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Colorectal cancer (CRC) is one of the most common gastrointestinal tumors and the second leading cause of cancer death
worldwide. Since traditional biopsies are invasive and do not reflect tumor heterogeneity or monitor the dynamic progression of
tumors, there is an urgent need for new noninvasive methods that can supplement and improve the current management
strategies of CRC. Blood-based liquid biopsies are a promising noninvasive biomarker that can detect disease early, assist in
staging, monitor treatment responses, and predict relapse and metastasis. Over time, an increasing number of experiments have
indicated the clinical utility of liquid biopsies in CRC. In this review, we mainly focus on the development of circulating tumor
cells and circulating tumor DNA as key components of liquid biopsies in CRC and introduce the potential of exosomal
microRNAs as emerging liquid biopsy markers in clinical application for CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most common gastro-
intestinal tumors and the second leading cause of cancer
death worldwide [1]. It is estimated that more than 1.8 mil-
lion new CRC cases and 881,000 deaths occurred worldwide
in 2018 [1]. In China, the incidence and mortality of CRC
have increased in the past decade, as a result of the insidious
nature of CRC, late diagnosis, and limited treatment options.
Currently, the management of CRC relies primarily on
serum biomarker levels, tissue biopsy, and imaging findings.
However, the diagnostic accuracy and sensitivity of patholog-
ical and imaging methods are still limited, while the specific-
ity and diagnostic performance of common serum markers
are poor. Therefore, finding a powerful method to manage
CRC in the long-term is crucial.

In the past few years, a new diagnostic concept, liquid
biopsy, has received widespread attention [2–4]. Liquid
biopsy is a general term originally introduced in the analysis
of circulating tumor cells (CTCs) [5] that now widely refers
to the analysis of various biological fluids isolated from can-

cer patients, such as peripheral blood, urine, pleural effusion,
ascites, and cerebrospinal fluid [6, 7]. However, peripheral
blood remains the main source of fluid biopsy, and its
analytes mainly include CTCs, circulating tumor DNA
(ctDNA), circulating tumor RNA (ctRNA), and exosomes
(Figure 1) [8]. Analysis of these blood components can
be used for early cancer detection, auxiliary staging, progno-
sis assessment, and monitoring drug resistance and minimal
residual disease (MRD) [9], highlighting the potential of liq-
uid biopsies (Figure 2).

The molecular pathogenesis of CRC is extremely com-
plex and heterogeneous. At present, the pathological features
of CRC depend on biopsy or surgical specimens. However,
due to its invasive nature, biopsies cannot always be per-
formed routinely. The information obtained from a single
biopsy provides only a limited snapshot of the tumor and
fails to reflect heterogeneity. To some extent, liquid biopsies
can compensate for the lack of traditional detection, track
the evolutionary dynamics and heterogeneity of the tumor
in real time, and provide a genetic overview of tumor lesions
and dynamic information on genome evolution [10]. In addi-
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tion, the analysis of therapeutic targets and drug-resistant
gene mutations released into the circulation by CTCs and
ctDNA could help to better elucidate and clinically manage
drug resistance in cancer patients. To date, CTCs and

ctDNA, as important components of liquid biopsies, have
made good progress in the diagnosis, prognosis, and treat-
ment of CRC. Exosomal microRNAs (miRNAs) are also con-
sidered to have great potential in the management of CRC as
emerging biomarkers for liquid biopsies. In this review, we
will outline the current state of liquid biopsy and its role in
CRC management.

2. Circulating Tumor Cells

2.1. Origin. CTCs are tumor cells from the primary tumor
or metastases that enter into the blood circulation [11, 12].
A number of CTCs could escape the body’s immune rec-
ognition and drug treatment, find a suitable microenviron-
ment in the body, and form a “seed” to grow in the distal
tissue or primary tissue, causing tumor metastasis or
recurrence [13].

The discovery of CTCs in the blood can be traced back to
1869 by Thomas Ashworth, an Austrian physicist, who found
that patients with metastatic tumors may have some cells in
the bloodstream that are homologous to the original tumor
tissue. Limited by the testing methods available at the time,
the discovery did not attract much attention [14]. In 1955,
another report demonstrated the presence of CTCs in circu-
lating blood [15]. Although their discovery was more than a
century ago, CTCs have not entered clinical practice, mainly
because the challenge of isolating these extremely rare cells
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Figure 1: Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and exosomes are promising
liquid biopsy markers for colorectal cancer. CTCs from colorectal cancer can be shed from the primary tumor into the bloodstream, which
also contains ctDNA released from tumor tissue through apoptosis, necrosis, and secretion, as well as circulating normal DNA released from
healthy tissue. MicroRNAs (miRNAs) encapsulated by exosomes can be actively secreted into the extracellular fluid by various types of cells in
the tumor or passively released due to the apoptosis and necrosis of tumor cells and can eventually be found in the circulation.
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Figure 2: The multifaceted qualities of liquid biopsies demonstrate
its potential clinical applications in the management of colorectal
cancer.
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from peripheral blood prevents the understanding of their
clinical significance.

2.2. Enrichment of CTCs. The number of CTCs detected in
the peripheral blood is extremely small, with approximately
1 CTC in 107 white blood cells, so the accurate detection of
CTCs is crucial [12]. In principle, there are various methods
for detecting CTCs on the basis of biological or physical
properties [16, 17].

Biotechnology mainly refers to immunomagnetic separa-
tion. Immunomagnetic separation technology combines cell
surface-based antigens with magnetic beads attached to spe-
cific antibodies and enriches cells under the action of an
external magnetic field [18]. The cell search system uses mag-
netic beads to bind specific antigens to separate epithelial
cells in the blood, and its main principle is to separate CTCs
by screening CK+, DAPI+, and CD45- cells [19]. The system
is the only CTC detector that has been approved by the US
Food and Drug Administration (FDA) for clinical studies
in patients with breast, colorectal, and prostate cancer [20–
23]. In the study of metastatic CRC (mCRC) using the cell
search system, the progression-free survival (PFS) and over-
all survival (OS) times of patients with ≥3 CTCs/7.5mL
blood were shorter than those of patients with <3 CTCs
(P < 0:0001), suggesting that the number of CTCs was an
independent predictor of PFS and OS in patients with mCRC
[24]. Nevertheless, due to the possibility of epithelial-
mesenchymal transition in tumor cells and the lack of widely
and commonly expressed markers on the cell surface of
nonepithelial solid tumor cells, this method still has technical
bottlenecks, coupled with its high price, which make it not
routinely used in CTC detection [25].

CTCs are separated by density, size, and deformability
according to the physical characteristics of CTC enrichment
technology [25]. CTCs separated by density gradient centri-
fugation, membrane filtration separation, microfluid detec-
tion, and other physical methods will not damage the
structure of the cells, and the separated cells can continue
to be used in immunohistochemistry or immunofluores-
cence assays and other related studies [26–28]. However,
these methods have poor specificity, low sensitivity, and
poor stability, making obtaining tumor cells with small
sizes and spontaneous and pressurized changes in shape
difficult, leading to a false-positive rate due to the capture
of blood cells [16].

To solve the shortcomings of the above methods, several
new detection methods have been developed in recent years.
In April 2017, at the annual meeting of the American Associ-
ation for Cancer Research (AACR), the method of diagnostic
leukapheresis was introduced to separate CTCs [29], which is
not only of high quantity but also of high quality and can be
used for subsequent diagnostic analyses [30]. Recently, the
Hydro-Seq technology developed by Cheng et al. [31] can
accurately separate CTCs from patients’ blood samples with
ultrahigh purity without the contamination of white blood
cells and red blood cells, and the comprehensive analysis of
CTCs can be conducted with high throughput and without
contamination, which can effectively provide treatment plans
for patients in clinical practice.

3. Circulating Tumor DNA

3.1. Origin. ctDNA is a kind of double-stranded DNA frag-
ment derived from tumor cells, ranging in size from 0.18 to
21 kb. It is mainly found in bloodstream, synovial fluid,
cerebrospinal fluid, and saliva and can be excreted through
urine and feces, with extremely small content [32–34]. The
presence of ctDNA could date back to early studies of cir-
culating free DNA (cfDNA). In 1948, Mandel and Metais
first reported the presence of circulating nucleic acids in
cells in human blood [35]. cfDNA is considered to originate
mainly from necrotic or apoptotic cells [36]. Thirty years
later, Leon et al. found that the level of cfDNA in the serum
of individuals with cancer was higher than that of the
healthy control group, and it had the genomic characteris-
tics of tumor cells [37]. Cell turnover generally increased
as tumor size increased. As a result, cancer patients have
much higher levels of cfDNA than healthy people. In other
physiological conditions or clinical cases, the concentration
of cfDNA also increases, such as exercise [38], infection
[39], cerebral infarction [40], acute trauma [41], and trans-
plantation [42]. Afterwards, in 1989, it became clear that
cfDNA is partly derived from tumors [43]. ctDNA is a frac-
tion of cfDNA that is released from tumor cells into the
blood, and in principle, it carries the same specific muta-
tions as the corresponding cancer cells, such as tumor
proto-oncogenes and oncogene mutations, microsatellite
alterations, and DNA methylation [44].

3.2. Detection of ctDNA. The extraction efficiency of ctDNA
is not satisfactory due to its small fragment size, low content,
and easy combination with plasma protein. To overcome
these limitations, developing sensitive and repeatable methods
to identify ctDNA is crucial.

The common ctDNA detection technology is based on
two major platforms, one of which is PCR. The qPCR-
based methods are widely used to detect gene mutations in
cfDNA; however, the sensitivity is not up to 0.1%. Recently,
improved qPCR-based methods have become feasible. For
example, allele-specific qPCR has been devised to detect hot-
spot mutations in plasma and serum of cancer patients with a
sensitivity between 0.014% and 0.004% [45]. In parallel,
dPCR was found to have higher sensitivity to identify geno-
mic changes. In 1999, Vogelstein et al. [46] introduced the
dPCR method, which makes it possible to accurately identify
and quantify rare mutant fragments and is widely used to
quantitatively determine ctDNA levels [47–50]. For example,
picodroplet-based dPCR has been reported to accurately
detect one mutant KRAS gene in more than 200,000 wild-
type KRAS genes [51]. However, the ability of dPCR to per-
form dynamic analysis of a single mutation is based on prior
knowledge of the mutant allele [52].

Next-generation sequencing- (NGS-) based technologies
are a massively parallel sequencing technique that can ana-
lyze larger targets. It can not only detect known genes but
also analyze large parts of the genome unknowingly and
identify multiple mutations with greater sensitivity [53, 54].
Due to the fast speed and high throughput of NGS and the
small amount of DNA samples required, it has been
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increasingly applied in the clinical field of cancer, such as
gene panel sequencing, whole-exome sequencing, and
whole-genome sequencing [55–59]. Murtaza et al. showed
that cfDNA sequencing from serial plasma samples can be
used to characterize the evolutionary genomic map of entire
exon mutations [60]. Whole-genome sequencing of cfDNA
released from tumor cells into blood has been demonstrated
to recognize tumor mutations, such as focal amplification
[61], gene rearrangement [62], and chromosomal aberrations
[63]. Advances in NGS technology have expanded the ability
to detect cancer mutations in blood and enriched the clinical
application of ctDNA-based liquid biopsies. Compared to
dPCR, the ability to analyze larger target regions is also at
the expense of lower sensitivities to detect rare mutations
within 0.1% of the mutated DNA fragment or slightly less
than 0.1% [64].

In light of the advantages and disadvantages of both
dPCR and NGS, they can complement each other in practical
clinical applications.

4. Clinical Application of CTCs and
ctDNA in CRC

As promising biomarkers, CTCs and ctDNA have great
appeal to researchers who attempt to detect tumor-specific
changes in cancer progression in real time and show their
potential for early detection, auxiliary staging, prognostic
assessment, and monitoring of the drug resistance and
MRD in CRC (see Tables 1 and 2).

4.1. CTCs and ctDNA for CRC Screening. The onset of CRC is
insidious, and more than 80% of patients are already in the
middle and late stages when they are diagnosed, even with
liver and lung metastasis. Moreover, the 5-year survival rate
of patients with advanced CRC is still low, so the early detec-
tion of tumors based on blood markers provides benefits for
improving the survival rate of CRC patients.

There are few studies on CTC detection for the screening
of CRC. In a recent prospective study, CTCs were tested and

Table 1: Application value of CTCs in CRC.

Reference Biomarkers Methods Potential clinical utility

[66] CD45 scrm PCR Screening and early detection

[76, 85, 87] EpCAM CellSearch™ Prognostic

[83] CD45 Cyttel Predictive and prognostic

[89] CK-19, EpCAM CK19-Epispot and CellSearch™ Prognostic

[103] EpCAM, APC, KRAS, PIK3CA NGS, CGH, CellSearch™ Therapy and relapse monitoring

[105] KRAS PNA-based qPCR Therapy monitoring

[114] LGR5, EMT CanPatrol™, mRNA ISH Prognostic

[115] CK20 CMx platform Monitoring early recurrence

[116, 117] EpCAM CellSearch™ Predictive and prognostic

Abbreviations: scrm PCR: single-cell RNA and mutational analysis PCR; NGS: next-generation sequencing; CGH: array-comparative genomic hybridization;
PNA-based qPCR: peptide nucleic acid-based real-time PCR; mRNA ISH: mRNA in situ hybridization.

Table 2: Application value of ctDNA in CRC.

Reference Biomarkers Methods Potential clinical utility

[67, 68] Methylated SEPT9 qPCR Screening

[78] TP53, PIK3CA, APC, EGFR Targeted sequencing Early diagnosis and auxiliary staging of CRC

[79] KRAS 454 pyrosequencing, BEAMing Therapy selection and monitoring

[92] SSVs ddPCR Prognostic and monitoring

[94] A panel of 15 genes Safe-Seqs Prognostic

[96] KRAS, PIK3CA, BRAF BEAMing Prognostic

[97] KRAS dPCR Prognostic and monitoring drug resistance

[98] Mutation patterns and VAFs NGS Tumor burden monitoring

[99] KRAS, NRAS Bidirectional Sanger sequencing Therapy selection and monitoring

[101] KRAS ddPCR Monitoring drug resistance

[102] KRAS BEAMing, ddPCR, NGS Therapy selection and monitoring

[107] SSVs, SPMs ddPCR Detecting MRD and predicting recurrence

[109] TP53, APC, KRAS Safe-Seqs Detecting MRD and predicting recurrence

[113] Methylated BCAT1 and IKZF1 Triplex real-time qPCR Detecting MRD and therapy selection

Abbreviations: qPCR: real-time PCR; SSVs: somatic structural variants; ddPCR: droplet digital PCR; Safe-Seqs: Safe-Sequencing system; dPCR: digital PCR;
NGS: next-generation sequencing; VAFs: variant allele frequencies; SPMs: somatic point mutations; MRD: minimal residual disease.
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counted in 620 patients (including healthy individuals, stage
I-IV CRC patients, and precancerous lesions), and the data
showed that the overall accuracy of CTC detection for all
colorectal disease stages, including precancerous lesions,
was 88% [65]. In addition, the isolation and count of circulat-
ing endothelial cell clusters derived from tumors in CRCmay
provide a new perspective for distinguishing patients with
early-stage colon cancer from healthy individuals [66].

One of the early events of carcinogenesis is epigenetic
changes, including DNA methylation and histone modifica-
tions. ctDNA also reflects the epigenetic characteristics of
cancer patients and helps in the early diagnosis of cancer by
detecting epigenetic changes [67]. Clinical data indicate that
circulating SEPT9 DNA as a methylation marker is as sensi-
tive as 87% in detecting stage I CRC, 84% in detecting stage II
CRC, and 90% in overall CRC [68]. Two recent studies have
shown that tumor-specific methylation changes can be
detected in plasma two years before tumor diagnosis [69,
70]. Further research by Guo et al. showed that ctDNA
methylation changes in plasma could not only be applied
in the screening of tumors but also reveal the tissue source
of tumors [71].

As outlined above, the detection of CTCs and ctDNA
is challenging in early colon cancer screening, but more
prospective experiments will validate the utility of these
blood-based noninvasive procedures in a patient’s physical
examination.

4.2. CTCs and ctDNA Detection for the Auxiliary Staging
of CRC. Tumor cells in the circulation have the ability to
proliferate or migrate, thereby providing a reliable means
for neoplasm staging [72]. Several studies have shown that
counting CTCs reflects the patient’s tumor burden to
some extent and that in advanced CRC, the detection rate
of CTCs increased with the increase in tumor stage [73].
Further investigations on the tumor TNM staging system
revealed that the number of CTCs detectable was posi-
tively correlated with primary tumor size and depth of
invasion, lymph node invasion, and distant metastasis,
suggesting that CTCs are feasible for judging lymph node
infiltration and distant metastasis [74–76].

Quantifying ctDNA levels is closely related to cancer
stage and tumor burden [77]. In a recent study that analyzed
ctDNA in patients with CRC at different stages, Dr. Yang
et al. clarified that the ctDNA concentration in stage I
patients was significantly lower than that in stage IV patients
and that the ctDNA concentration was positively correlated
with tumor size [78]. The observations and evaluations
made during a study on the ctDNA analysis of patients
receiving cetuximab suggested that the KRAS mutations in
plasma detected by ctDNA were not detected by the radio-
logical method until 10 months later [79]. These results sup-
port the idea that ctDNA detection can complement the
traditional cancer screening methods and provide a basis
for cancer staging, depending on the specificity and sensitiv-
ity of its diagnosis.

CTCs and ctDNA detection, as the link between tumor
metastasis and the primary tumor, can reflect cancer pro-
gression in real time and have a reference value for neo-

plasm staging. Some scholars have suggested integrating
the blood-based liquid biopsy into the existing TNM stag-
ing system and proposed the new concept of “TNMB,”
where “B” refers to blood, to enhance the existing TNM
staging system for the diagnosis and classification of con-
ventional cancers [80].

4.3. CTCs and ctDNA as Prognostic Markers in CRC. Cur-
rent research has confirmed that CTCs detected in blood
can be used as an independent prognostic factor for tumors
such as prostate cancer [81], breast cancer [82], and colon
cancer [83, 84]. The higher the number of CTCs detected,
the worse the prognosis of patients. PFS and the median
OS are significantly shortened in patients with ≥3
CTCs/7.5mL of mCRC [20]. In a study of 183 patients with
CRC, blood samples were collected at various time points
before and during the follow-up. From the data collected
during the study, the authors concluded that preoperative
CTC was associated with a significant reduction in patient
survival and was able to identify patients at high risk of
recurrence [85]. Many studies have also shown the value
of the positive detection CTCs for poor prognosis in CRC
patients [86, 87]. Interestingly, a prospective study in
2015 came to a completely different conclusion from the
findings above [88]. In this study, peripheral blood samples
from 519 patients with stage III CRC after tumor resection
were examined for CTCs, and no clear correlation was
found between the presence of CTCs and the survival of
CRC patients. This controversial result is probably due to
the different metastatic modes of CRC and the low level
of CTCs detected, which may require longer follow-up for
verification. In addition to increasing the amount of blood
samples to increase the amount of CTCs detected, the study
can also be improved by replacing peripheral blood with
mesenteric venous blood. Deneve and his colleagues dem-
onstrated that more CTCs were detected in mesenteric
blood than peripheral blood, and the follow-up analysis
showed that patients with high CTC counts had a poor
prognosis [89].

The level of ctDNA can indicate its prognostic value [90].
Recent studies have found that monitoring ctDNA levels in
CRC patients can show disease recurrence and response to
treatment earlier than traditional tumor markers or radio-
logic diagnosis [91, 92]. In a retrospective study of 97 mCRC
patients, higher levels of cfDNA mutations detected were
linked with significantly worse OS and higher mutation loads
[93]. Dr. El et al. reported that a high cfDNA level could be an
independent prognostic factor for shorter OS [93]. Another
study of 96 patients with stage III colon cancer showed that
ctDNA was detected in postoperative blood samples from
20 patients, while ctDNA remained after adjuvant chemo-
therapy in 17 patients. In all 96 patients with stage III colon
cancer, patients with detectable ctDNA levels differed signif-
icantly from those without ctDNA in terms of recurrence-
free survival [94]. A systematic review including 10 studies
found that high ctDNA levels before treatment are related
to shorter survival in mCRC patients [95]. Moreover, KRAS
mutations detected in fresh plasma have been reported as
an indicator of poor prognosis in CRC patients [96].
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4.4. CTCs and ctDNA for Monitoring Drug Resistance and
Guiding Medication. The RAS gene needs to be detected in
patients with CRC to determine the follow-up treatment
plan. Compared with gene detection in tissue, ctDNA has a
very obvious advantage in guiding targeted drugs. ctDNA
detection is a noninvasive method that can overcome tumor
heterogeneity, and it has high sensitivity and specificity. Bet-
tegowda et al. [97] used peripheral blood ctDNA to detect
mutations of the KRAS gene in 206 colon cancer patients
and found that the sensitivity reached 87.2% and the specific-
ity was as high as 99.2%. Other studies have shown that the
later the tumor stage is, the higher the detection rate of
ctDNA, and the sensitivity of patients in stage IV was close
to 100% [98].

Currently, anti-EGFR therapy is now approved for
wild-type RAS colorectal tumors [99]. In addition, BRAF
mutations are generally considered to be another biomarker
for the resistance to cetuximab and panitumumab single
antigen [100]. Together, KRAS and BRAF are considered
effective predictors of anti-EGFR therapy. In past studies,
there was an inconsistency in the detected gene mutations
between blood and tissues. When the tissue was detected
as wild-type KRAS, the peripheral blood was detected as
mutant-type KRAS. ctDNA analysis in vivo and in vitro
assays have shown that by blocking the EGFR pathway,
KRAS and NRAS mutations will occur rapidly, and muta-
tions can usually be detected before imaging confirms
tumor recurrence [101]. ctDNA has been observed to
change in patients receiving panitumumab or cetuximab
for the treatment of mCRC; blocking the EGFR pathway
leads to the production of KRAS mutant clones, and the
clones gradually decreased after stopping the drug. After a
period of time, tumor cells were able to restore drug sensi-
tivity again, suggesting that clonal evolution persisted, and
ctDNA can be used to dynamically monitor KRAS muta-
tion levels, providing a basis for reapplication of anti-
EGFR drugs [102].

In addition, CTCs isolated and enriched in CRC
patients have been reported to also detect the presence of
KRAS and BRAF hotspots [103]. In a study of 44 early-
stage and late-stage CRC patients and 18 healthy individ-
uals, CTCs were isolated from the blood through micro-
sieve filtration to screen KRAS and BRAF mutations in
CRC patients. The results suggested that tumor tissue and
CTCs had 70% identity in the KRAS mutation state, while
the BRAF mutation was less consistent [104]. Kalikaki
et al. evaluated KRAS mutations in continuous plasma sam-
ples from 31 mCRC patients and found that the CTCs of
individual patients exhibited different KRAS mutation
states during treatment [105]. Encouragingly, a recent
innovative experiment showed the potential of CTCs to
predict drug resistance [106]. The study first detected gene
copy number aberrations in 88 CTC cells isolated from 13
small cell lung cancer patients and generated a classifier
based on the copy number aberrations in CTCs. The clas-
sifier was then tested on 6 patient-derived CTC explant
tumors and 112 CTC samples from 18 additional patients,
and the classifier accuracy was found to be 83.3%. More-
over, significant differences were observed in PFS among

patients classified by chemotherapy resistance. Thus, a
molecular diagnostic method based on CTCs has been
developed to determine whether a patient is sensitive or
tolerant to chemotherapy.

In summary, ctDNA and CTCs, with their characteristics
of easy access and overcoming the spatial heterogeneity of
tumors, can be used to vertically detect the mutation status
of tumor patients and tailor individualized treatment accord-
ing to the molecular characteristics of patients’ tumors, thus
showing a promising application prospect in guiding the tar-
geted treatment of CRC.

4.5. CTCs and ctDNA as Monitoring Tools for MRD. At
present, conventional surveillance modalities of patients
with stage II and III CRC after therapeutic surgery attempt
to detect MRD in real time. However, the sensitivity of
serum carcinoembryonic antigen tests and tomographic
scans to the detection of micrometastatic disease is not
high, and computed tomography (CT) scans carry the risk
of frequent exposure to contrast agents and radiation, so
identifying MRD in real time is difficult. Some studies
have shown that ctDNA has a short half-life of approxi-
mately two hours, which can reflect the tumor status in
real time and potentially detect the presence of MRD prior
to radiological diagnosis [107, 108].

In a prospective study involving 230 patients with stage
II colon cancer who underwent therapeutic surgery, the role
of ctDNA in detecting MRD was confirmed [109]. Among
patients not treated with chemotherapy, radiological recur-
rence was detected during follow-up in only 9.8% of
patients who were ctDNA-negative postoperatively, while
78% of ctDNA-positive patients relapsed after surgery.
The presence of ctDNA in other chemotherapy-treated
patients was also associated with poor recurrence-free sur-
vival. More recently, serial plasma samples from patients
with locally advanced rectal cancer during multimodality
treatment have been used to provide evidence that the pres-
ence of ctDNA after chemoradiotherapy or after surgery
shows a significant reduction in recurrence-free survival
[110]. A number of researchers have also reported the role
of ctDNA in predicting recurrence, and CRC patients with
positive postoperative ctDNA have a higher risk of MRD,
while negative postoperative ctDNA may provide assurance
of disease control [111–113].

CTC levels appear to be connected with poor postoper-
ative survival and disease recurrence in CRC patients [114–
116]. In a recent prospective study of 44 patients with CRC
with liver metastasis, patients with CTC-positive detected
preoperatively had all recurred during the postoperative
follow-up, and recurrence occurred in 65% of patients
who were CTC-negative [117]. Moreover, CTC assays are
expected to supplement imaging methods for the diagnosis
of disease recurrence. Another significant study of 84 colon
cancer patients undergoing chemotherapy showed that
changes in the number of CTCs reflected the objective effi-
cacy of the tumor at an early stage, with a sensitivity of
64%, specificity of 70%, and positive predictive value of
74%. Therefore, CTCs have the potential to detect MRD
earlier than imaging responses [118].

6 BioMed Research International



5. Emerging Liquid Biopsy Markers

Although the application of liquid biopsy in oncology has
emerged and developed at an incredible speed, the informa-
tion extracted from ctDNA and CTCs still cannot fully
meet the requirements of tumor management, so expand-
ing the range of analytes examined is expected to help
liquid biopsy reach its potential in clinical application. Bio-
markers such as ctRNA and platelets while patients are
undergoing tumor therapy are also candidates for fluid
biopsy [119–125], while exosomal miRNAs may have the
potential to make more contributions to the development
of this field in the near future.

Exosomes are extracellular vesicles with a diameter of
30-100 nm secreted from various cells under normal physi-
ological and pathological conditions [126]. Exosomes
contain a variety of molecules, including proteins, lipids,
and nucleic acids (such as DNA, mRNAs, miRNAs, and
lncRNAs), the contents of which reflect the physiological
or pathological conditions of the host cells [127]. The bio-
logical function of cancer-derived exosomal miRNAs in
the genetic transfer between cancer cells has been gradually
confirmed and has become a hot spot in cancer research
[128, 129]. An increasing number of exosomal miRNAs
have been found to play an important role in the diagnosis
and treatment of CRC, as shown in Table 3.

Growing evidence suggests that exosomal miRNAs are
potent mediators of cell communication, supporting the
progression and metastasis of CRC [130–133]. Circulating
exosomal miR-25-3p in CRC has been shown to be involved
in cancer metastasis, inducing vascular permeability and
angiogenesis by targeting KLF2 and KLF4 to regulate the
expression of VEGFR2, ZO-1, occludin, and Claudin-5 in
endothelial cells. Furthermore, the expression level of miR-
25-3p in circulating exosomes was significantly lower in
CRC patients without metastasis than in CRC patients with
metastasis [131]. Similarly, Zhang et al. demonstrated that
exosomal miR-200b can amplify proliferation factors to adja-
cent or distant cells to promote the proliferation of CRC cells
and achieve effective tumor growth [132].

More recently, exosomal miRNA content has emerged as
a potential biomarker of CRC. A study on the analysis of
serum exosomes from 133 CRC patients and 60 healthy indi-
viduals found that the decreased expression of serum exoso-

mal miR-150-5p was closely related to poor differentiation,
positive lymph node metastasis, and TNM progression.
Serum extracellular miR-150-5p has been confirmed as an
independent prognostic indicator of CRC, and the survival
time of patients with a low expression of serum extracellular
miR-150-5p was significantly longer than that of patients
with high expression [134]. Similar results were obtained in
serum, where high levels of exosomal miR-6803-5p have
been shown to be associated with the poor prognosis of
CRC [135]. Another study revealed that, compared with
healthy individuals in the control group, the expression levels
of miR-19a and miR-92a in the serum of patients with CRC
are significantly increased, which is associated with CRC
recurrence [136].

Additionally, the potential of miRNAs to treat CRC resis-
tance is noteworthy. As described by Jin et al. in 2019, the
expression levels of miR-21-5p, miR-1246, miR-1229-5p, and
miR-96-5p in the serum exosomes of the chemosensitive con-
trol group were lower than those of chemosensitive patients,
suggesting that the above miRNAs of exosomes can predict
the chemical resistance of CRC patients and are expected to
be new targets for the treatment of drug resistance [137].

Overall, exosomal miRNAs are a complementary tool for
fluid biopsy in CRC applications and are very attractive. Nev-
ertheless, their use is still hampered by a number of technical
problems that need to be overcome [138]. The low purity of
exosomal miRNAs may be caused by irregular sample collec-
tion, pretreatment, storage and transportation, or differences
in vesicle counting methods. Another key factor that needs to
be taken into consideration is the level of platelet products in
clinical blood samples [139]. Moreover, the tumor specificity
of miRNAs is also a challenge in clinical use. For instance,
some studies [140–143] have shown that miR-10b is involved
in the development of various tumors, including breast can-
cer, pancreatic cancer, and CRC, which reveals that endoge-
nous normalizers may be needed to quantify the expression
of exosomal miRNAs in CRC. Therefore, further studies are
needed to reveal the exact role of exosomal miRNAs in the
clinical application of CRC.

6. Conclusion

In summary, liquid biopsy is a growing noninvasive method.
The term liquid biopsy is used to refer more to CTCs but is

Table 3: Exosomal miRNAs as emerging liquid biopsy markers in CRC.

Exosomal miRNAs Methods Expression change Potential clinical utility Reference

miR-21
Amplification-free assay for electrochemical

detection and qRT-PCR
Upregulation Screening and prognostic [130]

miR-25-3p Microarray analysis and RT-PCR Upregulation Diagnostic and therapeutic [131]

miR-200b Northern blot and qRT-PCR Upregulation Diagnostic and therapeutic [132]

miR-150-5p qRT-PCR Downregulation Prognostic [134]

miR-6803-5p qRT-PCR Upregulation Diagnostic and prognostic [135]

miR-19a, miR-92a Microarray analysis and qRT-PCR Upregulation Prognostic [136]

miR-21-5p, miR-1246,
miR-1229-5p, miR-96-5p

qRT-PCR Upregulation
Monitoring and treatment

of chemoresistance
[137]

Abbreviations: qRT-PCR: quantitative real-time PCR; RT-PCR: reverse transcription PCR.
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now also associated with ctDNA and other biomarkers such
as miRNAs. With the rapid development of liquid biopsy in
oncology research, this method can be used for CRC screen-
ing and early detection and provide more evidence for the
clinical staging of patients diagnosed with CRC. In addition,
it provides prognostic and predictive data that can be used to
monitor MRD and combat drug resistance. Although a large
number of clinical studies of liquid biopsy for CRC have been
carried out and promising preliminary results have been
obtained, the road to the clinic is not free from hurdles.

First, the biological basis of ctDNA remains controver-
sial; apoptosis and necrosis are the most frequently discussed
origins of ctDNA. The release mechanism of ctDNA is not
fully understood at present, and studies suggest that autoph-
agy and intermittent hypoxia may be closely related to the
release of ctDNA [36]. In addition, false-positive results
may occur during the detection phase of liquid biopsy due
to the collection of benign circulating epithelial cells or blood
cells. Therefore, there is an urgent need to establish standard-
ized methods for sample collection, processing, and storage
to eliminate differences between studies.

Liquid biopsy can dynamically monitor the progression
of CRC and provide important information about tumor het-
erogeneity compared to the currently used biomarkers.
Despite these advantages, the transfer of liquid biopsies from
the laboratory to the clinical environment requires more
multicenter, larger-scale, and longer-term studies to demon-
strate its superiority. The clinical usefulness of liquid biopsies
in CRC is expected to reach an accurate and clear consensus
in the near future.
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