanczak et al., 2001). Fig. 8 also shows that the applicator team members could achieve or
exceed the same level of performance as controls, it just took longer to reach that level than
was the case for the controls. Of course, if the controls were given an equal amount of
practice their performance may have been far better.

4. Discussion

4.1.

Previous research has demonstrated that Egyptian pesticide applicator team members
exposed to CPF had impaired performance on Trail Making Tests A and B compared to
controls (T. M. Farahat et al., 2003). Several other studies of occupational OP pesticide
exposure have reported the same outcome on the Trail Making Test as well as on other
behavioral tests (Blanc-Lapierre et al., 2013; Cole et al., 1997; Korsak and Sato, 1977,
Mackenzie Ross et al., 2010; Richter et al., 1992; Rosenstock et al., 1991; Wesseling et al.,
2002), whereas a smaller number of studies have not observed a similar impact of OP
exposures (Fiedler et al., 1997; Roldan-Tapia et al., 2006). The results of the present study
are consistent with those studies that report an association between occupational OP
exposures and deficits in behavioral test performance, and significantly extend them by
demonstrating a relationship between behavioral test deficits and two job titles with differing
exposure levels plus control, which suggests a dose-response relationship. Pesticide
applicators had significantly higher exposure levels than technicians or engineers based on
urinary TCPy measures, and controls had significantly lower exposure levels than any of the
occupational groups. Performance on the Trail Making Test A and B was poorest for the
applicators, better for the technicians and engineers, and best for the controls in four testing
sessions. The group differences in urinary TCPy measures did not persist after applications
stopped, but the group differences on Trail Making Test performance observed during the
time of applications were still evident up to a month after the applications had ended. These
continued deficits after exposures ended are consistent with prior research (Rohlman et al.,
2016). Urinary TCPy and blood cholinesterase measures taken at the time of testing did not
correlate with the deficits seen on the Trail Making Test in our study; although some
research has found correlations between test performance and these biomarkers (e.g., Ismail
etal., 2017b).

Urinary TCPy associated with job titles

Applicators had higher GM urinary TCPy concentrations than either engineers or
technicians at Sessions 1-3, while the urinary TCPy concentrations of Engineers and
Technicians did not differ significantly (Fig. 3). This establishes that there are two different
levels of exposure associated with the job titles and thus establishes a basis for defining a
dose response for performance differences in participants in those job titles. Data from
University employees not working in agriculture suggest that “control” exposure levels are
at the midpoint of Session 1 levels in the engineers and technicians and below that of the
applicators.
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4.2. Blood cholinesterase measures

AChE activity did not differ significantly among job classifications over the time from pre-
application (Session 1) to during application (Session 3) to post-application (Sessions 4 and
5), but all three job titles showed the same decrease of ~2.7 % for successive sessions (e.g.,
2.7 % reduction from Session 1 to Session 3; 2.7 % reduction from Session 3 to Session 5),
and this decrease was significant. The magnitude of these changes are lower than those seen
in the same population in 2008, the year prior to the year these data were collected;
applications were believed to be more extensive in 2008 based on anecdotal reports of
participants (Singleton et al., 2015).

BuChE activity decreased more for applicators than for the other two occupations when
comparing Session 3 (during exposure) against Session 1 (pre-exposure); technicians and
engineers had the same BuChE profiles over time, although these two job classifications also
showed a decrease compared to the pre-application time (Session 1). BUChE levels were
uniformly lower in all job type groups than in MOA controls sampled in 2010 over Sessions
1, 2, 3. The lower confidence limit for these controls was higher than the upper limit of the
levels of the application job types indicating that BUChE activity did reflect exposures from
recent applications (Fig. 4, B).

Our data are consistent with the Garabrant et al. (2009) report demonstrating that plasma
BuChE activity, which constitutes 99 % of human plasma B-esterase activity (van Gemert et
al., 2001), is a measure of exposure that can be inhibited at exposure levels below those
required to inhibit red blood cell AChE.

4.3. Differences in trail making performance by job title

For both Trail Making A and B, the changes in performance observed over time were similar
across all job titles (viz., no significant job x time interaction) as demonstrated by parallel
performance profiles over time (Fig. 5). The ordering was always the same: Applicators
were slowest, followed by technicians, with engineers being fastest among those working on
the pesticide application teams. The MOA controls were always fastest, compared to the
pesticide application team members, and on the more challenging Trail Making part B, they
performed significantly faster than all other groups at all time points. There also were
differences in urinary TCPy measures between the job titles (Table 3, 4.1). Even after
adjusting for age, there were Trail Making Test differences between job categories, and
those differences remained constant across all testing sessions (as indicated by parallel
performance profiles) both during and after CPF exposures in the fields. Age, adjusted for in
the analyses as noted above, was a significant factor and was associated with a 13 s increase
in completion time for each 10 years of increasing age on Trail Making B. After accounting
for occupation and age, years of education and years of work experience were not significant
predictors of performance (as noted in section 3.4).

These results establish that occupational exposures to CPF were associated with dose-
dependent deficits in human performance. This is established by the differences between the
applicators (whose exposure was the highest but whose Trail Making performance was the
lowest), the engineers/technicians (whose exposure was lower than that of the applicators
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and higher than controls, but whose Trail Making performance was better than the
applicators and worse than the controls) and the controls (with the lowest exposures and the
best Trail Making performance) as seen in Figs. 3, 4, and 6. This was true both during CPF
exposures and after exposures had ended.

This has been a point of contention for some authors who doubted the evidence that
exposures to CPF affect behavioral test performance because the studies did not have data
from exposures over time primarily due to CPF (i.e., there were many pesticide exposures
involved) or there was only one exposed group, or both, as noted by Meyer-Baron et al.
(2015). In the present study, we report one group with higher and two groups with lower
exposure levels, plus controls with much lower exposure levels; the controls’ exposures may
have been due to home exposures as CPF is widely available commercially, and was
reportedly used for insect control in homes (F. M. Farahat et al., 2011; Lein et al., 2012).

4.4. Results from studies in Egypt: relationships between CPF exposures and test
performance

There were no relationships between classic biomarkers of OP exposure and Trail Making
performance in the present study, but some of the other studies of Egyptian adolescent
pesticide applicator teams have reported such relationships. The present study did see an
association between AChE activity and improved performance (faster times to complete) on
Trail Making B (p = 0.03), but a marginal association was also seen with slower
performance on Trail Making A (p = 0.07). Since the changes were in the opposite direction,
the associations do not create a compelling case. Further, there was no relationship of the
other widely-used measures of recent OP exposures, urinary TCPy levels or blood BuChk
activity (Crane et al., 2013; Singleton et al., 2015), with Trail Making performance. T. M.
Farahat et al. (2003) also recruited adults but relationships between biomarker data and Trail
Making performance (the test was administered individually in a quiet room) was not
correlated with AChE. This is summarized in Table 5.

The remaining studies recruited adolescents. Abdel Rasoul et al. (2008)’s adolescent
applicators had significantly lower AChE activity (240 IU/L) than the children from the
same village who did not work in the cotton fields who served as controls (283 IU/L). The
participants were divided into older (16-18 years) and younger (9-15 years) groups, and
applicators had significant deficits in Trail Making A and B performance compared to
controls in both age groups. There were significant correlations between Trail Making B
performance and AChE activity, days worked during the current season, and years worked as
an applicator, all differing from the current study (Table 5).

Ismail et al. (2017b) recruited adolescent applicators and controls from the same community
who had not worked in the cotton fields. The groups were combined for regression analyses
of biomarkers and TMT performance. Data were drawn from four sessions, two during CPF
application periods and two prior to application periods, over two years. There was a
significant relationship between higher urinary TCPy concentrations and performance
deficits in Trail Making B, and AChE activity was negatively correlated with Trail Making A
performance (Table 5).
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Ismail et al. (2017a) analyzed data from adolescent pesticide applicators and non-applicators
from two years (2005 and 2009). Group differences on Trail Making were not reported, but
mixed model correlation analyses revealed correlations between Trail Making performance
and urinary TCPy levels (B only) and blood AChE activity (A only), but not blood BUuChE
activity (Table 5). Thus, studies of adolescents have found correlations between Trail
Making test performance and the standard biomarkers of recent exposure. One study of adult
agricultural workers with diverse undocumented exposures in the US also reported
correlations between AChE and several behavioral test measures, though none was Trail
Making (Rothlein et al., 2006).

Since the Ismail et al. (2017b) study tested adolescents from the same population as our
adult participants (cotton field applicators/teams working for the Ministry of Agriculture in
the Nile Delta), though using a slightly different analytic approach, we took a more focused
look at the association between Trail Making A and B performance (Sessions 2-5) and
log(TCPy) concentration from Sessions 2-5. Following the Ismail et al. (2017b)
methodology, we used a mixed-effect model for the response (Trail Making A and B latency;
no transformation) with testing session as a factor and contemporaneous log(TCPy) as
predictors. Ismail et al. (2017b) made further adjustment for education rather than age of
individual, so we ran models with both age and education even though years of education
appeared to be non-significant in the Ismail et al. reporting of Trail Making A and B
performance (the authors reported that they only include one of these variables in the
analysis because age and education were highly correlated). Our models for Trail Making A
and B each used 138 participants (30 Applicators, 51 Engineers, 57 technicians); data from
one technician is lost if education rather than age is used for the analysis.

Considering Trail Making B adjusted for age, the log(TCPy) effect was —0.85 (95 % CI:
—7.96 t0 6.26; p = 0.815) and was —1.32 (95 % CI:8.46 to 5.82; p = 0.717) when adjusted
instead for education in our adult sample (results for A were similarly non-significant).
Thus, using these same models (mixed models vs GEE; using transformed TCPy as a
predictor instead of occupation) we still reach the conclusion that there is no association
between TCPy and Trail Making B (or A) performance. The effect for Trail Making B
reported by Ismail et al. (2017b) translates to ~ 2.1 (95 % CI: 0.7-3.4) s worse performance
for each doubling in TCPy concentration. To relate these concentrations to the present study,
a cohort of adolescents having geometric mean (GM) concentration of 30 pg TCPy/g
creatinine would be about 2.1 s slower than a cohort with GM concentration of 15 g
TCPylg creatinine (the difference between the approximate GM concentration of TCPy in
our applicator group [30] and that of our controls [15] per Fig. 3). This same performance
reduction would occur when comparing any two cohorts where average concentration is
separated 2-fold.

Overall, the present study identifies a dose-related effect based on job title associated with
CPF exposure measures (of the groups as noted in 4.2 and 4.3) and Trail Making
performance. However, a dose response relationship cannot be based on the classic measures
of recent CPF exposure (viz., TCPy and AChE or BUChE; Singleton et al., 2015; Crane et
al., 2013) and Trail Making performance in adults, though there are correlations between
Trail Making performance and biomarkers of recent CPF exposure in adolescents, which we
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cannot explain. These data suggest that the classic CPF exposure measures that reflect recent
exposures are not predictive of persistent effects detected at times well beyond the exposure
period in adults, although they may be used to identify those individuals who will, after an
extended period of such exposures, be at risk of reduced cognitive function. A similar
conclusion was reached by Meyer-Baron et al. (2015).

The reason for the disconnect between the observation that deficits in Trail Making
performance are correlated with job titles that differ in chlorpyrifos exposure as determined
by urinary TCPy values, and the lack of significant correlation between individual urinary
TCPy levels and behavioral outcomes is unknown. Perhaps it is due to the fact that urinary
TCPy levels increase rapidly initially and then remain fairly steady throughout the exposure
period while behavioral deficits manifest only after chronic exposures and remain after
urinary TCPy levels return to baseline. In other words, there is a temporal disconnect
between these two measures. It may also indicate that CPF exposures differentially affect
peripheral systemic processes (e.g., hepatic metabolism of CPF to TCPy) and central
nervous system processes. The lack of correlation between AChE and BChE activity and
behavior supports the hypothesis that these two outcomes are mechanistically unrelated (a
conclusion also offered by Rohlman et al., 2011). Terry (2012) and Zurlinden and Reisfeld
(2018) propose a similar hypothesis, the latter asserting that cognitive outcomes following
chlorpyrifos exposure “may be more sensitive markers of adverse health effects than AChE
inhibition” page 047009-2.

4.5. Causal relationship between CPF exposure and trail making performance deficits

4.6.

The identification of a dose-response relationship for CPF effects on the Trail Making Test is
an important addition to the evaluation of whether there is a causal relationship between
CPF exposures and Trail Making Test performance. With the addition of these new data,
CPF meets all of the 9 Bradford Hill criteria for concluding that an exposure has a causative
effect on the performance measure based on evidence from epidemiologic studies (Table 6).

Thus, all 9 of the Bradford-Hill criteria are met convincingly by experimental evidence to
support a causative effect of CPF exposures on neurobehavioral deficits, specifically on the
Trail Making Test. This establishes CPF as a neurotoxic substance, underscoring the need to
implement exposure controls to prevent chronic exposures that can lead to neurotoxicity.

Limitations

We did not attempt to measure exposures to pyrethroids, the insecticide(s) used between the
two longer periods of chlorpyrifos applications. As reported in a recent systematic review of
pyrethroid neurotoxicity (Chrustek et al., 2018), oral administration in animals led to motor
dysfunction and tremors in one experimental study, and in motor coordination and learning
deficits in rats in another study, but there is limited evidence from adult human case studies
that dermal exposures to pyrethroids may be associated with neurotoxic damage (viz.
tremors). Thus, while we cannot rule out the possibility that pyrethyroid exposure
contributes to the lack of association between biomarkers of CPF exposure and behavioral
effects noted in this population, it is difficult to determine how much of a confounding factor
this is given that the evidence for their occupational neurotoxicity in humans is quite limited.
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The Trail Making Test was administered in a relatively quiet small room in 2009 but in a
larger room with other activities going on in 2010, which provided a less optimal setting for
the test and led us to avoid behavioral test comparisons between the years. Often there were
several people in the room completing surveys waiting for their turn for the test, so
conversation and interactions may have sometimes distracted those taking the test. Controls
were tested in a room with other testing activities which would be expected to be more
distracting circumstances. While not ideal testing circumstances, it was typical of the culture
to have frequent interactions with others, and individual rooms were not available for testing
the large numbers recruited for the study.

Our sample of applicators was drawn from three MOA stations and may not have been
representative of overall exposures in Egypt or in other countries.

While the pesticide applicator teams we studied did not apply pesticides to any other crop in
their occupation, they did in some cases state that they took on side jobs involving episodic
pesticide application such as for farmers who grew crops other than cotton (Ismail et al.,
2012; Lein et al., 2012).

5. Conclusion

In sum, there is ample evidence that Trail Making performance deficits are associated with
job title, and job title is associated with different levels of chlorpyrifos exposure. The
applicators who had the highest chlorpyrifos exposures had the greatest performance deficit,
while the engineers who had the lowest exposures had the least deficit. Controls who did not
work in or next to the fields, and had the lowest CPF exposures, had the best Trail Making
performance. This is the first evidence of a dose-related effect for behavioral deficits
associated with occupational exposures to CPF based on job title, establishing it as a
neurotoxic substance in adult humans.

Because Trail Making performance was not associated with the classic biomarkers of recent
chlorpyrifos exposure in the adults we studied, and not consistently associated with those
biomarkers in other studies of children from this population (Table 5), we conclude that they
are not mechanistically relevant biomarkers of effect caused by chronic or repeated, long-
term exposure to chlorpyrifos in adults. We believe it is the long-term exposures that
produced behavioral changes, especially since they were not correlated with biomarkers of
recent exposure, and because the group differences persisted when exposures ended. The
lack of correlation of behavioral performance deficits with the acute exposure biomarkers
should not be considered evidence that the effects are specious or lacking in rigor as some
have suggested (as documented by Meyer-Baron et al., 2015).

The present data suggest that the OP chlorpyrifos joins 6 other chemicals with demonstrated
neurotoxic effects in humans by providing a key Bradford-Hill criterion indicative of strong
evidence of a cause-effect relationship: Lead (Lanphear et al., 2005), methylmercury (Debes
et al., 2006), manganese (Bowler et al., 2007; Claus Henn et al., 2010), polychlorinated
biphenyls (PCBs) (Lin et al., 2008; Stewart et al., 2008), arsenic (Wasserman et al., 2004)
and styrene (Benignus et al., 2005). While the adverse effects of lead, methylmercury,
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manganese and PCB are directly and proportionately associated with biomarker
concentrations (blood lead at time of testing, cord blood mercury at birth, blood manganese
at time of testing, PCBs in placental tissue at birth, respectively), arsenic and styrene are
associated with a relevant exposure marker (arsenic concentrations in well water consumed
and airborne exposure levels in the chamber at the time of testing, respectively). Thus, this
association of Trail Making performance with adults’ TCPy associated with job type is more
direct and thus convincing than is the case with arsenic and styrene but slightly less so than
that for lead, methylmercury, manganese and PCBs.
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Fig. 1.
Pesticide applicators wearing backpack sprayers and technicians guiding the walking speed

to increase or decrease pesticide concentration and to focus the spray direction of the
applicators in Egyptian cotton fields.
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Human Application/Exposure Schedule
chlorpyrifos pyrethroid chlorpyrifos
222324252627282930 01020304050607080910111213141516171819202122232425262728293031 01020304050607080910111213141516 17 18 300102
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nB nB nB nB nB
BI BI BI BI
U U U U U
Session 1 2 3 4 5
Legend
nB = neurobehavioral testing Bl = blood sample U = urine

Fig. 2.
Schedule (days of month listed above the month) of pesticide application, test administration

and sample collection in 2009.
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Urinary TCPy (2009)
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Fig. 3.
Geometric mean TCPy concentration (vertical axis; 95 % confidence interval as error bars)

by job title and session during Year 1 (2009). Pesticide applications began a few days before
Session 2 and ended a few days before Session 4.
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Page 30

GM of AChE (A) and BuChE (B) activity for applicators, engineers and technicians. The
shaded bar represents 95 % confidence band for AChE and BuChE levels in controls from

2010.
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Trailmaking B
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Performance (time to complete) of pesticide applicators and control subjects on Trail

Making A (left) and B (right).
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150

Kruskal-Wallis; p = 0.38

-

o

o
1

o

s MOA

v TCPy x Yr:
|
o]

50
° °
— M
0 JE m— 1 _I_
Applicator Technician Engineer
(n=30) (n=56) (n=51)

Fig. 6.

Digstribution of cumulative exposure of TCPy (GM from Sessions 2 and 3) multiplied by
years spent working for MOA (vertical axis; square-root scale). For each job title, the white
circle is the mean and the open circles represent outliers. The black horizontal line in the
center of each shaded area represents the median. The v-shaped notches formed by the
shaded areas denote the 95 % CI for the median. The lower and upper edges of the shaded
area represent the 25th and 75th percentiles. The whiskers extend to the largest and smallest
nonextreme values (within 1.5 box links).
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Page 33

Association of AChE inhibition compared to baseline (Session 1) with time to complete

Trail Making A or B.
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Trailmaking A Trailmaking B
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Fig. 8.

Average performance on Trail Making A (left) and B (right) over repeat sessions in years
2009 and 2010 for agricultural workers (black line, filled squares). MOA controls (gray line,
open circle) are shown for comparison. The gray shaded columns identifiy the period during
which pesticides were being applied.
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Table 1

Page 35

Mean years of age, education, and experience within MOA for study participants from 2009 and 2010, by job

title; standard deviation (SD) given in parentheses.

Cohort Age Education MOA

2009

Applicator (n=31) 39.2 (13.3) 11.2 (2.5) 125 (9.3)
Engineer (n=54) 54.1(4.1) 14.4 (3.0) 18.2 (8.6)
Technician (n=59) 48.0 (4.9) 12.3(1.9) ¢ 14.8 (9.2)
2010 (subset of above for applicators, engineers, and technicians)

Control (n=150) 49.6 (6.0) 13.0 (2.4) b 201 (9.4) ¢
Applicator (n=4) 40.7 (7.5) 12.0 (0.0) 16.5(5.1)
Engineer (n=21) 54.0 (4.0) 13.5(2.1) 17.3(9.2)
Technician (n=19) 49.2 (3.8) 12.4 (1.2) 16.0 (9.7)

4 missing, n =58.
b o
10 missing, n= 140.

03 missing, n =147.
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Table 2

Descriptive characteristics for 124 participants used to determine associations between post-exposure
performance (Sessions 4 and 5) and demographic characteristics or measures of exposure from earlier
Sessions (2 and 3) when CPF application was ongoing.

Characteristic

Applicator (n = 30)

Technician (n = 47)

Engineer (n = 47)

p-value

Trails A, s mean (SD)

Trails B, s mean (SD)

Age, yrs mean (SD)

Education, yrs mean (SD)

Years MOA mean (SD)

GMaTCPy, ng/mg creat. median [IQR]
Relativeb AChE median [IQR]

Relativeb BuChE median [IQR]

83.2 (31.8)
168.1 (52.2)
38.9 (13.5)

11.0 (2.3)

12.9 (9.2)

20.8 [11.8-50.3]

0.98 [0.93-1.01]

0.86 [0.68-0.94]

76.7 (16.9)
171.4 (36.8)
48.7 (4.6)

12.3 (1.2)

14.7 (9.4)
12.5[7.8-20.2]

0.98 [0.95-1.01]

0.94 [0.86-1.00]

78.7 (50.3)
152.9 (44.0)
54.1(4.3)

145 (3.0)

18.5 (8.3)
12.1[8.9-20.6]

0.97 [0.94-1.00]

0.94 [0.90-0.99]

0.60
0.09
<0.001
<0.001
0.02
0.03

0.63

0.01

aGeometric mean from Session 2 & 3.

bGeometric mean activity from Session 2 & 3, divided by activity at Session 1.
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