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Abstract

Trauma activity recognition aims to detect, recognize, and predict the activities (or tasks) during 

a trauma resuscitation. Previous work has mainly focused on using various sensor data including 

image, RFID, and vital signals to generate the trauma event log. However, spoken language and 

environmental sound, which contain rich communication and contextual information necessary for 

trauma team cooperation, are still largely ignored. In this paper, we propose a multimodal attention 

network (MAN) that uses both verbal transcripts and environmental audio stream as input; the 

model extracts textual and acoustic features using a multi-level multi-head attention module, and 

forms a final shared representation for trauma activity classification. We evaluated the proposed 

architecture on 75 actual trauma resuscitation cases collected from a hospital. We achieved 72.4% 

accuracy with 0.705 F1 score, demonstrating that our proposed architecture is useful and efficient. 

These results also show that using spoken language and environmental audio indeed helps identify 

hard-to-recognize activities, compared to previous approaches. We also provide a detailed analysis 

of the performance and generalization of the proposed multimodal attention network.
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I. INTRODUCTION

Activity recognition in the medical setting is challenging due to workflow complexity, fast 

pace, and environmental interference. The trauma resuscitation provides initial treatment 

of critically injured patients in an emergency, and particularly requires team dynamics and 

collaboration [1]. There is much successful existing work using cameras, passive RFID, 

and medical equipment signals as input to detect and recognize clinical activity or phase 

[2]–[4], but it is rare for human medical speech and environmental sounds to be used as 

input. Compared to other sensor data, speech and environmental sound contain extensive 

team cooperation information that directs the performed tasks. For some specific activities 

such as GCS calculation, the trauma staff mainly relies on speech communication. Ignoring 

this potentially important input source may be making activity recognition more difficult.

In this paper, we propose a deep learning neural network to recognize trauma resuscitation 

activities from verbal communication transcripts and environmental audio streams. 

Specifically, given a sentence-level verbal transcript and the corresponding audio stream 

from the trauma room, the proposed network outputs a trauma activity (shown in Fig.1). 

There are two critical differences between our work and previous approaches: Firstly, 

instead of using cameras [3] and passive RFID [5], [6], we use speech and environmental 

sound for activity prediction, overcoming the difficulty of recognizing speech-reliant 

activities. To the best of our knowledge, this is the first research that introduces an 

architecture using language information and context audio for trauma activity recognition. 

Secondly, other study [7] uses language to identify trauma phases, which are high-level 

states opposed to this papers focus on specific low-level activities. We also consider 

environmental sound and build a multimodal model, which is more generalizable than a 

text-only model; the environmental sound can be seen as a complementary resource for 

the existing models. Our model accomplishes activity recognition in three steps: First, we 

process the audio stream and verbal transcript into spectrograms and text embeddings, 

respectively. Second, the model extracts feature representations from this preprocessed 

data using two multi-layer multi-head attention modules. Finally, we set up an attention-

based fusion module to combine the modality-specific features, selecting representative and 

informative features. We directly connected the first and second step in the model and 

trained the system end-to-end.

We evaluate the proposed architecture on 75 actual trauma room resuscitation cases with 

recorded audio and spoken language transcripts. Both the audio stream and transcripts were 

segmented into sentence-level data; each sample contains one complete text sentence with 

the corresponding audio stream. Trauma experts assigned one of eleven different activity 

labels to each sample. We applied an 80%-20% training testing split and considered the 

cases independently. The results show that the proposed multimodal attention network 

(MAN) achieves 72.4% accuracy with 0.705 F1-score, outperforming baselines with a more 
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parameter-efficient model. The results also demonstrate the helpfulness of using speech and 

environmental sound as input sources for trauma activity recognition. Our contributions are:

• A multimodal architecture that considers spoken language and environmental 

sound to detect and recognize trauma resuscitation activities..

• An end-to-end multimodal attention network that automatically preprocesses the 

raw data, extracts sentence-level acoustic and textual representations, fuses the 

feature vectors into a shared representation, and makes the final prediction.

The paper is organized as follows: Section 2 describes the proposed structure in detail. We 

discuss the data collection and experiments in section 3. We provide the result analysis in 

section 4 and conclude with section 5.

II. METHOD

The multimodal attention network (MAN) consists of three major modules: preprocessing, 

modality-specific feature extraction, and fusion (shown in Fig.2).

A. Preprocessing

The input data includes both sentence-level verbal transcripts and audio stream. For verbal 

transcripts, as suggested in [8], we embed each word into a 200-dimensional GloVe vector 

[9], with unknown words randomly initialized. We allow embedding parameter tuning 

during the training stage, so that medical words sharing similar contexts will be located 

closely in the embedding space. All sentences are zero-padded with the max sentence length 

of 35.

We represent the audio stream as a spectrogram using Mel-frequency spectral coefficients 

(MFSCs). As demonstrated in [10], [11], MFSCs maintain the locality of the audio data and 

provide more detailed information compared to the Mel-frequency cepstrum coefficients. 

Following previous research [10], we use 40 filter banks to extract static from MFSCs. 

Instead of applying delta and double delta coefficients as in [11], [12], we only use the 

static coefficient set due to the better performance of the static set and the hardware resource 

tradeoff. Considering the maximum length of our MFSC feature maps is 600, we zero-pad 

and set up a hierarchical structure for the audio preprocessing. Unlike in [12], where 

attention weights are learned based on overall MFSCs, we believe the critical and relevant 

information in frame-level audio data only appear in the adjacent and nearby frames. It is 

difficult and inefficient to find dependencies between two distant audio frames; hence, we 

segment the MFSC feature maps into several 30-frame submaps. The final shape of each 

audio sample is (30, 40, 30), where the first index represents the number of the sub-maps, 

the second index indicates the energy frequency, and the last is the frame number of each 

sub-map.

B. Attention

Before introducing modality-specific feature extraction and fusion, we briefly describe the 

multi-head attention mechanism widely used in our model.

Gu et al. Page 3

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Attention was first introduced to learn informative word representations in machine 

translation [13]. The function computes a weighted score to indicate the importance of 

each word, and sums the word representations weighted by their scores to form the final 

sentence representation. Multi-head attention [14] consists of several scaled dot-product 

attention layers in parallel to perform multiple attention computations for the input vector. 

Unlike general attention as in [15], multi-head attention applies scaled dot-product attention 

for each head based on the individual query, key, and value. It forms the final attention score 

by concatenating all the heads:

Qi, Ki, V i = xW i
Q, xW i

K, xW i
V

(1)

Headi(Qi, Ki, V i) = softmax(QiKi
T

dk
)V i

(2)

y = Concat(Head1, , Headi, , Headn)W

(3)

Where x is the input vector, and W i
Q , W i

K , W i
V  are the parameter matrices for the linear 

layer. The Qi, Ki, Vi can be seen as the query, key, and value vector for the ith head. 

dk is the dimension of the key. The final output is y. As mentioned in [14], the scaled 

dot-product attention is much faster and more space efficient. Compared to the general 

attention mechanism that learns the association based on the entire vector, the multi-head 

approach improves the model performance by acquiring the information from various heads, 

each a sub-representation of the original vector.

C. Modality-specific Feature Extraction

The modality-specific feature extraction module has two independent networks to process 

the verbal transcript and audio stream, respectively.

Instead of using convolutional or recurrent neural networks (CNN/RNNs) [16], [17], we 

apply a multi-head attention network to extract the textual representations because: Firstly, 

sentence-level text classification requires focus on the most representative information, 

especially for short-sentence trauma speech. A single word can identify a specific class 

without using the rest of the text. For example, “GCS“ means GCS Calculation and 

“O2“ means Oxygen. Replacing the CNNs and RNNs with attention concentrates on 

informative word vectors, rather than learning an entire sentence representation. Secondly, 

removing RNNs removes expensive in-sequence temporal alignment from the computation. 

The multi-head attention model does not need the data fed in a specific order during the 

calculation. To provide temporal information, the model puts a position embedding layer 

before the attention function. In this research, we apply the same position embedding layer 
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as in [14]. Considering the hardware performance tradeoff, we set four attention layers to 

extract representations from verbal transcripts. As suggested in [14], each attention layer 

consists of a multi-head attention module, a feedforward layer, and two batch normalization 

layers. Table I shows detailed model parameter information. It is worth mentioning that we 

designed a stepwise size reduction on the multi-head attention to improve model training 

and ensure matching dimensions between the transcript and audio feature representations.

As we mentioned in the preprocessing section, it is inefficient and unreasonable to compute 

dependencies across long-distance audio frames. Hence, we introduce a multi-level multi-

head attention structure to first learn the attention distribution over adjacent audio frames, 

and then form the final feature vector over the entire MFSC map. We use three attention 

layers over each MFSC submap and further apply another two attention layers to learn the 

consolidation of submap representations. The details of the parameters are shown in Table I.

D. Fusion

The generated verbal and audio stream feature representations are of different length, so we 

concatenate them vertically to form the shared representation (shown in Table I). We set two 

attention layers over the shared vectors to further fuse the features, which can be understood 

as weighing between verbal transcript and audio stream information together. The fusion 

attention layers select important features based on shared representations. We take the sum 

over the shared representations to form the final feature vector. A softmax classifier is used 

for the final classification.

III. DATA COLLECTION AND IMPLEMENTATION

We collected 75 actual trauma resuscitation cases using two fixed NTG2 Phantom Powered 

Condenser shotgun microphones. Both microphones cover the major parts of the trauma 

room and have the ability to capture speech information and environmental sound from 

the trauma team. All the data were collected with consent, and have been stripped of 

private information. We recorded the audio stream with 16000Hz sampling rate; the verbal 

transcripts were manually transcribed and segmented by the trauma experts; the activity 

labels were also provided by the medical team. The eleven trauma activity labels are: Back 
(B), GCS Calculation (GCS), Oxygen (OX), Head (H), C-Spine (CS), Pulse Check (PC), 

Blood Pressure (BP), Extremity (E), Mouth (M), Abdomen (A), and Other (O). We applied a 

80%-20% training-testing split; the final dataset contains 10, 313 sentence-level samples for 

training and 2, 579 for testing.

We implemented the model using Keras with Tensorflow backend [18]. We first pre-train 

the audio branch for 50 epochs to facilitate model convergence. Then, we trained the entire 

model for 150 epochs. To overcome sample imbalance during training, we uniformly sample 

across classes instead of directly feeding all the training data. For all training, we use the 

dropout layer to overcome the overfitting [19]. we first used Adam [20] optimization with 

0.001 initial learning rate and momentum parameters 0.99 and 0.999 for the first 50 epochs. 

Then, we changed to the SGD optimizer for further tuning.
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IV. EXPERIMENT AND EVALUATION

We first made a quantitative analysis by comparing the performance of the modality-specific 

models and the multimodal structure. As shown in Table II, the verbal transcript model 

achieved 69.6% accuracy with 0.682 F1-score, and the environmental sound model only 

achieved 37.5% accuracy with 0.347 F1-score. Using verbal transcripts outperforms audio 

by 32.1% accuracy, indicating that verbal communication from human speech contains more 

helpful information; it is difficult to identify trauma activity only based on environmental 

sound. However, the multimodal structure performs better than the transcript-only model 

by 2.8% accuracy. The difference in performance demonstrates the necessity of multimodal 

architecture. Despite the limited performance of the audio-only model, the combination of 

the verbal information and environmental sound still performs best.

To further evaluate performance, we provide confusion matrices of the multimodal attention 

network. As shown in Fig. 3, Blood Pressure was classified most accurately, with 77.0% 

accuracy. Note that the Other activity only achieves 55.0% accuracy, which is lower than 

the rest classes. Since we only consider ten common verbal-heavy activities and put the 

other activities into the Other category, we believe the diversity of the Other class makes 

it difficult to discriminate from the rest. However, the overall accuracy of the remaining 

activities is higher than 67.0%, demonstrating the effectiveness of MAN.

To compare the proposed MAN with previous models, we first re-implemented the 

approaches in [7], [21]. Since the baseline approaches also used audio or text as input, 

we retrained them on the trauma dataset with the same training-testing split. The result in 

Table III shows the MAN model outperforms the baselines by 6.2% and 7.8% accuracy, 

respectively. Because the distance between relevant sentences may vary in different cases, 

it is hard to define a fixed window size as in [7]. Compared to the hierarchical LSTM 

(H-LSTM) model that using 20s as the context window size to predict the present activity, 

our model achieves better performance using only present verbal sentence without relying 

on any context information. Since text and audio data have less spatial features, using an 

attention network for feature extraction is more reasonable than convolution. The result also 

indicates that our model significantly outperforms the H-CNN models [21], which shows the 

effectiveness of MAN.

Because of the lack of RFID data in the experiment, we directly compared model 

performance on individual activities from [6] with our models in Table IV. The result shows 

our model achieves better performance in three shared activities, including Oxygen, Blood 
Pressure, and Mouth. The MAN model gains a significant performance improvement for 

the above activities, demonstrating the helpfulness of using verbal and environmental sound. 

As shown in Table IV, our model cannot detect the activities such as Ear, Nose, Pupils etc. 

However, we achieves significant performance on GCS, Head, and Extremity, which were 

difficult to detect using RFID; this shows that spoken language and environmental sound can 

be applied as a complementary resource to improve trauma activity recognition.
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V. CONCLUSION

In this paper, we presented a novel approach using verbal communication information 

and environmental sound to recognize trauma resuscitation activities. We introduced a 

multimodal network with multi-head attention to extract and fuse textual and acoustic 

features. The proposed MAN achieved 72.4% accuracy with 0.705 F1 score. By 

outperforming the baselines, we demonstrate the effectiveness of the network and the 

necessity for the multimodal structure.
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Fig. 1. 
Example of spoken language and environmental sound based trauma activity recognition.
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Fig. 2. 
Overall structure of multimodal transformer network (MTN)
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Fig. 3. 
Confusion matrix of the MAN model.
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TABLE I

MODLE PARAMETERS

Layer input output n_h h_size d_k

attention_v1 (50, 200) (50, 160) 4 36 36

attention_v2 (50, 160) (50, 100) 4 36 36

attention_v3 (50, 100) (50, 60) 4 16 16

attention_v4 (50, 60) (50, 30) 4 16 16

attention_a1 (30, 40, 30) (30, 40, 30) 4 16 16

attention_a2 (30, 40, 30) (30, 40, 30) 4 16 16

attention_a3 (30, 40, 30) (30, 40, 30) 4 16 16

attention_a4 (30, 30) (30, 30) 4 9 9

attention_a5 (30, 30) (30, 30) 4 9 9

concatenate (50|30, 30) (80, 30) - - -

attention_f1 (80, 30) (80, 30) 4 9 9

attention_f2 (80, 30) (80, 30) 4 9 9

sum (80, 30) (30) - - -

*
input=input shape; output=output shape; n_h=number of head; h_s=head size; d_k=dimension of key.
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TABLE II

COMPARISON OF MODALITIES

Modality Data Type Accuracy (%) F1-Score

Verbal Transcript Only Text 69.6 0.682

Audio Stream Only Audio 37.5 0.347

Multi-modality (MAN) Text+Audio 72.4 0.705
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TABLE III

COMPARISON OF BASELINES

Model Data Type Accuracy (%) F1-Score

H-LSTM [7] Text 66.2 0.623

M-CNN [21] Text+Audio 64.6 0.642

Ours-MAN Text+Audio 72.4 0.705
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TABLE IV

COMPARISON OF ACTIVITIES

Activity RFID in [6] (%) Ours-MAN (%)

Blood Pressure 64.1 77.0

Oxygen 54.0 76.0

Mouth 63.0 68.0

Pulse 85.9 70.0

Cardiac 92.9 -

Temperature 80.6 -

Ear 97.5 -

Warm Sheet 56.8 -

Nose 76.4 -

Pupils 59.6 -

GCS Calculation - 70.0

Back - 68.0

Head - 71.0

C-Spine - 67.0

Extremity - 70.0

Abdome - 68.0
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