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Abstract: The advent of Internet of Things (IoT) brought innovation along with unprecedented
benefits of convenience and efficacy in many operations that were otherwise very cumbersome. This
innovation explosion has surfaced a new dimension of vulnerability and physical threat to the data
integrity of IoT networks. Implementing conventional cryptographic algorithms on IoT devices is
not future-proof as these devices are constrained in terms of computational power, performance,
and memory. In this paper, we are proposing a novel framework, a unique model that integrates
IoT networks with a blockchain to address potential privacy and security threats for data integrity.
Smart contracts are instrumental in this integration process and they are used to handle device
authentication, authorization and access-control, and data management. We further share a new
design model for interfaces to integrate both platforms while highlighting its performance results
over the existing models. With the incorporation of off-chain data storage into the framework,
overall scalability of the system can be increased. Finally, our research concludes how the proposed
framework can be fused virtually into any existing IoT applications with minimal modifications.
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1. Introduction

With the advancements in technology, miniaturization due to modern VLSI (Very Large Scale
Integration) related technologies, industries are evolving to meet the ever increasing needs of the society.
Internet of Things, as coined by Kevin Ashton [1], has revolutionized the world with its potential to
build cost-effective applications. The Internet of Things is meant for collaboration between networked
devices that have built-in intelligence. IoT is a technology that has emerged from a combination of
different technologies such as Machine-to-Machine communication, RFID, Supervisory Control and
Data Acquisition (SCADA), and Wireless Sensor Networks. IoT provides a way to access and connect
to devices that have unique identity. The dynamic, self-adaptive, and self-configurable nature of IoT
network distinguishes them from the conventional wireless networks.

The general IoT structure is shown in Figure 1. The layered architecture provides a variety of
services at different levels which are essential for managing communication across different applications
running over the entire network. These services include sensing data in the environment where the
device is deployed, reacting to the commands based on the given criteria (ex. turning on a relay),
processing the raw data, storing it for analysis purpose, communicating the data to a control node,
and sharing of data with other applications. IoT has rapidly transformed the business facet with
its broad spectrum of applications. The technology is instrumental in building applications such as
smart cities, smart homes, smart agriculture, intelligent transport, and advanced medical and health
applications [2–8].
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become common threats in these networks. A survey [11] claims that, in the past three years, more 
than 20% of the organizations have suffered at least one IoT based attack. It also forecasts that the 
amount spent on the security of the IoT devices would increase to $3.1 billion dollars. IoT is a network 
of devices, constrained in terms of computational power and memory, and are battery power 
operated in the majority of the cases. For effective utilization of the energy by IoT devices, the authors 
of [12] proposed two powerful energy optimization techniques, namely, batching and Computation 
Off-loading to MCU (Micro Controller Unit). As the number of IoT devices grow across the world, 
the impact of these devices on the surrounding environment is of paramount importance. In [13], the 
authors proposed a three-step leverage free green energy solution that involves providing green 
energy harvesting, wireless green energy charging, and green energy balancing.   

The rest of the paper is organized as follows. Section 2 elaborates on the existing security 
mechanisms in the IoT networks and the blockchain, and elucidates the need for the integration of 
these two technologies. In Section 3, the proposed integration framework along with the key design 
issues are discussed. Section 4 evaluates the framework by considering a healthcare use case and 
discusses various functional aspects. Conclusions are presented in Section 5.     

2. Related Works 

In general, any information system should comply with Confidentiality, Integrity, and 
Availability (CIA) requirements to guarantee security. Confidentiality refers to the protection of 
sensitive data from unauthorized access. Integrity guarantees that data are not modified by any 
unauthorized entity. Availability assures that data can be accessed at any time. In this section, various 
security mechanisms employed in IoT and blockchain are reviewed, and the need for integration of 
IoT and blockchain is explained. 

2.1. Security Preliminaries 

Let M be the message space containing all symbols defined by the alphabet (binary, English, or 
Hexadecimal) and m ∈ M be an element in a plain text message. Let C be the cipher text space 
consisting of symbols that are different from the one defined in M. The encryption mechanism is a 
bijective function, denoted by Ee, between M and C, which can be uniquely determined by an element 
{e ∈ K}, where K is the key space. Likewise, the decryption mechanism that can be defined as a 
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Security in IoT is still a factor of concern and boundless applications of the IoT technology portend
a wide range of security challenges [9,10]. Unauthorized access and data manipulation have become
common threats in these networks. A survey [11] claims that, in the past three years, more than 20% of
the organizations have suffered at least one IoT based attack. It also forecasts that the amount spent
on the security of the IoT devices would increase to $3.1 billion dollars. IoT is a network of devices,
constrained in terms of computational power and memory, and are battery power operated in the
majority of the cases. For effective utilization of the energy by IoT devices, the authors of [12] proposed
two powerful energy optimization techniques, namely, batching and Computation Off-loading to MCU
(Micro Controller Unit). As the number of IoT devices grow across the world, the impact of these
devices on the surrounding environment is of paramount importance. In [13], the authors proposed
a three-step leverage free green energy solution that involves providing green energy harvesting,
wireless green energy charging, and green energy balancing.

The rest of the paper is organized as follows. Section 2 elaborates on the existing security
mechanisms in the IoT networks and the blockchain, and elucidates the need for the integration of
these two technologies. In Section 3, the proposed integration framework along with the key design
issues are discussed. Section 4 evaluates the framework by considering a healthcare use case and
discusses various functional aspects. Conclusions are presented in Section 5.

2. Related Works

In general, any information system should comply with Confidentiality, Integrity, and Availability
(CIA) requirements to guarantee security. Confidentiality refers to the protection of sensitive data
from unauthorized access. Integrity guarantees that data are not modified by any unauthorized entity.
Availability assures that data can be accessed at any time. In this section, various security mechanisms
employed in IoT and blockchain are reviewed, and the need for integration of IoT and blockchain
is explained.

2.1. Security Preliminaries

Let M be the message space containing all symbols defined by the alphabet (binary, English,
or Hexadecimal) and m ∈ M be an element in a plain text message. Let C be the cipher text space
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consisting of symbols that are different from the one defined in M. The encryption mechanism is a
bijective function, denoted by Ee, between M and C, which can be uniquely determined by an element
{e ∈ K}, where K is the key space. Likewise, the decryption mechanism that can be defined as a bijective
function, denoted by Dd, between C and M can be determined uniquely by {d ∈ K}. The encryption
set is {Ee : e ∈ K} and decryption set is {Dd : d ∈ K}. The encryption and decryption mechanisms are
defined as: ∀ e∈K ∃ d ∈ K, such that

Dd= E−1
e (1)

where e and d are the encryption and decryption keys, respectively. Decryption of the message is given
by

Dd(E e(m)) = m ∀ m ∈M (2)

The {e, d} pair is known only to the communicating entities. If the key used for encryption and
decryption process is the same (key is shared among the users involved in the communication), it
is called symmetric cryptography. Asymmetric cryptography uses a public key and private (secret)
key pair for encryption and decryption operations. Digital signatures use asymmetric cryptography
inherently and provide integrity to the data. Figure 2 illustrates these cryptographic mechanisms.
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2.2. Security in IoT

Providing security in IoT networks is a complex process. Most of the security implementations
are employed at server level and centralized security architecture is not feasible for the large scale
IoT networks. Even though cryptographic functions used in the Internet can also be used in the IoT
networks, better distributed and decentralized security mechanisms are needed to cope with the
unmatched scaling levels. The lack of coordination among OEMs (Original Equipment Manufacturers)
results in device heterogeneity and hence devising common security strategies is a challenge. The
future IoT networks need versatile security solutions that provide scalable and distributed trust among
its users.

An up-to-date review of IoT authentication protocols has been presented in [14]. The authors have
evaluated and compared various protocols and provided a base for researchers and also highlighted
various open issues and challenges that need to be addressed while developing new protocols in future.
The authentication protocols for constrained devices should be lightweight, and there should be a
trade-off between power consumption and security.

Interactive and a non-interactive key management protocols have been proposed in [15]. The
non-interactive version minimizes the communication cost in the IoT networks. This proposed scheme
also enhances the security of traditional 4-way handshake models used in 802.11i and is resilient
against many security attacks.

A secured decision-making system based on inputs from different sources has been proposed
in [16]. This system uses a number of virtual cells deployed in the edge infrastructure. This model
enjoys the benefits derived from the edge computing but suffers when any one of the central components
in the infrastructure fails.

An end-to-end, SDN (Software Defined Radio) based framework for the evaluation of security
in cloud based IoT networks has been proposed in [17]. Parameters such as physical device security,
access control, authentication, data integrity, etc. are analyzed using a three-layer architecture in
this work.

In [18], the authors presented a lightweight authentication protocol that ensures protection against
known attacks in real-time RFID based IoT applications. The simulation results performed in this
work supports both formal and informal security analysis at the expense of improved computing and
communication cost.

Another novel model for providing security in the future generation IoT networks using security
by contracts in Fog infrastructure has been proposed in [19]. This model envisages a feasible approach
to create a trustworthy IoT environment using tractable contracts and policies.

A comprehensive study on the security of an IoT based smart home has been presented in [20],
where the authors have identified various security risks from both internal and external sources. This
work mainly focused on identification of risks and their impact pertaining to the smart home application.

Physical Unclonable Function (PUF) is another technology that has potential to combat the security
issues in IoT domain. They can provide a robust and lightweight solution for the computationally
limited devices in the IoT networks compared to the current classical encryption techniques. A study
in [21] provides a deeper understanding of the challenges and opportunities of using this technology
for security in IoT domain.

In [22], the authors proposed a lightweight framework for an IoT based healthcare system.
This model can serve as a reference for building applications that use cost-effective and resource
constrained devices.

Digital certificates are extensively used in the traditional internet applications to provide data
security and authentication. They consume a considerable amount of memory as well as computational
power. However, in sophisticated IoT systems, these certificates can be hardcoded into the devices and
when the device gets compromised, and there is an option for reloading the firmware.

DER (Distinguished Encoding Rules) encoded X.509 certificates are widely accepted by open-source
community for implementing authentication process and also support device interoperability. IoT
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application protocols such as MQTT use TLS (Transport Layer Security) for secured communication.
MQTT is one of the most widely used protocols in the IoT domain and follows a publish/subscribe
model operating over TCP/IP. It provides connection-oriented, ordered, and lossless bidirectional data
transfer. A broker in MQTT enables the communication, processes the incoming packets, sorts them
according to the topics, and forwards them to the subscribers of the corresponding topic. It has the
lowest overhead and provides three Quality of Service (QoS) metrics for different levels of message
reliability:

• QoS-0 is no guaranteed reliable level. There is no guarantee for the packet delivery.
• QoS-1 guarantees that the message is delivered at least once.
• QoS-2 guarantees that the message is received only once. This is safest but slow in service.

Services with QoS > 0 have better reliability with significantly increased delays. QoS-2 uses a
four-way handshake and hence has higher delays compared to the other two. Hence, QoS-2 is not
suitable for real-time application scenarios. Packet loss is a factor that affects the performance of the
system employing MQTT protocols. Table 1 shows the impact of increased payload and number of
users on the packet loss in MQTT QoS-0 and QoS-1 service. IoTIFY [23], a cloud-based performance
testing platform for IoT based applications, has been used for simulations. It has built-in supports
for cloud platforms such as Amazon Web Services (AWS) and Microsoft Azure. For the evaluation,
an MQTT server connected by a link of 1000 Mbps shared bandwidth has been used with AWS as a
cloud service. MQTT version 3.1.1 has been used for simulations. A system with core i7 8th generation
processor that runs on 2.2 GHz clock and 24 GB RAM has been used for simulating the results.

Table 1. Packet loss in MQTT QoS-0 and QoS-1 services with variable loads and users.

Payload Size No. of Nodes Type of Service Average Latency (mSec) % of Packets Lost

100 bytes

100
QoS-0 0.017 0
QoS-1 670.713 0

200
QoS-0 0.016 0
QoS-1 2029.758 0

500
QoS-0 0.019 0
QoS-1 6410.813 0

750
QoS-0 0.019 0
QoS-1 11592.543 1

1000
QoS-0 0.017 0
QoS-1 14771.078 13

1 KB

100
QoS-0 0.029 0
QoS-1 735.773 0

200
QoS-0 0.017 0
QoS-1 2180.992 0

500
QoS-0 0.017 0
QoS-1 5144.808 1

750
QoS-0 0.017 19
QoS-1 7372.016 1

1000
QoS-0 0.019 0
QoS-1 13362.244 27

10 KB

100
QoS-0 0.017 0
QoS-1 687.842 0

200
QoS-0 0.017 0
QoS-1 1746.986 0

500
QoS-0 0.016 7
QoS-1 5490.489 1

750
QoS-0 0.016 1
QoS-1 4649.574 1

1000
QoS-0 0.016 0
QoS-1 7923.592 8
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From Table 1, it is clear that packet loss becomes significant in both the services as the payload and
number of nodes increase. Critical applications such as healthcare and financial transactions require
more reliable and sophisticated designs for trusted services. A minimal loss of data in such scenarios
can create significant service interrupts. The TLS used for security in MQTT makes use of Public Key
Infrastructure (PKI) for complex key generation, management, and distribution. Constrained IoT
devices cannot accommodate such services.

In short, most of the works discussed above lack in various aspects’ provisions of the overall
security requirements of IoT networks. Hence, there is a need for a common platform that provides a
single-point solution for all the security needs of the IoT networks.

2.3. Blockchain Principles

Blockchain [24] is a decentralized public ledger which provides immutable, transparent, secure,
and verifiable transactions over a distributed platform. It has the potential to solve the problem of
providing trust for sensitive data flowing in information systems. The transactions in the blockchain
are stored in a block after each transaction is verified by all the peers of the network using public key
cryptography before being attached to the previous blocks. This process is called mining and the nodes
that perform this mining are called miners. Each node in the chain maintains a copy of the entire
transactional blocks. The consensus mechanism in blockchain is crucial for it to function correctly. The
consensus mechanisms ensure that all the nodes in the blockchain are synchronized with each other,
and all the transactions in the blocks are valid. Common consensus protocols are Proof of Work (PoW),
Proof of Stake (PoS), Delegated PoS (DPoS), etc.

2.3.1. Hash Functions and Merkle Trees

Hash function is another important component in building the blockchains. In a blockchain, the
hash functions are used for mining or Proof of Work (PoW) and block generation. Merkle tree is a
mathematical entity that is crafted as a tree of hashes of different blocks of data. This structure allows
verification of arbitrary transaction in large volumes of data with a similar hash verification process
used for a small amount of data. This method is very efficient and forms the core of the blockchain.
The root hash indicates the hash of the entire data set.

The Merkle tree structure between two successive blocks in a blockchain is shown in Figure 3.
The Merkle tree is constructed in a bottom-up approach and is created by repeated calculation of hash
pairs of the nodes until only one hash is left. Merkle tree is binary and hence will have an even number
of leaves.

Currently, researchers started exploiting the benefits derived by the incorporation of blockchain
into various application scenarios. In [25], a privacy-aware PKI based system has been developed for
permissioned blockchains. It proposes a digital certificate publishing scheme that helps in preserving
the privacy of user identity and provides legitimate authorization.

Authors in [26] have provided a comparative analysis of available blockchain ecosystems. They
analyzed various security and consensus mechanisms of different blockchain platforms and proposed
key aspects required for the adaptation of the technology in the future applications.

In [27], authors presented several security services available in the blockchain. Authors have
presented a deep insight on the usage of these services for present day business requirements. The
work highlights the security challenges in the existing systems and elucidates how blockchain can
resolve these issues.

A comprehensive review on various mining and consensus mechanisms in blockchain has been
presented in [28]. This work emphasized the design of the permissionless consensus mechanisms and
their applications in the broad area of telecommunication.
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Blockchain as a Service (BaaS) has been developed in [29] using a cloud infrastructure to provide
blockchain services. This system supports network deployment and smart contract testing. This model
also helps in developing business logic validations without the need for maintaining or monitoring
the network.

Another significant area where blockchain finds extensive application is in the logistics and supply
chain management. In [30], authors presented a comprehensive review of various trends in applying
blockchain based solutions in logistics and supply chain management. Blockchain has the potential to
provide end-to-end traceability and authenticated ecosystem for the delivery of food products from
the suppliers to end-users.

The consensus mechanisms employed for transaction validations in the blockchain based models
discussed above are computationally intensive. Considering the cost involved in the blockchain
processing, these solutions are not viable for the majority of the IoT applications. Inclusion of smart
contracts into blockchain has bought tremendous momentum to the blockchain based solutions
revolutionizing the application scenarios where the blockchain can be used.

2.3.2. Smart Contracts

A Smart contract is a piece of code that contains a set of terms governing the transactions over the
blockchain network and executes these terms without any third-party intervention. A smart contract
can be accessed by all its users using a contract’s address generated by the blockchain platform during
its deployment stage. The combination of blockchain and smart contracts has revolutionized the
current business scenarios and this combination is termed by developers as Blockchain 2.0.

2.4. Need for the Blockchain and IoT Integration

Blockchain 2.0 based solutions can offer potentially solid solutions for various privacy and security
issues in IoT. The inclusion of smart contracts into blockchain has made it possible to unleash different
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possibilities in applying trustless decentralization. The decentralized and autonomous nature of the
blockchain makes it best suitable for integrating with IoT networks. Moreover, this integration can
provide solutions to the challenges emphasized in [31], such as,

• Decentralization: Centralized systems such as cloud based IoT networks are single points of
failures. Blockchain provides decentralized peer-to-peer architecture.

• Scalability: Scalability is the outcome of decentralization which improves fault tolerance.
• Identity: Every IoT device connected to the blockchain can be addressed uniquely and blockchain

can provide distributed authorization and authentication to these devices.
• Autonomy: The IoT devices can interact with each other using the blockchain infrastructure

without the need for centralized servers.
• Reliability: Tamper-proof and distributed record management feature of the blockchain can bring

a higher degree of reliability for the data from the IoT devices.
• Security: The information from the IoT devices is stored as transactions inside the blockchain.

Before storing the data inside blocks, each transaction is validated by all its peers inside the
blockchain. In this way, security is guaranteed.

Few applications that are developed based on the combination of IoT and blockchain smart
contracts are listed in Table 2.

Table 2. Applications of a smart contract based blockchain and IoT.

Reference No. Category Platform Challenge Addressed

[32] Industrial IoT Multiplatform Privacy, Security
[33] Smart Transportation Ethereum Authentication, Privacy
[34] Wireless IoT Systems Ethereum Security, Authentication
[35] Smart Cities Ethereum Security
[36] Internet of Things Ethereum Access Control
[37] Electric Vehicle Charging Multiplatform Access Control
[38] Smart Meters Ethereum Access Control
[39] Asset Management Multiplatform Access Control
[40] Blockchain based IoT Multiplatform Identity, security

By using technologies such as LoRa (Long Range), a spread spectrum modulation technique
derived from chirp spread spectrum (CSS) technology, Swarm, a distributed data storage platform,
and Ethereum [41], new paradigms for IoT backend with a combination of Distributed Denial of
Service (DDoS) resistant and fault tolerant storage systems can be developed [42]. Blockchain based
IoT applications require strong understanding of complex scenarios, and relevant architectural and
logical support. There are many challenges yet to be addressed with this integration process [43].
In [44], authors have furnished a systematic analysis of relevant work on this ground.

In the next section, the proposed framework is presented. The components of the framework,
their interactions, and key design issues are elaborated.

3. Proposed Framework

Figure 4 shows the overall structure of the proposed framework. It is a three-layer structure that
accommodates all functionalities required for the integration process.
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3.1. Application Layer

This layer provides an interface between the IoT devices and the blockchain services. The
legitimate IoT devices and other system users can access the system services such as database storage,
access control, and communication between other user applications. The users in the proposed model
can be physical IoT devices with sensors installed or any Decentralized Application (DApp) browsers
such as Metamask [45]. These browsers are usually provided with developer tools, preferably a
Graphical User Interface, which helps programmers to develop application-specific functions. Each
user of the system will be assigned a set of roles based on which they get services from the business layer.

3.2. Business Layer

This layer is the core of framework and contains all the logic required to run different applications
in the system. It acts as an abstraction layer between the IoT applications and the blockchain. The
functions specified in this layer are reusable and are coded purely based on the application requirements.
Services such as smart contracts, user validations, access control, etc. reside in this layer.

3.3. Storage Layer

Data privacy is a major constraint for sensitive data stored in the network. To increase privacy,
the data stored in the blockchain are encrypted [46]. However, data encrypted by the users are visible
to all the peers in the network. Therefore, in order to protect sensitive data, the proposed model uses
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off-chain data storage. The sensitive data are stored in a private database, and the blockchain stores
associate information required for validating the integrity of data with a timestamp. This method of
storing data is usually termed as off-chain storing. Figure 5 illustrates this process. Storing of associate
data in the blockchain also allows verification of immutability.
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By avoiding bottlenecks and single points of failure, the system can be designed to be fault-tolerant.
The off-chain mechanism is best suited for IoT applications because storing such large volumes of data
over the chain is expensive. The business layer contains dedicated control mechanisms to ensure that
the off-chain database can only be accessed by authorized entities.

In the next section, the performance of the proposed framework is evaluated by considering a
healthcare system. Then, the components of the system, software, hardware, and other issues related
to the system are described in detail.

4. System Evaluation

In order to evaluate the performance of the proposed framework, a healthcare use case has been
developed using the features mentioned in the proposed framework. Figure 6 shows the overall
scenario of the healthcare system. This system uses an Ethereum based permissioned blockchain. The
permissioned blockchain is the one that allows only known nodes into the network which are given
complete authority to validate the transaction blocks. Various nodes in the system are described below:

• IoT Device: This device is attached to the patient body to monitor vital parameters such as heart
rate and body temperature. Sensors that read these parameters from the body are attached to the
controller in the device. Processing of raw data received from the sensors, framing the data for
storage purposes, communication, and networking functions will be taken care of by this device.
All the interactions will go through the blockchain network, and each of these transactions are
stored as immutable records inside the network. The sensitive data from the device are stored in
the off-chain database.

• Off-Chain Database: This is the database in which the body vital parameters and other patient
records are stored. Access to this database is controlled by the smart contract. Read or write
operations on this database are based on the privileges assigned to the users by the system
supervisor. There are security mechanisms employed at the database level to accommodate data
privacy and integrity. Optionally, data can be hashed before being stored in the database.

• Doctor: A doctor can use a DApp to access the database to monitor the concerned patient’s body
vital parameters and prescribe medicines based on the observations. Only authorized doctors are
allowed to view data of a particular patient or to prescribe medication.
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• Pharmacy: The pharmacist, using a DApp, can access medical prescription of a particular patient
upon proving his identity. He can also access the address of the patient so that the medicines can
be directly delivered at the patient’s site.

• Insurance Company: The insurance company is another component in this system who can
access the services using a DApp. When a claim is made by the patient, he has the authority to
verify the patient records.
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The advantages of this system are:

1. It provides real-time monitoring of patient’s critical conditions.
2. It provides security to the sensitive data of the patient.
3. It helps in making the insurance claiming process transparent as the records inside the blockchain

are immutable and provide end-to-end traceability.

4.1. Implementation Details

4.1.1. System Supervisor

System supervisor is the one who resides in the hospital management and is responsible for
assigning privileges and different access permissions to the system users. There are four nodes in this
system, and the privileges for each node are listed in Table 3. The smart contract deployment is also
the responsibility of the supervisor.
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Table 3. Privileges assigned to the users of the system.

Privilege ID User Privileges

1 Patient Can store body vital parameters in the off-chain server and can
read doctor’s prescription.

2 Doctor Can access patient’s data and can update prescription.

3 Pharmacist Can access doctor’s prescription and address of the patient
from the database.

4 Insurance Company Can access patient data, prescriptions and other records
during claim validations

4.1.2. Software

Among the available blockchain development platforms, the most popular are Ethereum,
Hyperledger [47], and IBM Blockchain [48]. For the evaluation of this model, Ethereum is being used
as a platform. The software packages and libraries used in the design are listed in Table 4.

Table 4. Packages and Libraries used in the system design.

Package / Library Version

geth 1.9.6
ethereum 1.0.8
eth_abi 2.0.0

ethjsonrpc 0.3.0
Truffle 5.0.39

Solidity 0.5.12
Py_solc 3.2.0
Node 10.15.2

Web3.js 1.2.1
Python 3.7.3

go 1.10.4

An Ethereum node is created by using geth. geth is the implementation of Ethereum node in Go
language. Truffle [49], an Ethereum based development and testing framework that is built over the
Ethereum Virtual Machine (EVM), has been used for generating executable byte code. Truffle has
in-built support for smart contracts’ compilation and linking. The environment of the Truffle framework
also supports binary management and smart contract deployment. It also supports automated contract
testing for rapid prototyping of applications. In order to reduce the computational costs and complexity,
this model uses lightweight smart contracts instead of conventional consensus mechanisms [50] to
record transactions and allow access to the resources.

Solidity, the official programming language to build smart contracts in Ethereum based blockchains,
is used to code the smart contracts. Web3.py, a Python API based on web3.js, provides interaction
between applications and the smart contracts. Smart contracts play a vital role in the proposed
integration model. The functions provided by the smart contract interface and their description are
given in Table 5.

The system assumes that all the users have a private key and public keys of all the entities which
are involved in communication.
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Table 5. Functions used in smart contracts and their description.

Function Input Parameters Return Value

isPatientAuthorized() patientID true: if the patientID is legitimate
false: if the patientID is not legitimate

isDoctorAuthorized() patientID
true: if the doctorID is authorized to view the
corresponding patient data.
false: otherwise

isPharmacyAuthorized() patientID
true: if the pharmacyID is authorized to view the
corresponding patient data.
false: otherwise

isInsurerAuthorized() patientID
true: if the insurerID is authorized to view the
corresponding patient records.
false: otherwise

storePatientInfo() patientID,
patient_body_parameters

Patient’s data is stored in the database after successful
authentication of the patient—else the transaction is
reverted and function reports FAILED transaction.

monitorPatient() patientID, doctorID

Patient’s data is retrieved and from the database after
successful authentication of the doctor—else the
transaction is reverted and function reports FAILED
transaction.

prescribeMedicines() patientID, doctorID,
prescription

Prescription is stored in the database after successful
authentication process—else the transaction is reverted
and function reports FAILED transaction.

getPrescription() patientID, pharmacyID

Retrieves prescription of the patient from the database
after successful authentication of the pharmacy—else the
transaction is reverted and function reports FAILED
transaction.

getPatientRecord() patientID, insurerID

Patient’s records are retrieved from the database after
successful authentication of the insurance
company—else the transaction is reverted and function
reports FAILED transaction.

The APIs to interact with smart contracts are written using Python. Peer connectivity between
the heterogeneous nodes (miner and IoT devices) poses a challenge in the system design. The enode
information about a particular node can be used to add peers to the miners. Algorithms 1–5 for various
operations performed by the user are given below.

Algorithm 1: Storing patient body vital parameters in the database

Input: patientID, patient_body_parameters
Output: Body parameters are stored in the database and Transaction is recorded.
pragma solidity ˆ0.5.12;
mapping(address => bool) authorizedPatients;

if( isPatientAuthorized(patientID))
store the patient body parameters in corresponding patient’s record;
transaction is recorded in the blockchain;
store the transaction hash and block number in the patient record;

}
else

Revert the transaction;
function public isPatientAuthorized(address patientID) public view return (bool approved)

{
return authorizedPatients[patientID];

}
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Algorithm 2: Monitoring patient body vital parameters

Input: patientID, doctorID
Output: patient_body_parameters
pragma solidity ˆ0.5.12;
mapping(address => address) authorizedDoctor;

if( isDoctorAuthorized(patientID))
{

Read the patient body parameters;
transaction is recorded in the blockchain;

}
else
Revert the transaction;
function public isDoctorAuthorized(address patientID) public view return (bool display)
{

if(msg.sender == authorizedDoctor(patientID))
return true;

else
return false;

}

Algorithm 3: Update patient prescription

Input: patientID, doctorID, prescription
Output: Patient record update with new prescription
pragma solidity ˆ0.5.12;

mapping(address => address) authorizedDoctor;
if( isDoctorAuthorized(patientID))
{

Update the prescription in the corresponding patient’s record;
transaction is recorded in the blockchain;

}
else

Revert the transaction;
function public isDoctorAuthorized(address patientID) public view return (bool display)
{

if(msg.sender == authorizedDoctor(patientID))
return true;

else
return false;

}
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Algorithm 4: Accessing patient’s prescription

Input: patientID, pharmaID,
Output: Prescription of the patient
pragma solidity ˆ0.5.12;

mapping(address => address) authorizedPharma;
if( isPharmacyAuthorized(patientID))
{

Get prescription of the patient from the database
transaction is recorded in the blockchain;

}
else

Revert the transaction;
function public isPharmacyAuthorized(address patientID) public view return (bool display)

{
if(msg.sender == authorizedPharma(patientID))

return true;
else

return false;
}

Algorithm 5: Accessing patient’s medical records by the insurer

Input: patientID, insurerID,
Output: Records of the patient
pragma solidity ˆ0.5.12;

mapping(address => address) authorizedInsurer;
if( isInsurerAuthorized(patientID))
{

Get patient’s record from the database;
transaction is recorded in the blockchain;

}
else

Revert the transaction;
function public isInsurerAuthorized(address patientID) public view return (bool display)
{

if(msg.sender == authorizedInsurer(patientID))
return true;

else
return false;

}

4.1.3. Hardware

In this use case, we have devised two medical IoT devices, one using Raspberry Pi 3 Model B [51]
and the other using Raspberry Pi 3 Model B+ [52], to collect body vital parameters from the patient’s
body and to store in the off-chain database after proper authentication. Application frameworks such
as [53] also used Raspberry Pi based mini computers to successfully evaluate the performance of IoT
based logistics test bed. The MAX30100 Pulse Oximeter sensor and MAX30205 body temperature
sensor and Pmod TMP3 temperature sensor from Digilent Inc. are used to measure heart rate, body
temperature, and room temperature, respectively. Both of the devices are loaded with the necessary
libraries and packages to accomplish the job of a blockchain node and carry out the transactions with
other nodes in the network.
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The hardware setup is shown in Figure 7. The system contains one miner (Figure 7(a)), which
is a high end computing system running on an Intel Core i7 8th Generation processor, 2.2 GHz clock
frequency, 24 GB RAM, and 1 TB secondary storage. The operating system used is Ubuntu 18.04. The
two IoT devices using Raspberry Pi boards are shown in Figure 7b,c.Sensors 2020, 20, x FOR PEER REVIEW 16 of 21 
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IoT Device-2 (Raspberry Pi 3 Model B).

4.2. Analysis

In the proposed model, each user is assigned with a restricted level of privileges. Access to the
database is provided only to the authorized users. The framework provides a two-tier security for the
resource access with a blockchain self-security mechanism at the first stage and smart contract based
access control at the second stage.

Table 6 lists the average time taken by different processes in the proposed model. Various
parameters related to the blockchain process are detailed below.
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Table 6. Average time taken by different processes in the system.

Process Time

SHA-3 256 193 µS on Raspberry Pi 3 B
191 µS on Raspberry Pi 3 B+

Block time 11.21 Seconds
Migration and deployment of smart contract 9.14 Seconds

Transaction confirmation time 1.7 Seconds
Total deployment cost 0.00179117 ETH

• Transaction Confirmation time: A node in the chain is expected to validate each transaction
of every block. Hence, transaction validation is one of the major tasks in the blockchain. The
computational power of the system has an unswerving effect on the transaction confirmation time.
The average transaction confirmation time of the system is 1.7 seconds.

• Block Time: The block time is defined as the amount of time it takes for the miner to generate a
new block. In Ethereum, the block time is between 10–20 seconds. In the proposed use case, it is
11.21 seconds.

• Migration and Deployment Time: It is the amount of time taken by the smart contract testing
framework (Truffle in this case) to compile the smart contract and push it on to the Ethereum
network. It took 9.14 seconds to deploy the smart contract in this use case.

• Deployment Cost: It is the fee paid by the user to push the smart contract application on the
Ethereum blockchain. The deployment cost in the proposed model is 0.00179117 ETH.

Figure 8 demonstrates the result of storage of the body vital parameters in the database after
successful authentication. SHA-3 256 has been used to store the transactional hashes inside the blocks.
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The proposed framework is compared with the relative works in the same domain, and the
comparative analysis is summarized in Table 7.
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Table 7. Comparative analysis of proposed framework with related works.

Method Blockchain
Platform Authentication Access

Control Authorization Scalability Smart
Contract

Off-Chain
Storage

[54] Bitcoin X X X X × ×

[55] Multi
Platform X X X × × ×

[56] Hyperledger
Fabric X X X × X ×

[57] Ethereum X X X × × ×

[58] Multi
Platform X X X X × ×

Proposed
Method Ethereum X X X X X X

4.2.1. Discussion

The proposed model is successfully implemented over an Ethereum based permissioned
blockchain. It is evident that, even though the integration of IoT devices with blockchain is complex,
the in-built features such as transaction validations by all the peers and immutability of the transactions
inside the blocks make this option a better choice for securing the IoT applications. Any alteration or
device compromise can be easily identified by the other nodes in the network. This framework also
offers a better security solution for IoT devices compared to the traditional security services offered by
PKI systems. The two key challenges, namely confidentiality and scalability, are addressed with the
off-chain solution. The advantages derived by the IoT applications from this integration process are
discussed below:

• Scalability: Scalability is defined as the ability of an information system to maintain its equilibrium
state with increased storage volume. Scalability is a key issue in the integration of blockchain
and IoT as IoT devices are growing rapidly and their applications, in general, generate huge
volumes of data. In [50,54], the scalability is achieved at the cost of increased complexity due
to the clustering of nodes, and lifetime management of these clusters. In addition, the method
described in [54] requires each node to store at least one local blockchain at any instance of time
and hence it is not suitable for memory-constrained IoT devices. Furthermore, with off-chain
data storage mechanisms, only associated data are stored in blockchain, and sensitive data are
stored in the off-chain database. This reduces the transaction data size and increases the number
of transactions that can be accommodated within the block. Hence, throughput and scalability of
the overall system are enhanced.

• Confidentiality: As the proposed model uses permissioned blockchain, only authorized users are
allowed to access the blockchain network. Since only authorized users can access on-chain as well
as off-chain data, the confidentiality of the data is preserved.

• Access control and tamper-proof: Role-based access to the database is enabled by the smart
contract that is deployed on the blockchain platform. The tamperproof nature of the blockchain
makes it even more difficult for someone to modify the transaction data on chain.

The novelty of the proposed framework is derived from the fact that it creates an ecosystem
wherein traditional IoT devices having insecure data transfer, storage constraints, and insufficient
privacy mechanisms can function seamlessly in a decentralized distributed and trustworthy system.
The off-chain mechanism allows a means to relocate the storage and computational processes without
compromising the inherent features of the blockchain technology. This feature is especially useful to
combat the expensive storage and processing charges when this permissioned chain is connected to
the Ethereum main chain.
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5. Conclusions

The growth rate of IoT devices is tremendous, and there is always a need for the development of
improved and efficient protocols to meet the required standards in terms of data privacy and security
in IoT networks. Limitations such as scalability, latency, and packet loss are the major hurdles in the
conventional IoT security protocols. A framework that uses integration of IoT and blockchain has been
proposed in this paper to address these issues. With this integration model, the IoT applications can
now use the inherent features of blockchain such as immutable record keeping as well as end-to-end
traceability. A proof of concept has been developed based on the healthcare system for evaluating
the performance of this framework. The system has been implemented on a permissioned Ethereum
blockchain platform which supports smart contracts. Four different users with different privilege
levels of access have been considered. The performance of this system is compared with similar
models in terms of access control, scalability, and confidentiality to highlight the significance of
the proposed model. This framework serves as a single-point solution for all the security needs
of resource-constrained IoT networks. The framework provides a cost effective solution for many
real-time applications where security is pivotal. More matured and value-added solutions can be built
over the blockchain to further enhance the scalability and security of IoT applications in the future.
This work can be further broadened to encompass social network applications so as to make blockchain
inclusive in order to derive the benefits of both the applications resulting in secure social platforms.
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