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Abstract

We develop an approach to risk classification based on quantile contours and allometric modelling 

of multivariate anthropometric measurements. We propose the definition of allometric direction 
tangent to the directional quantile envelope, which divides ratios of measurements into half-

spaces. This in turn provides an operational definition of directional quantile that can be used as 

cutoff for risk assessment. We show the application of the proposed approach using a large dataset 

from the Vermont Oxford Network containing observations of birthweight (BW) and head 

circumference (HC) for more than 150,000 preterm infants. Our analysis suggests that 

disproportionately growth-restricted infants with a larger HC-to-BW ratio are at increased 

mortality risk as compared to proportionately growth-restricted infants. The role of maternal 

hypertension is also investigated.
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1 Introduction

The remarkable works on anthropometry by Adolphe Quetelet and Sir Francis Galton in the 

19th century gave birth to a new field of scientific investigation within which the medical 

and statistical sciences developed a long-lasting and profitable collaboration. In turn, this has 

given rise to countless research studies in public health and to the development of important 

analytic methods. For example, the body mass index (BMI), also known as the Quetelet 
index, is universally applied by researchers and clinicians to classify individuals into 
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categories such as ‘underweight’, ‘overweight’, and ‘obese’ as these may be at higher risks 

of poorer health outcomes. Classification thresholds for these categories are defined as 

percentiles of the BMI distribution in a reference population and are published by public 

health institutes like the World Health Organization (http://www.who.int/childgrowth/

standards/en/).

The BMI index is a well-known example of ratio of anthropometric variables (mass/height2). 

Another similar ratio is the corpulence or Rohrer index (mass/height3). Indeed, there exists a 

plethora of indices where body measurements are combined as ratios, often upon power 

transformations, where the scaling depends on the relationship between the variables 

involved in the ratio. If the correct scaling exponent is applied, then no residual association 

should be observed between the index and the scaling variable.1 Otherwise, differential 

misclassification bias may result when the goal is to assess risk in different categories of the 

anthropometric index.2

In this paper, we are specifically interested in anthropometric measurements for very 

preterm infants (22 to 29 weeks’ gestation). Preterm babies, particularly those born at lower 

gestational ages, have high risks of mortality, morbidities, and neurodevelopmental 

impairment.3,4 For example, it is estimated that at 22 and 23 weeks’ gestation the mortality 

rate can be as high as 80%.3 At these ages, there are significant rates of respiratory distress 

syndrome (94%), patent ductus arteriosus (46%), severe intraventricular hemorrhage (16%), 

necrotizing enterocolitis (11%), and late-onset sepsis (36%).3

Preterm birth is not the only risk factor. Growth restriction, usually defined as birthweight 

(BW) less than the 10th percentile for gestational age (GA)—or small for gestational age 

(SGA)—further raises already high risks among preterm infants5 and, hence, is used as an 

indicator for secondary and tertiary prevention of mortality and adverse outcomes. The 

etiology of SGA is multifactorial with some causes linked to, for example, smoking, 

placental insufficiency, environmental factors, and maternal complications like 

preeclampsia. These factors not only impact BW but might also affect the size of the head 

(as measured by head circumference, HC, right after birth), with consequences that may vary 

according to the particular period of pregnancy in which the insult has occurred. It has been 

theorized that: if the insult occurs early during pregnancy or even before conception, growth 

restriction is symmetric (or proportional) and both BW and HC are affected; if the insult 

occurs later during pregnancy, growth restriction is asymmetric (or disproportional), with 

negative consequences mainly for BW, thus resulting in a larger HC-to-BW ratio.6,7 

Asymmetric growth is thought to be an adaptive mechanism that is put in place to protect the 

brain. In response to placental insufficiency, which is often caused by hypertension and leads 

to intrauterine growth restriction, the fetus adapts its circulation to preserve oxygen and 

nutrient supply to the brain (the ‘brain-sparing’ effect). Some studies investigated the 

determinants of fetal growth and body proportionality, as well the effect of the latter on 

neonatal outcomes. They found that (severe) pregnancy-related hypertension, which is the 

development of new hypertension after 20 weeks’ gestation, is strongly associated with a 

larger HC-to-BW ratio.8 The latter, in turn, was found to be a risk factor for stillbirth and 

fetal distress.9
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Thus, it is natural to wonder whether there are differences in terms of health outcomes 

between infants with unusual HC-to-BW ratio and those with normal HC-to-BW ratio. The 

abnormality of a ratio reflects the abnormality of either the numerator or denominator, 

relative to the other. This is illustrated in Figure 1 which shows the relationship between BW 

and HC in preterm infants using data from the Vermont Oxford Network (VON), a large 

network of medical centers. The observation marked by a thick cross in the left plot of 

Figure 1 (a girl born at 162 days of gestation) presents an abnormal HC-to-BW ratio for her 

GA (right plot), a possible consequence of the brain-sparing effect. Note that, individually, 

the BW and HC measurements for this girl do not present a concern since they both lie 

above the respective cutoffs for small BW and small HC.

The characterization of abnormal bivariate observations require the application of 

multivariate approaches to joint ranking. Multivariate modelling has a long tradition in 

parametric statistics. Models for joint distributions are, more or less, direct extensions of 

well-known univariate distributions to higher dimensions. The multivariate normal 

distribution is, among others, often invoked for its mathematical and statistical properties. In 

the past few years, there has been a growing number of applications giving stronger attention 

to distributions that can flexibly account for heavier tails,10 skewness11–13 and, more in 

general, to non-elliptical distributions. Rather than assuming a specific parametric 

distribution, we take a more agnostic approach and we propose to investigate these issues by 

using directional quantile envelopes (DQEs) for multivariate data.14

The interpretation of a DQE is straightforward. In a bivariate plot, a DQE is represented by a 

contour line with constant quantile level. Each point on the contour line can be mapped to a 

fixed percentile of the distribution of the data coordinates’ projections onto the real line. The 

projections are obtained in every possible direction on the circle. The key idea is to divide 

observations in two groups: those that lie within the contour line (jointly normal) and those 

outside (jointly abnormal). However, in our specific application investigating the brain 

sparing effect, the set of all data points classified as jointly abnormal is unsatisfactory as it 

comprises a clinically heterogeneous mix of infants. In particular, it does not distinguish 

between infants with symmetric growth and those with asymmetric growth. Rather, we want 

to focus on infants that, on the one hand, have jointly abnormal measurements, but, on the 

other, have a large HC-to-BW ratio. This is equivalent to choosing a directional quantile in a 

particular direction. We propose using allometry to determine such a direction.

Besides the study of Kong and Mizera,14 there are other precedents of applications of 

methods for multivariate quantiles to anthropometric and growth charts. Some authors15 

proposed quantile contours based on Tukey’s notion of halfspace depth, while others16 

considered directional reference intervals built around a central point of the distribution 

(location parameter). All these studies offer nonparametric approaches to identify jointly 

abnormal measurements when parametric (normality) assumptions are inappropriate. 

Therefore, we do not claim any novelty in this regard. In contrast, our focus is on the 

classification of abnormal ratios. Moreover, we bring forward a connection between DQEs14 

and allometric modelling which, to our knowledge, does not seem to have been reported 

before. This in turn provides an operational definition of directional quantile that can be 

used as cutoff for risk assessment, as demonstrated in the analysis of the VON data.
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The rest of the paper is organized as follows. In Section 2, we give a general overview of 

VON and some details about the variables of interest. In Section 3.1, we briefly discuss 

quantiles for univariate data and their limitations when used as individual cutoffs in 

multivariate problems. In Section 3.2, we provide the formal definition of DQE and 

introduce the relationship between directional quantiles and ratios. In Section 3.3, we 

establish the connection between DQEs and allometry. In Section 4, we apply the proposed 

methods to the VON data to investigate mortality risk in proportionately and 

disproportionately growth-restricted infants. We show that our principled approach stratifies 

mortality risk more effectively as compared to the commonly-adopted approach based on 

isometric scaling. Although our methods focus on anthropometry and allometry, extensions 

and generalizations to other settings are discussed in Section 5.

2 The Vermont Oxford Network

The Vermont Oxford Network (VON) is a nonprofit, voluntary collaboration of health care 

professionals ‘dedicated to improving the quality and safety of medical care for newborn 

infants and their families through a coordinated program of research, education, and quality 

improvement projects’ (https://public.vtoxford.org/about-us/). The Network was established 

in 1988 and comprises over 1200 centers (hospitals) with a neonatal intensive care unit 

(NICU). The Very Low Birth Weight Database collects information from these centers 

which account for approximately 90% of all the births occurring at 22–29 weeks of gestation 

in the United States (US). A number of variables are collected from each center: maternal 

characteristics (e.g., ethnicity), infant characteristics (e.g., sex, gestational age, birthweight, 

head circumference, birth defects), and newborn health outcomes (in-hospital mortality and 

major morbidities). Member hospitals collect the data using uniform definitions through 

medical record abstraction which are then submitted to VON electronically or through paper 

forms. Data pass automated checks and are returned for correction if needed.

Our study sample was restricted to inborn, singleton US infants born at 22 to 29 weeks of 

gestation between 2006 and 2014, with no congenital malformations. GA was determined 

using obstetrical measures based on prenatal ultrasound (accuracy ±7 days), last menstrual 

period (accuracy ±14 days), or a neonatologist’s estimate based on postnatal physical 

examinations (accuracy ±13 days for Dubowitz examination). BW was recorded from labor 

and delivery or, if unavailable, upon admission to the neonatal unit. HC was recorded on the 

day of birth or the day after. The data underwent some mild cleaning procedures as 

described elsewhere.17 In particular, we excluded infants with missing information on vital 

status (841), unknown gender (30), missing (71) or implausible (744) BW, missing (24,706) 

or implausible (860) HC, missing hospital length-of-stay (78), or who were hospitalized for 

longer than one year (565). Overall, about 15% infants were excluded, leaving 155,746 

infants for our analysis. Table 1 gives summary statistics of the sample by sex and four 

gestational age intervals: (21,23], (23,25], (25,27], and (27,29] weeks. We have divided 

gestational age in intervals mainly for practical reasons as we want to provide a summary of 

the results which can be readily used by public health and clinical practitioners. Each 

gestational age group comprises infants whose mortality risk is comparable within that 

interval. The sample size of the first interval is noticeably smaller than the other three (Table 

1), but this interval stands out because it includes infants with the highest risk of mortality.18 
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These data were used in previous publications17,19 to generate BW- and HC-for-gestational-

age percentile charts for clinical use.

3 Quantile-based risk classification

3.1 Quantiles of univariate data

The quantile function (QF) of a random variable Y with cumulative distribution function 

(CDF) FY (y) is defined as

QY (p) = inf y ∈ ℝ:FY (y) ≥ p ,  0 < p < 1. (3.1)

Here we assume that Y is absolutely continuous with probability density function fY (y) > 0 

over the support of Y. Therefore the QF is simply the inverse of the CDF, QY (p) ≡ FY
−1(p).

In the presence of covariates, the QF can be extended to conditional distributions. The linear 

specification of the QR model is20

QY X(p) = x⊤β(p), (3.2)

where X is a q-dimensional vector and β(p) is a vector of q coefficients indexed by the 

quantile level p. A generalization of (3.2) defines

QY X(p) = ℎ x⊤β(p) , (3.3)

where the transformation h can be modelled either parametrically or nonparametrically. 

Moreover, if h is monotone, then Qℎ−1(Y ) |X(p) = x⊤β(p), which we call transformation rule21 

(also known as equivariance to monotone transformations). It is worth mentioning here that 

quantiles enjoy a number of other properties,21 including the reflection rule 

Q−Y |X(p) = − QY |X(1 − p).

In clinical settings, it is customary to define a cutoff for abnormal measurements. We will 

use the terms ‘normal’, ‘subnormal’ (below normal), ‘supranormal’ (above normal), and 

‘abnormal’ (not normal, either below or above) to classify observations based on arbitrary 

cutoffs but without giving them any clinical or diagnostic connotation. Cutoffs are often 

related to specific quantiles of the distribution. For example, infants are classified as SGA if 

their BW is below the 10th percentile of the BW distribution conditional on gestational age; 

otherwise, they are termed appropriate for gestational age (AGA). Assuming a model as in 

(3.3), the cutoff would be determined as

QBW GA(0.1) = ℎBW β0(0.1) + β1(0.1) ⋅ GA ,

for some suitable transformation hBW·
17,22 Similarly, infants are said to have a subnormal 

head size if their HC is below the 10th percentile of the HC distribution conditional on GA, 

that is
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QHC GA(0.1) = ℎHC β0(0.1) + β1(0.1) ⋅ GA ,

assuming, as before, that model (3.3) holds for some transformation hHC·
17,22 Clearly, these 

cutoffs need be estimated, either externally using a representative sample from the standard 

or referent population of interest, or internally from within the same data.

Most of the times, BW and HC are treated separately in statistical analyses. For example, 

they are analyzed as separate outcomes or as ‘independent’ predictors of postnatal child 

outcomes. However, there are good reasons why it could be informative to analyze these 

variables jointly. First of all, BW and HC are necessarily related. Larger weights correspond 

to larger head circumferences, although the younger the baby the larger the head size in 

relation to the size of body. In other words, the HC-to-BW ratio decreases with age (Figure 

1). Secondly, health outcomes may di er among infants whose BW and HC are ranked 

jointly normal or abnormal, as those with symmetric and asymmetric growth. Joint ranking 

necessitates multivariate approaches.

3.2 Quantiles of multivariate data

Let Y = (Y1, …, YK)⊤ denote a multivariate random vector collecting measurements for K 
continuous variables (e.g., BW and HC) and let d = (d1, …, dK)⊤ be a normalized (with unit 

norm) direction of dimension K. The pth directional quantile, in the direction d, is the pth 

quantile of the corresponding projection of the distribution of Y, that is Qd⊤Y p . The 

supporting half-space determined by d is H(d, ξ) = { y : d⊤y ≤ ξ}. The pth directional 

quantile envelope (DQE) generated by is given by the intersection14

D(p) = ∩
d

H d, Qd⊤Y(p) ,  0 < p ≤ 0.5. (3.4)

In a bivariate space (K = 2), the geometric intuition behind (3.4) is as follows. Consider a 

scatter of points as that on the left plot in Figure 1; fix p equal to 0.1; and define a direction 

on the circle (for example, the west-east or south-north direction). Next, we cumulate data 

points while moving along the chosen direction and we stop when the cumulative proportion 

is 10%. We demarcate a line which divides the plane into two half-planes, a ‘lower’ half-

plane with 10% of the points, and an ‘upper’ half-plane with the remaining 90%. If we 

repeat this process for all the possible directions on the circle, then the intersection of all the 

demarcation lines defines an oval-shaped contour within which the data points belong to the 

upper half-planes in all directions (an illustration is given in Figure 2). These data points 

represent the set D(0.1). Similarly, the points outside the perimeter, which we denote by 

D 0.1 , belong to the lower half-planes in some directions.

From the above exemplification it becomes clear that the proportion of points that are in 

D(p) will be less than (1 − p) since these points satisfy d⊤y ≤ Qd⊤Y(p) for all d ∈ ℝK. It also 

becomes clear that the quantile p in a given direction is equivalent to the quantile 1 − p in the 

opposite direction, e.g., the 10th directional percentile in the south-north direction is 

equivalent to the 90th directional percentile in the north-south direction (hence, 0 < p ≤ 0.5).
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Directional quantiles can be easily extended to conditional distributions. If we assume a 

linear model as in (3.2), we obtain

Qd⊤Y |X(p) = x⊤β(p) . (3.5)

Then the DQE (3.4) can be applied to the conditional quantiles in (3.5).

Model (3.5) presupposes the additivity of the coordinates of Y since d⊤Y = d1Y1 + d2Y2. If, 

instead, a multiplicative relationship is to be studied, then the logarithmic transformation of 

the measurements is more appropriate,14 i.e.

Qd⊤Z |X(p) = x⊤β(p), (3.6)

where Z = (log Y1, log Y2)⊤. The pth directional quantiles of the coordinates on the log-

scale therefore corresponds to the pth quantile of the log-ratio of the scaled coordinates, that 

is

d1 log Y 1 + d2 log Y 2 = log
Y 2

d2

Y 1
−d1

. (3.7)

The ratios of the type R = Y 2
d2/Y 1

−d1 are ubiquitous in public health and clinical applications. 

One can immediately recognize that R is the BMI index if Y1 is height, Y2 is weight, and d 

= (−2, 1)⊤. The determination of this particular direction might seem somewhat axiomatic 

but, far from it, it is the result of statistical observations by Quetelet himself and, some 130 

years later, Ancel Keys. However, Quetelet in his treatise23 had already recognized that the 

choice of scaling was rather complex:

If man increased equally in all dimensions, his weight at different ages would be as 

the cube of his height. Now, this is not what we really observe. The increase of 

weight is slower, except during the first year after birth; [...] However, if we 

compare two individuals [...] we shall find that the weight of developed persons, of 
different heights, is nearly as the square of the stature.

Allometry studies the geometrical relationships in the human body. In the following section, 

we discuss the connection between allometry and DQEs. Such a connection provides an 

operational definition of directional quantile that can be used as cutoff for risk assessment.

3.3 Bivariate percentiles and allometric analysis

Let us consider an allometric model of the type

Y 2 = aY 1
b, (3.8)

a, b > 0. Equation (3.8) implies that the allometric ratio R = Y 2/Y 1
b is constant and equal to a 

(for b = 1, the variables Y1 and Y2 are said to be isometric). In standard practice, model 

(3.8) is often linearized through a logarithmic transformation so that the scaling coefficient a 
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and the scaling exponent b can be estimated via ordinary least-squares,24 viz. assuming the 

log-linear model log Y 2 = log a + b log Y 1 + ϵ, ϵ N 0, σ2 .

In our specific application where Y1 is BW and Y2 is HC, the scaling exponent b captures 

the differential growth ratio between the head and the body as a whole. Of course, the 

parameters in (3.8) may depend on third variables. For example, the right plot in Figure 1 

suggests that the HC-to-BW ratio depends on gestational age (note that the ratios in Figure 1 

are calculated under the constraint of an isometric relationship, i.e., b = 1, uniformly over 

gestational age).

Model (3.8), if correctly specified, provides a benchmark against which we can classify 

abnormal HC-to-BW ratios. This is asserted in the following proposition which establishes 

the connection between (3.4) and (3.8).

Proposition 3.1. Let Y1 and Y2 be two continuous and strictly positive random variables, 

and assume that the allometric model Y2 = aY1
b, a, b > 0, holds true. Let QR(p) denote the 

pth quantile of the distribution of R = Y 2/Y 1
b. Also, define Z = (log Y1, log Y2)⊤ and assume 

that the pth directional quantile envelope D(p) generated by Qd⊤Z(p) is smooth. Then the 

lines

log Y2 = log QR(p) + b ⋅ log Y1

log Y 2 = log QR(1 − p) + b ⋅ log Y 1 (3.9)

are tangent to D(p).

Proof. We only need to prove that the line tangent to D(p) is of the form (3.9). By definition 

of D(p), the former is given by

Z2 = 1
d2

Qd⊤Z(p) −
d1
d2

Z1

for any given direction d.

On the log-scale, the allometric equation given in Proposition 3.1 relating Y1 to Y2 can be 

re-written as

b log Y 1 − log Y 2 = − log a, (3.10)

which has the same form of (3.7) with d1 = b and d2 = −1. Therefore, for d = (b, −1)⊤, which 

we call allometric direction, the line tangent to D(p) is log Y 2 = − Qd⊤Z(p) + b log Y 1. Now, 

by (3.7) we have that d⊤Z = − log Y 2/Y 1
b = − log R. Since the logarithm is a monotone 

transformation, we use the transformation rule introduced in Section 3.1 and obtain 

Qd⊤Z(p) = Q−log R(p) = − log QR(p) . Then the tangent line equation becomes log Y2 = 

log{QR(p)} + b log Y1, which corresponds to the first equation given in (3.9). To obtain the 
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second equation in (3.9), it is sufficient to notice that Q−logR(p) = −QlogR(1 − p) = 

−log{QR(1 − p)}, where the first equality follows from the reflection rule and the second 

equality follows from the transformation rule.

For a rigorous proof of the geometric properties of D(p), the reader is referred to Kong and 

Mizera (2012).14 □

Two corollaries to Proposition 3.1 follow.

Corollary 3.1. The tangent lines are unique.

Corollary 3.2. The tangent half-spaces are the sets of points Y = (Y1, Y2)⊤ such that R < 

QR(p) and R > QR(1 − p).

The first corollary follows from the smoothness of D(p). The second corollary is a 

consequence of the definition of D(p). More importantly, this corollary provides the 

operational definition of subnormal (R < QR(p)) and supranormal (R > QR(1 − p)) ratios 

corresponding to the allometric direction. The dashed line in the right plot of Figure 2 gives 

an illustration of the allometric direction. One may wonder if there is anything special about 

this direction. The answer lies in the properties of the estimator of b. In particular, if b is 

estimated using MA regression, the directional quantile in the allometric direction is in the 

same direction as the principal axis of the bivariate normal ellipse fitted to the log-

transformed data. It is well-known that this is the direction of the first eigenvector of the 

variance-covariance matrix of Z. Of course, there is nothing necessarily prescriptive about 

the normal distribution, so one can explore an alternative estimator for b under a different 

distribution, if that distribution has a theoretical or empirical relevance, or use a 

nonparametric estimator. For example, it is common to estimate the slope of MA regression 

under the assumption of homoscedasticity for the log-additive counterpart of model (3.8). If 

necessary, this assumption may be relaxed to improve on accuracy and efficiency of the 

estimates by introducing a variance function of the type var Y 2 = τ2Y 1
c, where τ > 0 and c > 

0. Alternatively, using a distribution-free approach, one could estimate b by means of 

median regression on the log-scale,25 with advantages in terms of robustness to outliers and 

error distribution, as well as in terms of lossless transformation between scales due to the 

equivariance property. Moreover, such estimator has a close relationship with the Laplace 

distribution. However, the median estimator would not be robust to measurement error in the 

covariates and hence would require the application of methods that are computationally 

more complex than MA regression.26,27 Finally, note that the allometric direction does not 

depend on the scaling coefficient a, which essentially we have treated as a nuisance. 

Nevertheless, if the estimates of the error ε = log Y2 − log a − b log Y1 were to conform to 

the normality assumption ϵ N 0, σ2 , then one could estimate QR(p) parametrically by using 

exp {log a + σΦ−1(p)}, where Φ is the cumulative distribution function of a standard normal. 

In this case, one must be careful since the expected value does not possess the equivariance 

property and, thus, exponentiating least-squares estimates leads to approximations.

In general, there is a stronger motivation for using the allometric direction and this is related 

to body proportionality in human growth assessment. If we consider studies on infants, the 
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definition of ‘proportionality’ varies from study to study, where body weight is sometimes 

related to HC, or abdomen circumference, or more commonly to length. Except for some 

studies (e.g., as those based on the Rohrer index28), several other implicitly assume 

isometric scaling by defining ratios of the type R0 = Y2/Y1.8, 29–31 However, if the true 

scaling exponent b is different from one, then the ratio

R0 = aY1
b − 1

depends on Y1. This requires that a definition of abnormal ratio should be based on the 

conditional quantile QR0 |Y1 p , not on the marginal QR0 p . The consequence of using the 

latter would be a misclassification of infants in categories of possibly different risks, which 

is the source of differential misclassification bias1,2 we referred to in Section 1. We provide 

empirical evidence that misclassification bias and, in turn, poorer risk classification result in 

the analysis of the VON data when b is arbitrarily fixed equal to 1 (Section 4.2).

Our discussion so far has focused on two variables only, mainly because we are interested in 

asymmetric growth restriction which is commonly defined using BW and HC only,29,32,33 

but also because the VON data do not provide anthropometric variables besides BW and HC. 

However, it is natural to consider a generalization for K > 2. One of the first problems we 

would encounter is, obviously, visualizing a multivariate DQE in more than, say, three or 

four dimensions. However, computationally (3.4) can be applied for any K ≥ 2. In contrast, 

equation (3.8) does not seem to have an immediate multivariate counterpart and different 

approaches can be considered. A popular approach to multivariate allometry is based on 

principal component analysis34,35 (PCA) due to its geometric properties. In Appendix A, we 

provide a generalization of Proposition 3.1 using PCA to sketch the main idea.

4 Mortality risk in preterm infants

4.1 Risk classification based on univariate percentiles

As discussed in Section 1, SGA infants and infants with subnormal HC are at increased risk 

of poor health outcomes. We can investigate exposure-outcome associations using 

appropriate regression models. In particular, if we have both BW and HC as exposures, we 

can define a categorical variable u with categories ‘normal BW, normal HC’, ‘subnormal 

BW, normal HC’, ‘subnormal BW, subnormal HC’, and ‘normal BW, subnormal HC’. In 

Figure 1, these categories correspond to points in quadrants I, II, III, and IV, respectively. 

Let W be the outcome of interest (death) and x a vector of covariates associated with W (sex, 

gestational age, and their interaction). Using the VON data, we fitted the generalized linear 

model

E(W ) = ϕ−1(u, x)

with log-link function ϕ.

Table 2 shows the gestational-age-adjusted mortality risk of preterm infants born between 22 

and 29 weeks. The baseline is given by infants with normal (i.e., above the 10th percentile 
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for gestational age and sex) BW and HC. The baseline risk is 11% and 14% for girls and 

boys, respectively. The risk increases by 67% (girls) or 41% (boys) when only HC is 

subnormal and by about 80% when only BW is subnormal. However, if both HC and BW 

are below their respective cutoffs, then the mortality risk is approximately 2.5 times the 

baseline risk, meaning that 1 out of 3 of these infants does not survive. The gestational-age-

specific mortality risk for girls and boys is given in Appendix B (Tables 6 and 7, 

respectively). The relative risk for infants with subnormal BW and HC increases with 

gestational age, although the baseline risk of normal infants is highest at the lowest 

gestational ages.

The risk categories in Table 2 are defined using separate rankings for BW and HC. This is 

the approach taken by some authors.29,33 However, this approach presents a difficulty. While 

the specific cutoff values (e.g., 10th percentile) may be relevant for BW and HC taken 

individually, nothing can be said about the joint ranking of the measurements. We have 

already noticed that the observation marked by a thick cross in the left plot of Figure 1 

presents normal (for gestational age) weight (489 g) and HC (30 cm) and thus falls in the 

baseline group. Upon closer inspection, this infant has a rather extreme HC-to-BW ratio 

(right plot in Figure 1), a possible consequence of the brain-sparing effect.

In the next section, we examine the categories in Table 2 in more detail to see whether the 

abnormality of the HC-to-BW ratio represents an additional risk factor. In particular, the 

categories ‘normal BW, normal HC’ and ‘subnormal BW, subnormal HC’ are of clinical 

interest since they represent the baseline and the highest mortality risk categories, 

respectively. The category ‘subnormal BW, normal HC’ comprises infants with a BW-HC 

imbalance. Some studies use this imbalance to define asymmetric growth restriction.33 

However, as we previously argued, this definition is limited as it does not take into account 

the proportionality between BW and HC.

4.2 Risk classification based on the allometric direction

We first explore the bivariate distribution of BW and HC using DQEs conditional on 

gestational age. We use DQEs at level p = 0.1 since the directional quantile Qd⊤Z 0.1
coincides with the univariate 10th percentile Qlog BW(0.1) for d = (1, 0)⊤ and QlogHC(0.1) 

for d = (0, 1)⊤ which are commonly used as clinical cutoffs.

We can take advantage of model (3.6) to estimate the DQE of Z = (log BW, log HC)⊤ at 

level p = 0.1 conditional on gestational age, i.e.

Qd⊤Z |X(0.1) = β0(0.1) + β1(0.1)x1 + β2(0.1)x2 + β3(0.1)x3,

where the reference is (21, 23] weeks and xj, j = 1, 2, 3, are dummy variables for the other 

gestational age intervals. The left plot of Figure 2 shows the estimated DQEs for girls in 

each age interval. The points that lie outside a particular contour line (i.e., the set D 0.1 ) 

represent BW and HC measurements that are jointly abnormal as compared to those that fall 

in D(0.1), conditional on a specific gestational age group. We should note that, while 

informative, the classification based on the DQE is broad since the ‘abnormal’ labelling of 
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measurements outside the DQE applies to disparate groups: infants with subnormal BW and 

HC, infants with supranormal BW and HC, and those with asymmetric BW and HC. We 

may want to focus on a particular group of measurements that are jointly abnormal, like 

those for which R > QR(0.9) (supranormal HC-to-BW ratio) that are suggestive of the brain-

sparing effect.

We then fitted model (3.8) for BW and HC on the log-scale using standardized major axis 

(MA) regression as implemented in the R package smatr.36 The reason for this choice lies in 

the likely presence of measurement error in both variables.37 Table 3 shows estimates of the 

coefficients and standard errors for all infants as well as by sex and by gestational age. 

Overall, the estimated coefficient b ≈ 0.32 hints at the cubic relationship between length and 

volume, although the test of the null hypothesis H0 : b = 1/3 gave a p-value less than 0.001. 

The estimated scaling exponent was almost identical for boys and girls (p = 0.841), but 

changed significantly (p < 0.001) across gestational ages. The rightmost column of Table 3 

shows the 90th percentile of the estimated allometric ratio R = HC/BWb . An illustration for 

girls born at (23, 25] weeks is shown in the right plot of Figure 2. The dashed line marks the 

90th percentile of the HC-to-BW ratio in the allometric direction (note that this is tangent to 

the DQE at level p = 0.1). Points to its left have a relatively large value of HC as compared 

to that of BW. Among these, marked by a thick cross, we find the girl born at 162 days of 

gestation that was featured in Figure 1. Without question, this observation seems to be rather 

extreme even at p = 0.005.

Using the results in Table 3, we can calculate the allometric ratio R = HC/BWbj for each 

infant, where b j is the estimated coefficient for gestational age group j, j = 1, … , 4, and 

classify these ratios based on the gestational-age-specific cutoffs QR(0.9). Table 4 compares 

gestational-age-adjusted mortality in infants with normal (R ≤ QR(0.9)) and supranormal (R 
> QR(0.9)) ratios. In these two groups, the baseline mortality risk is comparable for infants 

with normal BW and HC: between 0.11 and 0.13 for females, and 0.14 for males. However, 

the mortality risk for infants with small BW and HC is about three times the baseline risk in 

those with supranormal ratios, but about twice the baseline risk in those with a normal ratio. 

As a consequence, absolute risks too differ greatly. For example, disproportionately small 

boys have an absolute risk of 3.17×0.14 = 0.44 while proportionately small boys have an 

absolute risk of 2.16×0.14 = 0.30. Note that in Table 4 the category of infants with normal 

BW and subnormal HC has been omitted since, by definition, there are no infants with 

supranormal ratios and subnormal HC.

In summary, preterm infants that have small BW and HC (below their respective 10th 

percentiles) are at high risk of mortality, with a relative risk of around 2.5 as compared to 

infants with normal BW and HC (Table 2). However, this relative risk is an ‘average’ of a 

lower risk in proportionately small infants and a higher risk in disproportionately small 

infants (Table 4). Hence, the classification based on the allometric direction tangent to the 

DQE identifies the group of disproportionately growth-restricted infants as those with 

considerably high risk among small infants.
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As we repeatedly mentioned, if the correct scaling exponent is not applied, then 

misclassification bias may result and distort risk assessment. In Appendix B (Table 8), we 

report estimates of mortality risk for infants with normal and supranormal ratios, where the 

ratio is calculated using the isometric scaling, i.e. R0 = HC/BW. It is apparent that the 

mortality risk for infants with small BW and HC is not dissimilar from the baseline risk in 

those with supranormal ratios, while the magnitude of the estimated relative risk in those 

with normal ratios is noticeably smaller than that obtained in Table 4. Moreover, the 

classification based on the isometric scaling leads to relative risk estimates less than 

(although not significantly different from) 1 in one of the female groups, which is contrary 

to the well-established notion that SGA infants are at higher mortality risk.

To put all this into perspective, on average more than 33,000 singletons were born each year 

in the US at 22–29 weeks of gestation during 2007–2017.38 Of these, about 3,300 were SGA 

by definition. Using the VON data, we estimated that about 40% of all SGA infants are 

disproportionately growth-restricted. Thus, at the US population level, roughly 3,300 × 0.4 = 

1,320 infants each year (14,520 during 2007–2017) should have been classified as having 

the highest mortality risk because of disproportional growth. Moreover, in this hypothetical 

scenario, had one applied the isometric scaling to identify disproportionately growth-

restricted infants at risk of higher mortality among those 3,300 SGA infants, there would 

have been about 70 (2%) false negatives and 1,420 (43%) false positives.

4.3 Asymmetric growth and hypertension

We investigated maternal hypertension, which has been previously found to be a determinant 

of the HC-to-BW ratio in its severe, pregnancy-induced form.8 While information on 

hypertension is available in the VON data, unfortunately this variable has two limitations: it 

includes both chronic and pregnancy-induced hypertension (PIH), and is missing for about 

21% (though mostly in early years of data collection). Yet, some interesting observations can 

be made.

Hypertension is known to increase the likelihood of growth restriction. This is apparent from 

Figure 3 which shows estimated DQEs conditional on hypertension status. Its relationship 

with mortality risk is, however, controversial. Some studies suggested that PIH increases the 

risk of fetal, perinatal, and early neonatal mortality,39 while other studies found the opposite.
40 In our data, the prevalence of hypertension (chronic and gestational) is overall about 28%, 

while infant mortality rates are approximately 0.15% and 0.11% in, respectively, 

normotensive and hypertensive mothers, suggestive of a ‘protective’ effect of hypertension. 

However, the rate of hypertension is 25% among mothers of babies with normal HC-to-BW 

ratio, but 54% in mothers of disproportionately small babies. In other words, there is a 

strong, positive association between hypertension and supranormal ratios (χ2 test’s p-value 

< 0.001). As shown in Table 5, the mortality risk in infants with normal BW and HC is lower 

if born to hypertensive mothers as compared to normotensive mothers, regardless of their 

HC-to-BW ratio. However, disproportionately small infants born to hypertensive mothers 

have an absolute risk of 6.21×0.07 = 0.43 which, compared to an absolute risk of 2.40 × 0.17 

= 0.41 in their peers born to normotensive mothers, gives a rather different picture of the 

association between mortality and hypertension. It has been speculated that, in preterm 
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infants born to hypertensive mothers, maternal hypertension is less damaging for fetal 

development than other causes of growth restriction.41 Our results do not exclude this 

hypothesis, but they also point to an interaction between hypertension (presumably its severe 

forms) and asymmetric growth restriction.

5 Discussion

In this study, we proposed an approach to risk classification of abnormal ratios based on the 

allometric direction, which is intimately connected to directional quantiles,14 and we applied 

these methods to data on birthweight and head circumference in a large cohort of preterm 

infants. Our analysis suggests that small preterm infants with large HC-to-BW ratio are at 

increased mortality risk as compared not only to AGA infants, but also to proportionately 

growth-restricted preterm infants. There is evidence in the literature that asymmetric growth 

restriction increases the likelihood of adverse outcomes. One study concluded that “the 

prognosis of SGA infants with asymmetric growth [defined by the ratio of HC to abdominal 

circumference] is poorer than that of symmetrically grown infants and much worse than that 

of AGA infants”.31 Therefore, our findings are consistent with the literature.

Following our approach, disproportionately growth-restricted infants can be identified as 

those whose BW and HC lie outside a given quantile contour along the allometric direction. 

It is straightforward to carry out the identification task. All is needed for classification is the 

scaling exponent b and the cutoff QR(0.9). The calculation of the DQE is not necessary. 

Suppose for instance that an infant is born at 23 weeks and that her BW is 390 g and HC is 

19.5 cm. These measurements already put her in a high-risk category since both 

measurements are below their respective 10th percentile (univariate) thresholds for 

gestational age and sex.17,19 Using gestational-age specific estimates from Table 3, the 

allometric HC-to-BW ratio is easily found as 19.5/3900.4125 = 1.6643 which is greater than 

the cutoff QR(0.9) = 1.6123. The statistical justification of this procedure comes from 

Proposition 3.1, which asserts that the allometric direction is tangent to the DQE and thus 

guarantees that all the points such that R > QR(0.9) are a subset of D 0.1  (jointly abnormal). 

Our study offers not only a statistically principled approach to risk classification, but also 

large-sample estimated cutoffs that can be immediately used by practitioners together with 

previously published anthropometric charts for BW and HC using the same data.17,19

There are some limitations in our data. Firstly, gestational age is subject to measurement 

error and the accuracy depends on the method of estimation as well as when the 

measurement is made. We believe that our proposed approach can be extended to account 

for this error when estimating directional quantiles and allometric directions. Another 

possible limitation in our analysis is the omission of covariates that might explain different 

allometric relationships. We partly made up for this deficiency by investigating 

hypertension, and found that the mortality risk is associated with an interaction between 

asymmetric growth restriction and hypertension. In a separate analysis (results not shown), 

we investigated the allometric model (3.8) conditional on ethnicity but no meaningful 

differences were found. Unfortunately, other potentially relevant covariates such as maternal 

age or parental weight and height, which are known to be associated with birthweight,42,43 

are not available in the VON data. There are, however, a number of in-hospital morbidity 
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outcomes which we will explore in a separate study. Furthermore, it may be relevant to 

extend the analysis to infants with subnormal HC-to-BW ratios. Suboptimal head size at 

birth is known to be a risk factor for poor neurodevelopmental outcomes if it persists after 

birth.44,45 This type of investigation would require follow-up information which is not 

available to us at this time.

The proposed approach can be extended to applications where models equivalent to (3.8) are 

expected to hold and the interest lies in the classification of ratios. These obviously include 

applications with other anthropometric ratios, such as the waist-to-hip ratio, which has been 

proposed as a predictor of newborn size,46 the waist-to-height ratio, which has been found 

associated with prehypertension,47 and the subscapular-to-triceps skinfolds, fat–mass-to-

weight, and fat–mass-to-fat–free mass ratio indices which are used as risk factors in stunted 

populations.48 As we move out of anthropometry, we find several other potential 

applications, especially in the biomedical sciences. For example, insulin and C-peptide are 

strongly correlated, and their ratio is a biomarker used to discriminate between insulinoma, a 

tumor of the pancreas, and injection of excessive insulin (surreptitious or inadvertent).49 The 

ejection fraction is a measure of the ratio between the blood pumped in and out of the left 

ventricle. A low input volume indicates atrial insufficiency, a low output volume ventricular 

insufficiency, and a low ratio might be associated to heart failure in several respects (e.g., 

decline of the contractile function). The list goes on with the albumin-to-globulin ratio (liver 

insufficiency, immunodeficiency, auto-immunity, infection, cancer); calcium-to-albumin 

ratio (malnutrition); albumin-to-creatinine ratio (kidney disease); cortisol-to-cortisone ratio 

(cardiovascular risk); calcitriol-to-calcifediol ratio (renal efficiency);50 oxigen extration ratio 

(haemodialysis efficacy); metabolite ratios (type 2 diabetes);51 and stable isotope ratios 

(diet).52
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A Appendix – Multivariate percentiles and allometric analysis

Let us consider a k-dimensional vector Y, K ≥ 2, and the element-wise log-transformed 

vector Z = (log Y1; log Y2,…, log YK)⊤. Also, let Σ be the positive-definite variance-

covariance matrix of Z. The goal of PCA applied to Z is to obtain the decomposition Σ = 

ΔΛΔ⊤. (As noted elsewhere,34 the log-transformation removes measurement scale 

differences and therefore makes the use of the correlation matrix unnecessary. However, 

some authors53 advocate the use of the correlation matrix to separate size and shape 

variation.) The columns of Δ, say δk, k = 1,…, K, are the unit-norm eigenvectors of the 

decomposition, while the diagonal matrix Λ has diagonal elements λk, k = 1,… , K, and are 

given by the corresponding eigenvalues. The PCA scores are then obtained as Z = ZΔ.
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The first component δ1 (major axis) is the direction with maximal variance and its equation 

can expressed as34

1
cos θ1

Z1 − E Z1 = … = 1
cos θi

Zi − E Zi = 1
cos θj

Zj − E Zj = … = 1
cos θK

ZK − E ZK ,

where θi is the angle made by the first principal component with the coordinate axis of Zi. 

Thus

Y1
g1

1/cos θ1
= … =

Yi
gi

1/cos θi
=

Y j
gj

1/cos θj
= … =

YK
gK

1/cos θK
,

where gi is the geometric mean of Yi. It follows that

Y i = aijY j
bij,  i ≠ j,  j = 1, …, K (A.1)

where aij = gi/gj
bij and bij = cosθi/cosθj. That is, the ratio of any pair of PCA loadings, say i 

and j, from the first component δ1 approximates the slope of the bivariate MA regression for 

the variables Zi and Zj.35Using these results, we offer the following proposition.

Proposition A.1. Let Y = (Y1,…, YK)⊤ be a multivariate random vector collecting K 
continuous and strictly positive random variables, and assume that the PCA allometric 
model (A.1) holds true for any pair of variables i, j, with i ≠ j. Also, define Z = (log Y1,…, 

log YK)⊤ and assume that the pth directional quantile envelope D(p) generated by Qd⊤Z(p) is 

smooth. Then the hyperplanes

log Yi = 1
K − 1log QRi(p) + ∑

j ≠ i

bij
K − 1logY j

log Y i = 1
K − 1log QRi(1 − p) + ∑

j ≠ i

bij
K − 1log Y j, (A.2)

where Ri =
YiK − 1

g−i
 and g−i = ∏j ≠ iY j

bij, are tangent to D(p).

Proof. In its implicit form, the hyperplane tangent to D(p) is by definition given by

∑
j = 1

K
djZj = Qd⊤Z(p),

for any given direction d = (d1, …, dK)⊤. We also note that
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d⊤Z = ∑
k = 1

K
dk log Y k = log

Y i
di

∏j ≠ i Y j
−dj

. (A.3)

On the log-scale, the K − 1 allometric equations given in Proposition A.1 relating a given Yi 

to the other variables Yj, j ≠ i, can be re-written as

bi1 log Y1 − log Yi = − log ai1
⋮

bi(i − 1) log Yi − 1 − log Yi = − log ai(i − 1)
bi(i + 1) log Yi + 1 − log Yi = − log ai(i + 1)

⋮
biK log YK − log Yi = − log aiK .

If we take the sum of the terms on the left- and right-hand sides, respectively, we obtain

log
Y i

−(K − 1)

∏j ≠ i Y j
−bij

= − ∑
j ≠ i

log aij, (A.4)

which has the same form of (A.3) with dj = bij, for all j ≠ i, and di = −(K − 1). Therefore, the 

hyperplane tangent to D(p) in the allometric direction, defined as 

d = bi1, …, bi(i − 1), − K + 1, bi(i + 1), …, biK
⊤, is log Y i = − 1

K − 1Qd⊤z(p) + ∑j ≠ i
bij

K − 1 log Y j. 

By (A.3) we have that

d⊤Z = − log
YiK − 1

∏j ≠ iY j
bij

= − log Ri .

Similarly to before, we find Qd⊤z(p) = Q−log Ri(p) = − log QRi(p) . Then the tangent 

hyperplane becomes log Y i = 1
K − 1 log QRi(p) + ∑j ≠ i

bij
K − 1 log Y j, which corresponds to the 

first equation given in (A.2). The second equation in (A.2) is found with similar arguments 

as those used in Proposition 3.1. □

Model (A.1) is rather flexible as it allows for K(K − 1)/2 distinct slopes bij to be estimated. 

If there is evidence or theoretical justification of equality of slopes, some restrictions can be 

imposed, for example, by assuming homogeneity of the bij’s for some j’s or using an even 

more parsimonious model of the kind, Y i = ai ∏miY mi
bi, i = 1, …, K where mi indexes a 

subset of K − 1 variablesYj, j ≠ i.
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B Appendix – Additional tables

Table 6:

The gestational-age-specific mortality risk and 95% confidence interval for girls born 

preterm (22 to 29 weeks) with normal birthweight (BW) and head circumference (HC) are 

shown in bold font. The other rows show the mortality relative risk (as compared to infants 

with normal BW and HC) and 95% confidence interval for infants with either one or both 

anthropometric measurements below the univariate 10th percentile. The sample size is 

denoted by N.

BW HC N Risk Lower Upper

(21, 23] weeks

Normal Normal 4,655 0.52 0.51 0.54

Normal < 10th 322 1.23 1.13 1.34

< 10th Normal 306 1.36 1.26 1.47

< 10th < 10th 213 1.50 1.39 1.61

(23, 25] weeks

Normal Normal 14,979 0.19 0.19 0.20

Normal < 10th 650 1.45 1.27 1.65

< 10th Normal 736 1.85 1.67 2.05

< 10th < 10th 1,033 2.69 2.51 2.88

(25, 27] weeks

Normal Normal 19,571 0.06 0.06 0.07

Normal < 10th 649 1.84 1.47 2.30

< 10th Normal 860 2.12 1.77 2.54

< 10th < 10th 1,368 4.19 3.77 4.65

(27, 29] weeks

Normal Normal 24,318 0.02 0.02 0.03

Normal < 10th 995 1.15 0.79 1.69

< 10th Normal 1,253 1.70 1.28 2.25

< 10th < 10th 1,531 3.83 3.21 4.58

Table 7:

The gestational-age-specific mortality risk and 95% confidence interval for boys born 

preterm (22 to 29 weeks) with normal birthweight (BW) and head circumference (HC) are 

shown in bold font. The other rows show the mortality relative risk (as compared to infants 

with normal BW and HC) and 95% confidence interval for infants with either one or both 

anthropometric measurements below the univariate 10th percentile. The sample size is 

denoted by N.

BW HC N Risk Lower Upper

(21, 23] weeks

Normal Normal 5,161 0.59 0.58 0.60

Normal < 10th 297 1.18 1.10 1.28
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BW HC N Risk Lower Upper

< 10th Normal 351 1.29 1.21 1.37

< 10th < 10th 227 1.42 1.33 1.51

(23, 25] weeks

Normal Normal 16,721 0.24 0.23 0.24

Normal < 10th 601 1.44 1.29 1.62

< 10th Normal 953 1.68 1.55 1.83

< 10th < 10th 1,030 2.36 2.22 2.50

(25, 27] weeks

Normal Normal 21,623 0.08 0.08 0.09

Normal < 10th 934 1.47 1.23 1.76

< 10th Normal 954 2.08 1.79 2.40

< 10th < 10th 1,485 3.99 3.67 4.35

(27, 29] weeks

Normal Normal 27,565 0.03 0.03 0.03

Normal < 10th 1,247 1.63 1.26 2.11

< 10th Normal 1,348 1.79 1.41 2.27

< 10th < 10th 1,810 4.52 3.94 5.18

Table 8:

The gestational-age-adjusted mortality risk and 95% confidence interval for infants born 

preterm (22 to 29 weeks) with normal birthweight (BW) and head circumference (HC) are 

shown in bold font. The other rows show the mortality relative risk (as compared to infants 

with normal BW and HC) and 95% confidence interval for infants with either one or both 

anthropometric measurements below the univariate 10th percentile. Estimates are given by 

sex, separately for infants whose HC-to-BW ratio in the isometric direction is below the 90th 

percentile (normal) or above it (supranormal). The sample size is denoted by N.

BW HC N Risk Lower Upper N Risk Lower Upper

Females Normal HC-to-BW ratio Supranormal HC-to-BW ratio

Normal Normal 61,254 0.11 0.11 0.11 2,269 0.20 0.18 0.21

< 10th Normal 405 0.93 0.70 1.25 2,750 0.91 0.61 1.37

< 10th < 10th 582 1.87 1.59 2.20 3,563 1.11 0.99 1.23

Males Normal HC-to-BW ratio Supranormal HC-to-BW ratio

Normal Normal 70,223 0.13 0.13 0.14 847 0.26 0.23 0.29

< 10th Normal 1,055 1.56 1.38 1.75 2,551 1.03 0.48 2.21

< 10th < 10th 1,098 1.86 1.68 2.07 3,454 1.02 0.89 1.16
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Figure 1: 
Left: head circumference (HC) vs birthweight (BW). The horizontal and vertical dashed 

lines mark, respectively, the estimated 10th percentile of HC and BW at age 162 days, and 

divide the plane into four quadrants numbered I to IV. Right: HC-to-BW ratio vs gestational 

age. Superimposed solid lines represent smoothing splines predictions.
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Figure 2: 
Left: gestational-age-specific directional quantile envelopes (DQEs) of birthweight (BW) 

and head circumference (HC) for all girls at level p = 0.1. Right: DQEs of BW and HC at 

levels p = 0.1 and p = 0.005 for girls born at (23, 25] weeks of gestation. The dashed line 

marks the 90th percentile of the HC-to-BW ratio in the allometric direction.
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Figure 3: 
Directional quantile envelopes (DQEs) of birthweight (BW) and head circumference (HC) at 

levels p = 0.1 and p = 0.005 for infants born to normotensive (solid lines) and hypertensive 

mothers at different gestational ages.
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Table 1:

Sample size (N), median birthweight (BW, grams), and median head circumference (HC, centimeters) of 

infants in the VON dataset.

Females Males

Gestational age N BW HC N BW HC

(21,23] 5,496 550 20.5 6,036 580 21.0

(23,25] 17,398 680 22.0 19,305 730 22.5

(25,27] 22,448 890 24.0 24,996 950 24.5

(27,29] 28,097 1,145 26.0 31,970 1,220 26.5

All ages 73,439 880 24.0 82,307 945 24.5
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Table 2:

The gestational-age-adjusted mortality risk and 95% confidence interval for infants born preterm (22 to 29 

weeks) with normal birthweight (BW) and head circumference (HC) are shown in bold font. The other rows 

show the mortality relative risk (as compared to infants with normal BW and HC) and 95% confidence interval 

for infants with either one or both anthropometric measurements below the univariate 10th percentile. 

Estimates are given by sex. The sample size is denoted by N.

BW HC N Risk Lower Upper

Females

Normal Normal 63,523 0.11 0.11 0.11

Normal < 10th 2,616 1.67 1.54 1.82

< 10th Normal 3,155 1.82 1.69 1.96

< 10th < 10th 4,145 2.57 2.44 2.71

Males

Normal Normal 71,070 0.14 0.13 0.14

Normal < 10th 3,079 1.41 1.31 1.52

< 10th Normal 3,606 1.81 1.70 1.92

< 10th < 10th 4,552 2.43 2.32 2.54
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Table 3:

Estimates (standard errors) of the coefficients of the allometric model for BW and HC, along with the p-values 

of the tests on equality of the slopes. The 90th percentile of the allometric ratio is reported in the last column.

log10 a Parameter
b

QR(0.9)

All 0.4488 (0.0011) 0.3166 (0.0004) 2.9647 (0.0006)

Sex (p-value 0.841)

Females 0.4488 (0.0017) 0.3166 (0.0006) 2.9641 (0.0008)

Males 0.4497 (0.0016) 0.3164 (0.0005) 2.9704 (0.0009)

Gestational age (p-value < 0.001)

(21,23] 0.1816 (0.0087) 0.4125 (0.0032) 1.6123 (0.0018)

(23,25] 0.4212 (0.0034) 0.3260 (0.0012) 2.7798 (0.0013)

(25,27] 0.5102 (0.0027) 0.2963 (0.0009) 3.4026 (0.0011)

(27,29] 0.5413 (0.0024) 0.2865 (0.0008) 3.6553 (0.0010)
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Table 4:

The gestational-age-adjusted mortality risk and 95% confidence interval for infants born preterm (22 to 29 

weeks) with normal birthweight (BW) and head circumference (HC) are shown in bold font. The other rows 

show the mortality relative risk (as compared to infants with normal BW and HC) and 95% confidence interval 

for infants with either one or both anthropometric measurements below the univariate 10th percentile. 

Estimates are given by sex, separately for infants whose HC-to-BW ratio in the allometric direction is below 

the 90th percentile (normal) or above it (supranormal). The sample size is denoted by N.

BW HC N Risk Lower Upper N Risk Lower Upper

Females Normal HC-to-BW ratio Supranormal HC-to-BW ratio

Normal Normal 59,033 0.11 0.11 0.11 4,490 0.13 0.12 0.14

< 10th Normal 1,425 1.70 1.52 1.90 1,730 1.62 1.44 1.82

< 10th < 10th 3,284 2.30 2.16 2.45 861 3.14 2.82 3.50

Males Normal HC-to-BW ratio Supranormal HC-to-BW ratio

Normal Normal 65,984 0.14 0.13 0.14 5,086 0.14 0.13 0.15

< 10th Normal 1,425 1.77 1.61 1.95 2,181 1.81 1.64 2.00

< 10th < 10th 3,384 2.16 2.04 2.28 1,168 3.17 2.88 3.48
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Table 5:

The gestational-age-adjusted mortality risk and 95% confidence interval for infants born preterm (22 to 29 

weeks) with normal birthweight (BW) and head circumference (HC) are shown in bold font. The other rows 

show the mortality relative risk (as compared to infants with normal BW and HC) and 95% confidence interval 

for infants with either one or both anthropometric measurements below the univariate 10th percentile. 

Estimates are given for groups divided by normal and supranormal HC-to-BW ratio in the allometric direction, 

separately for infants born to normotensive and hypertensive mothers. The sample size is denoted by N.

BW HC N Risk Lower Upper N Risk Lower Upper

Normal HC-to-BW ratio Normotensive Hypertensive

Normal Normal 76,700 0.13 0.13 0.13 22,136 0.07 0.07 0.08

< 10th Normal 666 2.65 2.39 2.94 1,631 2.05 1.81 2.32

< 10th < 10th 1,972 2.43 2.28 2.60 3,479 3.30 3.06 3.56

Supranormal HC-to-BW ratio Normotensive Hypertensive

Normal Normal 3,993 0.17 0.16 0.19 3,353 0.07 0.06 0.08

< 10th Normal 951 1.80 1.61 2.03 2,080 2.75 2.36 3.22

< 10th < 10th 579 2.40 2.14 2.70 1,041 6.21 5.37 7.19
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