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Abstract

Glaucoma is one of the leading causes of vision impairment worldwide. In order to further 

understand the molecular pathobiology of this disease and to develop better therapies, clinically 

relevant animal models are necessary. In recent years, both the rat and mouse have become popular 

models in glaucoma research. Key reasons are: many important biological similarities shared 

among rodent eyes and the human eye; development of improved methods to induce glaucoma and 

to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the 

relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include 

intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent 

models address the most important risk factor of elevated IOP, whereas the pressure-independent 

models assess “normal tension” glaucoma and other “non-IOP” related factors associated with 

glaucomatous damage. The current article provides descriptions of these models, their 

characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and 

limitations.
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1. Introduction

1.1. Glaucoma

The glaucomas are a heterogeneous group of optic neuropathies that have in common 

characteristic damage to the optic nerve head (ONH) (progressive cupping and excavation) 

and loss of vision (characteristic progressive changes to the visual field). This group of 

diseases are the leading cause of irreversible vision loss and blindness worldwide, affecting 

more than 80 million individuals by 2020 (Tham et al., 2014). There are a number of 

subtypes of glaucoma, but primary open-angle glaucoma (POAG) is the most prevalent. 

Among a long list of risk factors that have been associated with the development of human 

glaucoma in a number of studies include: elevated intraocular pressure (IOP), increasing 

age, ethnicity, family history of glaucoma, and responsiveness to glucocorticoids (GCs) 

(Weinreb et al., 2014; Quigley 2011; Kwon et al., 2009; Jonas et al., 2017). It should be 

noted that for space limitations, this list of risk factors is not exhaustive. Elevated IOP is the 

most important risk factor for both the development and progression of POAG (AGIS, 2000; 

Kass et al., 2002), and lowering IOP pharmaceutically or surgically is the major and 

currently only method to treat glaucoma. Family history of glaucoma as an important risk 

factor supports the role genetics in the development of glaucoma (Weinreb et al., 2014; 

Quigley 2011; Kwon et al., 2009; Jonas et al., 2017; Worley and Grimmer-Somers 2011). 

Myocilin (MYOC) was the first glaucoma gene identified, which is autosomal dominant and 

responsible for ~4% of POAG (Alward et al., 1998; Stone et al., 1997). A large number of 

genome wide association studies (GWAS) show that the majority of glaucoma is polygenic 

with a number of minor risk alleles identified (Liu and Allingham, 2017; Wiggs and 

Pasquale, 2017). Many individuals receiving prolonged anti-inflammatory GC therapy 

develop the side effect of elevated IOP that can cause iatrogenic open-angle glaucoma, 

which is clinically very similar to POAG. These “steroid responders” are at greater risk for 

developing POAG (Kitazawa and Horie, 1981; Lewis et al., 1988).

Glaucoma pathogenesis involves: (1) damage to the trabecular meshwork (TM) that is 

responsible for decreased aqueous outflow and IOP elevation; (2) damage to the ONH, 

which thereby damages the unmyelinated optic nerve (ON) axons; (3) progressive death of 

retinal ganglion cells (RGCs); and (4) progressive loss of neurons in the vision centers of the 

brain (Figure 1). Detailed studies on the molecular causes of glaucoma in human are 

complicated by accessibility to human donor eyes with clearly defined glaucoma histories, 

limitations on death to preservation time (very important for neuronal tissues), and that the 

majority of glaucoma donor eyes are at later stages of disease, etc. Despite these limitations, 

a number of pathogenic signaling pathways associated with human glaucoma have been 

discovered, including transforming growth factor (TGF)β2, gremlin (GREM1), connective 

tissue growth factor (CTGF), endoplasmic reticulum (ER)/protein stress, Wnt, GC, CD44, 

COCH, among others. However, to better understand the molecular pathobiology of 

glaucoma and to develop better disease modifying therapies, new animal models are 

required that realistically phenocopy clinical glaucoma in man.
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1.2. Need for relevant rodent models of glaucoma

Nonhuman primate (NHP) models of glaucoma have been developed to study IOP-related 

damage to the ONH (Yang et al., 2017) and to discover novel IOP lowering therapeutics 

(Hellberg et al., 2001). However, NHPs are very expensive and ocular hypertension (OHT) 

models laser and sclerose the TM, making this unsuitable to better understand glaucomatous 

damage to the TM. Both the rat and mouse have become popular in glaucoma research due 

to improved methods to induce glaucoma as well as to measure and quantify glaucomatous 

damage to the eye (see below). Mice and rats are much less expensive to purchase and 

maintain, and larger numbers can be used to obtain statistically meaningful data. The clear 

advantage in using mice is the power of mouse genetics, both in the wide variety of congenic 

mouse strains available and in the capabilities to modify (increase or decrease) gene 

expression in specific tissues. Relevant glaucoma rodent models should accurately 

phenocopy glaucomatous damage in the human eye, and fortunately a number of these 

rodent models develop glaucoma that mimic many features of the human disease. However, 

many of these rodent models artificially occlude the aqueous outflow pathway leading to 

acute IOP elevation, which does not mimic glaucomatous damage to the aqueous outflow 

pathway but does model pressure induced damage to the optic nerve and retina. To address 

this, efforts have been made to generate more relevant models that mimic POAG-like 

damage to the trabecular meshwork (see Section 3.7). Other “non-pressure” rodent 

glaucoma models attempt to address other glaucoma pathogenic pathways that may be more 

relevant to “normal tension” glaucoma.

1.3. Comparative ocular anatomy of the rodent eye

The NHP eye is the closest in anatomica! structure to the human eye, but NHPs are very 

expensive to use in the laboratory setting. Surprisingly, rat and mouse eyes have a number of 

similarities to the human eye. The TM of rats and mice has laminar trabecular beams 

surrounded by TM cells and a true Canal of Schlemm (Smith et al., 2002). The aqueous 

outflow physiology is also similar to man in that ~80% of outflow is through the TM 

pathway (Millar et al., 2011; Millar and Pang, 2015). The majority of IOP lowering 

glaucoma drugs in man also lower IOPs in rat (Morrison et al., 1998; Pang et al., 2005b) and 

mouse (Aihara et al., 2002; Akaishi et al., 2009; Yang et al., 2012) eyes. Although mouse 

and rat eyes do not have laminar sheets of connective tissue supporting the ONH as seen in 

man, these rodent eyes have a cellular lamina that serves a similar role (Morrison, 2005; Sun 

et al., 2009). There is a pressure sensitive block of axonal transport at the ONH in mouse 

and rat eyes (Howell et al., 2007; Vidal-Sanz et al., 2012) similar to that seen in human and 

NHP eyes with glaucoma (Quigley et al., 1981; Quigley et al., 1979; Sakugawa and Chihara, 

1985). There is a “wedge” shaped organization of RGCs and RGC axons that bundle 

together at the ONH in mouse eyes that mimic the arcuate bundle arrangement in RGC 

axons in human eyes, and initial glaucoma damage occurs at the ONH leading to sectoral 

loss of RGC axons, similar to arcuate bundle loss in man. There are a number of subsets of 

RGCs in mouse eyes (Rheaume et al., 2018), again similar to man. The RGC dendritic 

arbors in the inner plexiform layer are stratified as seen in human eyes (El-Danaf and 

Huberman, 2015; Sumbul et al., 2014). Mouse and rat RGC axons bifurcate at the optic 

chiasm and target ipsilateral and contralateral neurons in the visual centers in the brain. 
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Among the major differences in ocular anatomy of rat and mouse eyes is the very large lens 

that accounts for a majority of the ocular volume compared to human eyes.

1.4. Classes of rodent glaucoma models

Rat and mouse glaucoma models generally can be classified as either pressure (IOP) 

dependent or pressure independent (Table 1). Many of the pressure dependent models 

address the most important and causative risk factor of elevated IOP, although the manner in 

which IOP is raised in the rodent eyes varies. Pressure independent models attempt to 

address “normal tension” glaucoma in which IOPs remain in the normal range. These 

models also address other “non-IOP” related factors that have been associated with 

glaucomatous damage to the ONH and/or RGCs. Both pressure dependent and independent 

models will be addressed in this review. It should be noted that many of these models are 

specific to a particular lab and oftern require considerable skill to develop reproducibility. 

Unfortunately, there may be some “reporting bias” because labs that are unable to reproduce 

one of these models generally do not report negative data. If possible, it is best to receive 

detailed methods and/or visit the lab where the model is routinely run in order to learn the 

“tricks of the trade”. Still, a major challenge with many of the inducible rodent models of 

glaucoma is this variability in success between laboratories (science needs to be 

independently reproducible) and the need to properly convey all the details required to 

accurately and independently validate a model in another laboratory.

1.5. Genetic rodent models of glaucoma

There are a number of interesting and informative genetic mouse models of glaucoma (Table 

2). However, these models are beyond the scope of our current review and have been 

previously covered in other very good review articles (Fernandes et al., 2015; Howell et al., 

2008; John et al., 1999; Lindsey and Weinreb, 2005; McKinnon et al., 2009).

2. Experimental techniques and end points

One of the major advances in the growing use of mice and rats in glaucoma research has 

been the development of relevant experimental techniques that allow measurement and 

quantification of glaucomatous damage to the rodent eye (Table 3). Both invasive (Avila et 

al., 2001; John et al., 1997) and non-invasive techniques have been used to measure IOP in 

rodent eyes. Cannulation of the rodent eyes with microneedles provide the most accurate 

measurement of IOP but has the disadvantage of requiring anesthesia (that affects IOP), and 

the invasive nature prevents multiple, frequent measurements of IOP in the same eye. Non-

invasive tonometry using the Tonopen in rat eyes (Moore et al., 1993) and the rebound 

tonometer (e.g. TonoLab) in mouse and rat eyes (Danias et al., 2003a; Wang et al., 2005) 

provide accurate IOPs as long as these tonometers are properly calibrated for each rat or 

mouse strain being evaluated (Figure 2). Both rats and mice (and human operators!) can be 

behaviorally trained to record conscious IOPs, which eliminates the confounding effects of 

anesthesia on the IOP readings. With extensive experience in using both the Tonopen and 

Tonolab in the rat and mouse, our research team feels that the TonoLab is a much easier 

equipment to learn and use. Prolonged training sessions for new users are typically not 

required before satisfactory data are obtained. Most importantly, because of the very light 
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force when the probe touches the cornea, the animals tolerate it very well and appear 

comfortable. Their IOP values are not affected after multiple (even up to 90) consecutive 

measurements (Wang et al., 2005).

Glaucomatous damage to the retinal nerve fiber layer (RNFL), retinal ganglion cell layer 

(RGCL), and interplexiform layer (IPL) can be measured non-invasively and progressively 

in the same eyes using optical coherence tomography (OCT) imaging (Dietrich et al., 2019; 

Kim et al., 2016; Liu et al., 2014) (Figure 3). Likewise, RGC function also can be measured 

non-invasively using electroretinography (ERG) technologies that specifically measure 

RGCs, including pattern ERG (PERG) (Figure 4) and the positive scotopic threshold 

response (pSTR) (Liu et al., 2014; Perez de Lara et al., 2014; Zode et al., 2012; Salinas-

Navarro et al., 2009; Cuenca et al., 2010). (Figure 4). It should be noted that some rodent 

glaucoma models report changes to the ERG a- and b-wave amplitudes and/or latencies, 

which indicates damage to photoreceptors and bipolar cells, respectively. ERG a- and b-

wave deficits generally are not associated with glaucomatous damage to the retina in 

humans. RGCs or subsets of RGCs have been labeled with fluorescent proteins that allow 

visualization of RGS in live mice (Leung et al., 2008; Tosi et al., 2010) or help distinguish 

RGC subset sensitivity to glaucomatous insults by immunofluorescent staining of retinal 

flatmounts (Daniel et al., 2018; El-Danaf and Huberman, 2015). RGCs counting in retinal 

flatmounts often use immunofluorescent staining of Brn3a or Brn3b, RBPMS, NeuN (Figure 

5), or b-tubulin-III (Tuj1). It should be noted that anti-Brn antibodies do not label the entire 

RGC population, so alternatives such as RBPMS and NeuN are commonly used. It often is 

difficult to see individual RGC soma with Tuj1 because this antibody also labels the 

overlying RGC nerve fiber layer. Commercial availability of these antibody reagents is 

somewhat unpredictable and may change with time. RGCs in specific regions of the retina 

can be counted manually or automatically. There are several automated programs that 

perform total RGC counts (Danias et al., 2003b; Geeraerts et al., 2016; Salinas-Navarro et 

al., 2009) (Danias et al., 2003b; Geeraerts et al., 2016; Salinas-Navarro et al., 2009; Rovere 

et al., 2015). However, many of the systems used to count RGCs have not been validated in 

multiple models and independently confirmed by other labs. In addition, in some models the 

retina can expand in hypertensive eyes (i.e. in eyes of young animals with high IOPs), so 

RGC number vs RGC density needs to be considered. RGC numbers can vary among 

different mouse and rat strains, so this needs to be considered when comparing results 

between strains. Most studies do not address whether their models also damage other retinal 

neurons (e.g. displaced amacrine cells in the RGC layer or other cells in the inner and outer 

retina). In addition, it is highly likely that both retinal astrocytes and microglia play an 

important role in pathogenic damage to the retina and optic nerve. In addition, quantitative 

assessment of retina! mRNA levels of RGC-specific biomarkers, such as Thy-1 and 

neurofilament-L, can be used as indices of RGC injury (Nash & Osborne, 1999; Chidlow et 

al., 2005).

RGC numbers and axonal transport function can be determined using intravitreal injection of 

cholera toxin B (CTB) attached to a fluorescent dye for anterograde transport or injection of 

a membrane impermeable fluorescent dye (e.g. di I, fluorogold) into the superior colliculus 

to measure retrograde transport. Optic nerve function also can be measured in vivo by 

recording light-induced electric currents in the visual cortex using visual evoked potentials 
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(VEPs) (Domenici et al., 2014; Heiduschka et al., 2010; Porciatti et al., 1999). Histological 

damage to the ON can be assessed by counting axons, using either manual or automated 

imaging techniques (Ebneter et al., 2012; Oglesby et al., 2012; Quigley et al., 2011; Zarei et 

al., 2016). Paraphenylenediamine (PPD) staining of ON cross-section allows easy 

identification of degenerating axons, and a number of “clinical” scoring procedures have 

been used to very quickly assess ON damage in large numbers of samples in both rat and 

mouse models of glaucoma (Chauhan et al., 2006; Fortune et al., 2004; Libby et al., 2005a) 

(Figure 6). Loss in vision can be measured behaviorally using optokinetics (Dietrich et al., 

2019; Stahl, 2004).

Recently, there has been more emphasis on issues related to rigor and reproducibility as 

requirements for both publications and grant proposals, and these should be carefully 

considered when using inducible rodent models of glaucoma. Genetic backgrounds for each 

group should be carefully matched and “n”s per group should be designed based on 

preliminary data to provide statistically significant data at the end of the study. Also, proper 

controls need to be incorporated (i.e. sham injections/procedures; anesthetics; post-surgical 

care). Care also needs to be considered when using contralateral eyes as controls, because 

these eyes are not naïve and often are also affected (Liu et al. 2014). Age and gender also 

should be addressed. Although it is less expensive to use young rodents, in some cases 

ocular tissues and neuronal connections within the brain are still developing, and the 

majority of human glaucoma occurs in older adults.

3. Pressure-dependent models

Since OHT is a major risk factor for glaucoma, it makes sense to develop and use animal 

models with elevated IOP for glaucoma research. In rodents, most pressure models involve 

blockade of the aqueous humor outflow either by intracameral injection of occluding 

materials or by sclerotic damage of the outflow structures/vasculatures. As previously 

mentioned in Section 1.2, this acutely elevates IOP and does not mimic the natural course of 

glaucomatous damage to the aqueous outflow pathway, but other models attempt to more 

accurately model glaucoma pathogenesis in the TM (Section 3.7). Both mice and rats are 

most active at night, and A aqueous humor production as well as IOP are higher at nighttime 

(Haddadin et al., 2009; Valderrama et al., 2008), and therefore damage to the outflow 

pathway leads to even higher IOPs at nighttime (Zode et al. 2014; Patel et al. 2017; Jia et al., 

2000). Therefore, many studies reporting daytime IOPs are under-estimating the peak IOP 

and the full magnitude of IOP exposure. In addition, IOPs need to be carefully circadian 

matched. For some inducible glaucoma models, careful aqueous humor dynamics studies 

have not been performed, so we do not know whether the method of IOP induction has any 

influence on these natural circadian variations.

3.1. Microbead occlusion models

A number of laboratories run various versions of the microbead occlusion model, which 

appear to work well in specific laboratories. In addition, these models appear to evolve over 

time, even within the same laboratory. Unfortunately, no “head-to-head” comparisons have 

been reported, so it is difficult to determine which is the “optimal” version of these models.
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3.1.1. Intracameral injection of microbeads—Intracameral injection of microbeads 

(microspheres) to elevate IOP was first described in larger mammals, such as the primate 

(Weber and Zelenak, 2001). This method was later successfully adapted and optimized for 

mice and rats. Polystyrene or latex microbeads injected into the anterior chamber 

accumulate in the TM and Schlemm’s canal (Cone et al., 2010) and cause a physical 

blockade of the aqueous outflow pathway leading to OHT.

Because of the small size of the rodent eye, injecting fluid into the anterior chamber itself is 

sufficient to produce an IOP spike. If the injected volume is too large, the excessive increase 

in IOP may reduce retinal circulation transiently or induce other types of unintended ocular 

injuries, which will confound data analysis and interpretation. Thus, most laboratories limit 

their ocular injection volume to 2 μL for the mouse and 10 μL for the rat, although higher 

volumes have been reported.

Researchers have also evaluated effects of the size and number of the injected microbeads on 

the induced OHT. In the mouse, Chen et al (2011) demonstrated that using 1.4 × 104 beads 

of 10 μm diameter (in a volume of 2 μL) produced a higher IOP than 15 μm beads. They 

further showed that a second injection prolongs the IOP change for more than 8 weeks. In 

the rat, Sappington and coworkers (Sappington et al., 2010) carefully compared amounts of 

injected 15 μm microbeads and concluded that 5 × 103 beads (in a volume of 5 μL) produced 

consistent elevation of IOP and, similar to the mouse, a second intracameral injection 

lengthens the duration of OHT to more than 8 weeks. Urcola et al (2006) showed that 

weekly injections of latex microbeads (2–4 × 105; in a volume of 20 μL) produces a very 

prolonged IOP elevation lasting for more than 30 weeks.

3.1.2. Intracameral injection of microbeads with viscoelastic material—While 

intracameral injection of microbeads suspended in an aqueous solution, such as PBS or 

balanced salt solution, is sufficient to induce OHT, others have modified the technique by 

injecting a viscoelastic formulation, either 1% sodium hyaluronate (Healon®, Proviso®) or 

2% hydroxypropylmethylcellulose (Methocel®), following the bead suspension. Addition of 

viscoelastic solution enhances the mean IOP elevation and perhaps the duration of 

hypertension (Cone et al., 2012; Urcola et al., 2006). It is believed that the viscoelastic 

solution minimizes the leakage/egress of microbeads when the injection needle is removed. 

Furthermore, because of their physical properties, the viscoelastic material may also directly 

contribute to additional blockade of aqueous humor outflow. Cone et al (2012) and Frankfort 

et al (2013) further used a mixture of microbeads of two different sizes to attempt to 

improve the OHT effect.

3.1.3. Intracameral injection of magnetic microbeads—In the rat, this technique 

was also optimized by intracameral injection of ferromagnetic microbeads. As first 

described by Samsel et al (2011), at the completion of injection of the beads, a hand-held 

magnet is used to draw the magnetic beads away from the injection site, such that bead 

leakage can be minimized when the needle is withdrawn. The magnet can also help to spread 

the beads to all quadrants of the iridocorneal angle to maximize their distribution, and 

presumable trabecular outflow blockade. Bunker and colleagues (2015) further refined the 

procedure by placing a cylindrical magent over the anterior segment to encourage fast 
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transfer of magnetic beads to the TM, which was reported to produce a very high IOP in the 

rat.

The microbead-induced OHT in the mouse and rat causes pathological changes similar to 

glaucomatous retinopathy and optic neuropathy: thinning of the retina (Chen et al., 2011) 

(especially the combined thickness of the RNFL, RGCL, and IPL), reduction in ERG 

parameters (such as PERG amplitude), RGC loss (Cone et al., 2010; Frankfort et al., 2013; 

Urcola et al., 2006; Wu et al., 2019; Yang et al., 2012) or apoptosis (Bunker et al., 2015), 

and ON axonal damages (Bunker et al., 2015; Cone et al., 2010; Frankfort et al., 2013; 

Sappington et al., 2010). However, decreased a- and b-wave ampltiudes on ERG have also 

been observed (Wu et al., 2019), suggesting that in addition to affecting RGCs, there also is 

damage to photoreceptors and bipolar cells.

3.2. Intracameral injection of viscous agents

In addition to microbead injection, physical occlusion of the aqueous humor outflow can 

also be achieved by intracameral injection of viscous substances. For example, a single 

injection of hyaluronic acid into the anterior chamber increased IOP lasting for more than a 

week in the rat (Benozzi et al., 2002). With weekly repeated injections, OHT reached a 

consistent, elevated plateau for at least 10 weeks (Benozzi et al., 2002). The prolonged IOP 

increase caused losses of axons in the ON and cells in the RGCL, as well as decreases in a- 

and b-wave amplitudes and oscillatory potentials of the scotopic ERG (Moreno et al., 2005).

3.3. Sclerosis of the outflow pathway

Other than intracameral injection of foreign substances, blockade of aqeuous outflow can 

also be accomplished by sclerosis of the outflow pathway. Two methods, episcleral injection 

of hypertonic saline and laser photocoagulation of the outflow structures, have been 

carefully characterized and used by multiple laboratories with reported successes in rapid 

and sustained increase in IOP.

3.3.1. Episcleral injection of hypertonic saline—First reported by Morrison et al 

(Morrison, 2005; Morrison et al., 1997), an ingenious way to induce OHT in the rat is by 

injection of hypertonic saline ([NaCl] ≈ 1.75 M) into one of the episcleral veins while 

occluding most of the other episcleral veins by a tight-fitting ring placed on the 

circumference of the globe immediately posterior to the limbus (Morrison et al., 2015; 

Morrison et al., 2018) (Figure 7). The injected saline is then retrogradely forced into the 

Schlemm’s canal and related outflow structures, which induces sclerosis and consequently 

blocks aqueous humor outflow, leading to elevation of IOP, typically within a few days post-

injection (Morrison, 2005; Morrison et al., 2015; Morrison et al., 2018; Morrison et al., 

1997). An often encountered limitation of this technique is that not all treated eyes develop 

OHT and the level of IOP change can be variable among the injected eyes. However, once 

elevated, the IOP increase is usually sustained for a long period, reported to be up to 200 

days (Morrison et al., 1997).

Hypertonic saline-induced chronic IOP elevation causes pathological changes in the rat 

retina, ONH, and ON similar to those described in glaucoma patients. In the hypertensive 
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eyes, pressure-dependent apoptotic loss of RGC (Guo et al., 2005; Hanninen et al., 2002; 

Morrison et al., 1997; Schlamp et al., 2001), progressive cupping of the optic disc (Chauhan 

et al., 2002), and loss of nerve fibers (Huang et al., 2005) were evident. Disappearance of 

axoplasm, axonal swelling, and collapses of myelin sheath, indicating axonal degeneration 

were observed in ONs of injured eyes. When assessed by axon counts (Chauhan et al., 2002; 

Tezel et al., 2005), by quantifying the damaged area (Johnson et al., 2007; Morrison et al., 

1997), or by ON injury scores (Ahmed et al., 2004; Fortune et al., 2004; Jia et al., 2000; 

Morrison et al., 2005; Pang et al., 2005a; Schlamp et al., 2001), the severity of ON injury 

correlated well with the magnitude and duration of IOP elevation. Importantly, these 

changes are obviously results of OHT, because treatment with glaucoma medications, 

betaxolol and apraclonidine, reduced the ON injury significantly (Morrison et al., 1998).

In addition to morphological changes, hypertonic saline-induced hypertension also produces 

functional changes in the rat retina in an IOP-dependent manner. In rats when a mild IOP 

elevation was achieved by this procedure, only their pSTR parameters were reduced, without 

affecting other ERG components, such as a-wave, b-wave, and oscillatory potential, 

indicating a selective RGC injury (Fortune et al., 2004). In contrast, rats with prolonged high 

IOP had diminished amplitudes of these other ERG components, suggesting damage to 

bipolar and photoreceptor cells, similar to late-phase glaucoma patients (Fortune et al., 

2004).

This technique has been successfully adopted by many researchers. It is a very useful model 

for glaucoma research, generating IOP-dependent retina and ON pathophysiological 

changes. Nonetheless, it has several drawbacks: (1) The injection often produces various 

degrees of IOP elevation in different animals of the same cohort. Therefore, relatively large 

numbers of animals are usually necessary to allow sufficient sample sizes of similar IOP 

change. (2) The injection procedure is technically difficult and labor intensive, limiting the 

throughput of studies. (3) Because of the much smaller diameter of the mouse episcleral 

veins, this technique is too challenging to be practical in the mouse.

3.3.2. Laser photocoagulation of outflow pathway—Laser photocoagulation is 

another practical means to induce sclerotic damage to the outflow pathway. Several 

variations of this method have been reported. In the rat, Ueda et al first injected India ink 

into the anterior chamber, then lasered the TM to produce IOP elevation (Ueda et al., 1998). 

The procedure leads to apoptotic RGC death (Lam et al., 2003) and loss of ON axons (Ishii 

et al., 2003). A major inconvience of this technique is that, in order to sustain a prolonged 

OHT, frequent and repeated lasering is necessary.

WoldeMussie and coworkers directly lasered the rat limbal and episcleral veins, instead of 

the TM, to induce further downstream blockade of aqueous outflow and thus chronic OHT, 

which lasted for more than a year (Hare et al., 2001; WoldeMussie et al., 2001). Similar to 

TM laser photocoagulation, it caused RGC loss (WoldeMussie et al., 2001) and reduction in 

the PERG amplitude (Ben-Shlomo et al., 2005). The procedure does not seem to cause outer 

retina damage (Ben-Shlomo et al., 2005).
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Levkovitch-Verbin et al generated consistent IOP elevation in the rat translimbal laser 

treatments directed at the TM plus episcleral veins (Levkovitch-Verbin et al., 2002), which 

led to ON damage and RGC death (Levkovitch-Verbin et al., 2002; Martin et al., 2002; 

Martin et al., 2003). Importantly, the induced damage was rather expansive: all retinal layers 

became thinner (Grozdanic et al., 2004). Significant reductions in amplitudes of ERG a- and 

b-waves, together with a complete loss of oscillatory potentials, were observed (Grozdanic 

et al., 2004). These findings suggest that laser treatment of both the TM and episcleral veins 

produced unintended changes in addition to IOP increase.

Similar to the rat, laser photocoagulation of the mouse limbus also elevates IOP (Aihara et 

al., 2003a; Gross et al., 2003; Grozdanic et al., 2003b). The insult induces RGC loss and ON 

degeneration, comparable to changes seen in glaucoma patients (Gross et al., 2003; 

Grozdanic et al., 2003b; Ji et al., 2005; Mabuchi et al., 2003). However, in contrast to the rat, 

laser treatment of the mouse eye appears to produce more extensive retinal injuries; thinning 

of inner and outer nuclear layers, as well as reduction in ERG a- and b-wave amplitudes and 

oscillatory potentials were often reported (Gross et al., 2003; Grozdanic et al., 2003b; Ji et 

al., 2005; Mabuchi et al., 2003). It is likely that because of the smaller eye, every laser spot 

covers more mouse ocular structures than in the rat, and therefore additional retinal tissues 

are damaged.

Laser photocoagulation to induce OHT is generally regarded technically challenging to 

perform to the rodent eye. It requires precise delivery of approximately 80 laser burns 

around the limbus in order to produce a meaningful increase in IOP. Inprecision can lead to 

insufficient IOP elevation or unintended damage to other ocular tissues or both. Post-

operation high IOP spikes were also observed. Despite these cautions, this technique is a 

useful research model; it produces many pathological changes similar to those seen in 

glaucoma patients.

3.4. Cautery of extraocular veins

Shareef et al reported that cauterization of three of the four “episcleral veins” of the rat 

increased IOP (Shareef et al., 1995). However, based on the descriptions by the authors, it is 

likely that vortex veins were mistaken as episcleral veins, since there are four vortex veins 

but more than 30 episcleral veins. Cauterization of vortex veins produces additional 

biological effects that are not solely due to OHT, such as ocular ischemia and congestion, 

leading to outer retina damge, in addition to apoptotic RGC death, optic disc excavation, and 

ON degeneration (Garcia-Valenzuela et al., 1995; Grozdanic et al., 2003c; Ko et al., 2000; 

Mittag et al., 2000; Neufeld et al., 1999; Sawada and Neufeld, 1999). Involvement of IOP-

indedpent insult is further corroborated by Shi et al (Shi et al., 2007), who reported 

continuous RGC degeneration even after the cauterization-induced OHT was ameliorated by 

betaxolol. Hence, users of this method are advised to be cautious in the interpretation of 

results.

Cauterization of extraocular veins is relatively easy to perform in the rat, and it is effective in 

raising IOP. Nonethess, it has been observed that, in some instances, likely due to new 

growth of blood vessels, IOP may return to baseline in a few weeks after surgery (Grozdanic 

et al., 2003c; Kanamori et al., 2005; Mittag et al., 2000).
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3.5. Circumlimbal suture

Recently, He and coworkers decribed an interesting mechanical method to induce chronic 

ocular hypertension (He et al., 2018). In this method, a purse-string suture (7/0 nylon for the 

rat, 10/0 nylon for the mouse), without penetrating the sclera, is weaved around the globe on 

the bulbar conjunctiva posterior and parallel to the limbus. The purse-string is tightened by 

tying a slipknot. The tightness of the slipknot is adjusted to achieve the targeted IOP. The 

authors reported that a stable elevation in IOP could be maintained for at least 8 weeks in the 

rat and 12 weeks in the mouse, concomitant with reductions in pSTR, RNFL thickness, and 

RGC density (He et al, 2018).

3.6. Transient/intermittent IOP elevation

All of the above OHT models are intended to generate sustained and presumably relatively 

constant elevation in IOP. However, in the early stages of glaucoma, the retina and ONH are 

exposed to repeated fluctuations of IOP. Some of the biological changes induced by acute 

IOP changes may not be captured by the prolonged OHT models. To address this 

discrepancy, transient elevation of IOP models, without significant retinal ischemia, have 

been developed and characterized.

Sun et al induced an acute rat IOP elevation to 45 mmHg for up to 7 h by compression of the 

conjunctival limbus (Sun et al., 2011). They found that this insult caused thinning of the 

inner retinal layers, ON damage, and a time-dependent loss of RGC (Figure 8). It did not 

affect thickness of outer retina layers, nor a- or b-wave responses (Sun et al., 2011).

Crowston et al elevated rat IOP to 50 mmHg for 30 min by cannulation of the anterior 

chamber of anesthetized rats. Suprisingly, with such a relatively short period of OHT, loss of 

RGC was observed, together with reduction of photoptic negative response and pSTR, both 

being indicators of RGC function, but not a- or b-wave amplitudes (Crowston et al., 2015). 

Morrison and coworkers used a similar technique to assess IOP elevation to 60 mmHg for 8 

h, and found significant focal axonal degeneration 10 days after insult. pSTR was also 

significantly depressed. In contrast, a- and b-waves fully recovered at 2 weeks after the acute 

OHT (Morrison et al., 2016).

He et al, by cannulation of the anterior chamber, increased IOP to 70 mmHg repeatedly (up 

to four episodes of 15 min each). Based on ERG recovery, they concluded that repeated IOP 

insults lead to cumulative dysfunction in the bipolar cell and RGC, but not photoreceptor 

cells (He et al., 2008).

At this time, effects of transient IOP elevation are difficult to compare among different 

studies. The main reason is the different parameters used: different levels of IOP elevation, 

different durations, and different techniques. Further studies are needed to clarify and 

perhaps unify some of the various results.

3.7. OHT induced by transduction of TM with glaucoma related genes

In order to better understand glaucomatous damage to the trabecular meshwork, viral vectors 

have been used to transduce the TM with genes that have been associated with the 

development of ocular hypertension in POAG (Table 4). While these models have been 
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mainly used to validate the association of specific transgene expression with the 

development of OHT in rodents, additional studies need to address whether this OHT leads 

to glaucomatous damage to RGCs and the optic nerve.

Family history is an important risk factor for the development of POAG as well as other 

forms of glaucoma. Although there are a few forms of glaucoma with Mendelian heredity 

(e.g. MYOC glaucoma), the majority of glaucomas are multigenic and multifactorial (Kwon 

et al., 2009; Liu and Allingham, 2017; Quigley, 2011; Weinreb et al., 2016). GWAS studies 

have identified risk alleles in a wide variety of genes (Liu and Allingham, 2017; Wiggs and 

Pasquale, 2017), but each of these provide only very modest risk and often are difficult to 

experimentally model. Another approach is to compare transcriptome and proteome 

expression differences between age-matched control and glaucoma (largely POAG) 

trabecular meshwork tissues and cells. This research has identified a number of genes with 

altered expression and potential pathogenic signaling pathways to further test to determine 

whether these genes and pathways cause the glaucoma phenotype of elevated IOP (Table 1). 

We have used viral delivery of transgenes associated with glaucoma to the mouse TM in 
vivo in order to determine their effects on IOP, the aqueous outflow facility, and TM cellular 

and molecular biology. Not only does this validate the specific gene/pathway in the 

regulation of IOP, but this also allows detailed study of glaucoma pathogenesis as well as 

development of new glaucoma models in which to discover new disease modifying 

therapies.

To test the effects of glaucoma related genes discovered by “omics” comparisons of normal 

and glaucoma TM cells and tissues, it is imperative to use transducing reagents that 

effectively and selectively target rodent TM in vivo. Several groups have shown that 

adenovirus 5 (Ad5) uniformly transduces the TM of mouse eyes, although there also are 

small amounts of corneal endothelium and iris transduction (Hoffman et al., 1997; Junglas et 

al., 2012; Millar et al., 2008). We have found that administration of the Ad5.transgene by 

intravitreal injection provides greater TM transduction in the mouse eye compared to 

intracameral injection, perhaps due to a slower release of the viral construct from the 

vitreous, while the virus appears to be quickly “washed out” of the anterior chamber after 

intracameral injection. However, effective TM transduction can be accomplished by slowly 

injecting the transducing virus into the anterior chamber using a perfusion pump (Li et al., 

2013).

An additional issue with Ad5 delivery has been the short duration of transgene action, 

lasting only 3–6 weeks in young mice (Millar et al., 2008; Shepard et al., 2010). An immune 

response to the virus and/or transgene appears to be involved because concurrent systemic 

treatment with anti-CD40L antibodies significantly prolongs transgene expression (Millar et 

al., 2008). Some groups report that this inflammation appears to be transgene dependent, 

with very little to no inflammation using just the Ad5.null vector to measurable anterior 

segment inflammation with other transgenes (Millar et al., 2008; Shepard et al., 2010; 

Shepard et al., 2007; McDowell et al., 2015). Some of the controversy in the literature may 

be due to the final purity of the viral vector preparation, as we have discovered that 

impurities in the viral preparations can cause significant anterior segment inflammation 

(unpublished results). In the past, we have used direct ophthalmoscopy to grade 
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inflammation (Millar et al. 2008) but now routinely use slit lamp examination as a more 

sensitive assessment of inflammation. Although the CMV promoter drives strong transgene 

expression, this expression can be down-regulated within a month (Everett et al., 2004). For 

reasons that still are unclear, prolonged CMV mediated transgene expression in the TM can 

occur when older mice (>5–6 months old) are transduced with Ad5 (McDowell et al., 2012; 

Giovingo et al., 2013; Hernandez et al., 2017). There appears to be ocular toxicity induced 

by some AAV2 promoters (Xiong et al., 2019), and this should be carefully examined for 

each promoter in each viral vector.

3.7.1. MYOC—Myocilin (MYOC) was the first POAG gene identified and accounts for 

approximately 4% of POAG worldwide. There is a strong clinical genotype/phenotype 

correlation with some point mutations casing early glaucoma with high IOPs, while the 

Q368X mutation is associated with adult onset and modest but significant IOP elevation 

(Alward et al., 1998). Transduction of the mouse TM with Ad5.MYOC expression vectors 

were used to better understand the molecular mechanisms involved in MYOC glaucoma 

showing that the carboxy terminal 3 amino acid peroxisomal targeting signal-1 (PTS1) was 

essential for mutant MYOC-induced OHT (Shepard et al., 2007) (Figure 9). Interestingly, 

these MYOC transduced mice also demonstrate a genotype/phenotype correlation that 

matches that seen clinically. This work showed why over-expression of wild type MYOC 
(Gould et al., 2004) or introduction of glaucoma mutations into mouse Myoc do not 

effectively induce OHT (Gould et al., 2006). These data were the impetuous for developing 

the transgenic MYOC.Y437H mouse model of glaucoma (Zode et al., 2011). We also 

identified mouse strain differences in the ability to develop Ad5.MYOC.Y437H induced 

OHT and glaucomatous optic neuropathy (McDowell et al., 2012), suggesting that modifier 

genes also are present in certain mouse strains. Although the glaucoma phenotype has been 

independently reproduced by another laboratory (Bechel et al., 2014), rederivation of this 

Tg.MYOC.Y437H line has reported no glaucoma phenotype (Lynch et al., 2019). To date, it 

is not clear why there are phenotypic differences in this transgenic line between these 

laboratories. Significant advances in genome editing technology have allowed modifications 

of specific genes. We used CRISPR/Cas9 and RNA guide strand targeting MYOC packaged 

into Ad5 to knockout MYOC expression in the TM of Tg.MYOC.Y437H mice. Genome 

editing and elimination of mutant MYOC expression prevented IOP elevation in young mice 

and decreased IOP in older mice (>9 months old) (Jain et al., 2017).

3.7.2. TGFβ2—The profibrotic cytokine TGFβ2 is elevated in the aqueous humor and 

TM of POAG eyes (Inatani et al., 2001; Ozcan et al., 2004; Picht et al., 2001; Tovar-Vidales 

et al., 2011; Tripathi et al., 1994). Initial attempts using Ad5.TGFβ2 to induce OHT in mice 

and rats were unsuccessful until the generation of a mutant bioactivated form of TGFβ2 

(TGFβ2 C226/228S) was used (Shepard et al., 2010). Ad5.TGFβ2C226/228S increased TGFβ2 

expression in the aqueous humor and TM as well as mediated statistically significant IOP 

elevation in both mice and rats (Shepard et al., 2010) (Figure 10). This TGFβ2-induced OHT 

was due to a significant reduction in the aqueous outflow facility in mouse eyes. Prolonged 

TGFβ2-induced OHT (4–6 weeks) caused glaucomatous optic neuropathy in A/J mice as 

assessed by PPD stained axons in ON cross sections (Figure 11). This specific vector also 

has been used to determine the in vivo signaling pathways responsible for TGFβ2-induced 
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OHT. In cultured human TM cells, TGFβ2 signals via both Smad dependent (Smad2/3/4) 

and Smad independent (p38, ERK1/2, and Jnk) pathways (Sethi et al., 2011). In order to 

determine which pathway(s) were involved in TGFβ2 OHT, we used Ad5.TGFβ2C266/228S 

to transduce the TM of wild type C57/BL6J mice and Smad3 knockout mice. Although the 

WT mice developed significant TGFβ2 OHT, Smad3−/− mice did not (McDowell et al., 

2013). A recent study has suggested that TGFβ2 induced DAMPs such as the EDA isoform 

of fibronectin in the TM (Medina-Ortiz et al., 2013) serve as ligands for the TLR4 receptor 

to promote fibrotic damage to the TM and thereby may elevate IOP. This hypothesis was 

tested in WT (C3H/HeOuJ) and Tlr4 mutant mice (C3H/HeJ). The lack of functional TLR4 

in the Tlr4 mutant mice prevented TGFβ2-induced OHT and the associated reduced outflow 

facility (Hernandez et al., 2017). It should be noted that other approaches have been used to 

generate TGFβ2 OHT, including multiple injections of TGFβ2 into the anterior chamber of 

rat eyes (Hill et al., 2018).

3.7.3. GREM1—Several studies have shown that the profibrotic activity of TGFβ2 in the 

TM is blocked by bone morphogenetic protein (BMP) signaling. Both BMP7 (Fuchshofer et 

al., 2007) and BMP4 (Wordinger et al., 2007) inhibit TGFβ2 induced expression of a 

number of extracellular matrix (ECM) genes and proteins in cultured human TM cells 

suggesting that TGFβ2 and BMP crosstalk signaling regulates TM ECM homeostasis and 

normal IOP. Expression of the BMP antagonist Gremlin (GREM1) is elevated in TM cells 

derived from POAG compared to control eyes (Wordinger et al., 2007). There appears to be 

a “feed-forward” profibrotic response between TGFβ2 and GREM1 because TGFβ2 

increases GREM1 expression and vice versa in cultured TM cells (Sethi et al., 2011). In 

order to determine whether GREM1 was able to affect IOP and aqueous outflow, 

Ad5.GREM1 was used to transduce the TM of mouse eyes. Over-expressing GREM1 
significantly elevated IOP and reduced the outflow facility (McDowell et al., 2015). 

Interestingly, this GREM1-induced OHT was blocked in Smad3−/− mice, further supporting 

the role of Smad3 signaling in the profibrotic activities of both TGFβ2 and GREM1 

(McDowell et al., 2015).

3.7.4. CTGF—An important mediator of the profibrotic effects of TGFβ2 is connective 

tissue growth factor (CTGF). CTGF induces ECM deposition in cultured TM cells (Junglas 

et al., 2009; Wallace et al., 2013) and increases TM cell viability (Kuespert et al., 2015). 

Expression of CTGF is elevated in the aqueous humor of patients with exfoliation glaucoma 

(Browne et al., 2011). Ad5.CTGF transduction of mouse eyes increased expression of 

CTGF, fibronectin, and α-smooth muscle actin in the TM as well as deposition of 

extracellular material in the cribriform region, which was associated with the development 

of OHT and ON damage (Junglas et al., 2012). Based on these results, a very useful 

transgenic Ctgf mouse model of glaucoma was developed (Junglas et al., 2012).

3.7.5. Secreted frizzled-related protein 1 (SFRP1)—Transcriptomics and 

proteomics comparisons between TM cells isolated from POAG donors and age-matched 

controls have shown increased expression of SFRP1 mRNA and protein in GTM cells 

(Wang et al., 2008a). SFRP1 is an antagonist of the Wnt signaling pathway. Wang and 

colleagues have shown that TM cells and TM tissues express Wnt agonists, Wnt receptors 
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(FZLD), as well as Wnt antagonists (Wang et al., 2008a). This group also demonstrated that 

TM cells and tissues have a functional canonical Wnt β-catenin signaling pathway that 

regulates IOP (Mao et al., 2012; Wang et al., 2008a). Ad5. SFRP1 transduction of mouse 

eyes statistically elevated IOP and reduced aqueous outflow facility (Mao et al., 2012; Wang 

et al., 2008a), which was reversed by topical ocular administration of a GSK3β inhibitor, 

further supporting the role of the Wnt β-catenin pathway in regulating IOP. However, SFRP1 

directly binds Wnt ligands and inhibits all 3 major Wnt signaling pathways (including the β-

catenin pathway). In order to more directly determine which Wnt signaling pathway is 

involved in lOP regulation, we evaluated the IOP effects of the Wnt antagonist DKK1, 

which is specific for the Wnt β-catenin pathway. Ad5. DKK1 transduction of the TM in 

mice elevated IOP to the same extent as SFRP1 (Mao et al., 2012). This more conclusively 

demonstrates that the Wnt β-catenin signaling pathway regulates normal IOP, and 

perturbation of this signaling pathway causes OHT. Wnt stabilization of β-catenin leads to 

elevated cytosolic and nuclear levels of β-catenin (Mao et al., 2012). Nuclear β-catenin 

binds to TCF/LEF promoter regions, which mediate the expression of Wnt regulated genes. 

Cytoplasmic β-catenin binds to cadherin adhesion receptors and links them to the actin 

cytoskeleton. SFRP1 inhibition of Wnt signaling leads to the proteolytic degradation of β-

catenin, thereby lowering both nuclear and cytoplasmic levels of β-catenin. This not only 

shuts down Wnt mediated gene expression, but also may interfere with cadherin junctions. 

The TM expresses a number of cadherins, including K-, OB-, and N-cadherins, and Wnt3a 

increased the expression of K-cadherin CDH, and this expression was decreased by SFRP1 

(Webber et al., 2018). In order to determine whether SFRP1 suppression of K-cadherin 

expression was responsible for SFRP1-induced OHT, mouse eyes were transduced with 

Ad5. SFRP1 with or without concomitant transduction with Ad5.K-cadhein. Co-expression 

of K-cadherin along with SFRP1 significantly decreased SFRP1-induced OHT suggesting 

that at least part of the IOP elevating activity of SFRP1 is mediated by decreased expression 

of K-cadherin in the TM (Webber et al., 2018) (Figure 12).

3.7.6. CD44—Comparison of protein expression in the aqueous humor of POAG patients 

and age-matched controls found significantly increased expression of the cell adhesion 

molecule CD44, which can be associated with the membrane (CD44S) or a soluble 

ectodomain form (sCD44) (Knepper et al., 2002). Increased levels of sCD44 were associated 

with progressive visual field damage in POAG patients (Nolan et al., 2007). In order to 

determine whether CD44 plays a potential pathogenic role in glaucomatous damage to the 

TM, mouse eyes were transduced with Ad5.CD44. Over-expression of CD44S significantly 

elevated IOP and reduced the aqueous outflow facility, suggesting a pathogenic role of this 

hyaluronan receptor in POAG (Giovingo et al., 2013).

3.7.7. Cre and inducible transgene models—In addition to using viral vectors to 

over-express specific glaucoma related transgenes, Ad5 also has been used to deliver Cre to 

the TM of conditional knockout (“floxed”) mice. This experimental approach does not 

require crossing a conditionally floxed mouse with a mouse strain having a tissue specific 

promoter driving Cre, which saves considerable time and expense. Also, no “TM specific 

promoter” has been identified to generate a specific TM Cre mouse line. Examples of this 

approach include Ad5.Cre delivery to the TM of Bambifl/fl mice (Hernandez et al., 2018). 
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These mice have increased ECM expression in the TM and develop OHT due to a decreased 

outflow facility (Figure 13), supporting the homeostatic role of TGFβ2/TLR4/BMP in the 

regulation of normal IOP. The role of the extracellular matrix cross-linking enzyme 

transglutaminase-2 (TGM2) in TGFβ2-induced OHT was confirmed using Ad5.Cre to 

knockdown TM TGM2 expression in Tgmfl/fl mice (Raychaudhuri et al., 2018). Knockdown 

of TGM2 expression in the TM significantly inhibited TGFβ2 OHT and reversed the 

decreased outflow facility.

Another interesting approach would be to use inducible transgene expression, in which the 

specific ocular transgene is turned on or turned off by systemic or topical ocular 

administration of a small molecule like tamoxifen. If the inducible transgene is expressed in 

all tissues, more selective ocular expression can be regulated by topical ocular 

administration of tamoxifen or in the case of transgene expression found only in specific 

subset of ocular cells that can be turned on/off by either systemic or local administration of 

tamoxifen.

3.7.8. Genome editing—Significant advances in genome editing technology have 

allowed modifications of specific genes. We used CRISPR/Cas9 and RNA guide strand 

targeting MYOC packaged into Ad5 to knockout MYOC expression in the TM of 

Tg.MYOCY437H mice. Genome editing and elimination of mutant MYOC expression 

prevented IOP elevation in young mice and decreased IOP in older mice (>9 months old) 

(Jain et al., 2017).

3.8. GC-induced OHT and glaucoma

Glucocorticoids (GCs) are unsurpassed in their anti-inflammatory and immunosuppressive 

activities and are very commonly prescribed medications for a wide variety of conditions, 

including ocular inflammation. Unfortunately, prolonged GC therapy can cause OHT and 

secondary iatrogenic open angle glaucoma, which clinically mimics POAG (Clark, 1995; 

Clark and Wordinger, 2009; Fini et al., 2017; Wordinger and Clark, 1999). The development 

of GC-induced OHT depends on the route of administration, GC potency, and duration of 

treatment. GC-induced OHT does not occur in all individuals receiving prolonged GC 

therapy. Approximately 30–40% of individuals receiving prolonged GC treatment develop 

GC-OHT (Clark, 1995; Clark and Wordinger, 2009; Fini et al., 2017; Wordinger and Clark, 

1999). In contrast, almost all POAG patients are “steroid responders” (Armaly, 1963; Becker 

and Hahn, 1964) and relatives of POAG patients also are steroid responders (Bartlett et al., 

1993; Becker and Chevrette, 1966). Elevated IOP is due to TM dysfunction, and GCs cause 

a number of changes to the TM (Clark and Wordinger, 2009; Wordinger and Clark, 1999), 

although it still is unclear which or all of these effects are responsible for the IOP elevation. 

The GC mediated changes to the TM are very similar to those seen in POAG (Clark and 

Wordinger, 2009; Wordinger and Clark, 1999). Therefore, a number of groups have 

developed rodent models of GC-OHT and glaucoma in order to better understand the 

molecular pathogenesis of these two diseases.

The first report of GC-OHT in mice used osmotic minipumps to delivery dexamethasone 

(DEX) systemically (Whitlock et al., 2010). The mice developed modest but statistically 

Pang and Clark Page 16

Prog Retin Eye Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant increases in IOP; however, there also were systemic side effects including 

progressive loss in body weight and leukopenia. Another group used the same approach to 

demonstrate that the DEX-induced OHT was associated with decreased aqueous outflow in 

enucleated eyes and corresponding ultrastructural changes to the TM, particularly the 

cribriform region, which mimic what is seen clinically in man (Overby et al., 2014). 

Unfortunately, approximately 40% of the mice did not reach the end of the study due to 

systemic toxicity.

In effort to reduce the systemic side effects, Zode and colleagues (2014) administered 0.1% 

DEX-21 phosphate eye drops three times/day and showed significantly elevated IOP 

beginning at week 2 through week 6. These GC-OHT mice developed glaucomatous damage 

to the ON and had functional deficits to the RGCs (assessed by PERG) (Figure 14).

Topical ocular administration of DEX 3 times/day for multiple weeks is labor intensive, so 

several groups have developed DEX slow release formulations for periocular injections. 

Patel and colleagues administered DEX 21-acetate suspensions by weekly fornix-based 

periocular bilateral injections and these mice developed reproducible OHT (Patel et al., 

2017, 2018). Mice developed statistically significant IOP elevation starting 3 days post 

injection that lasted for more than 70 days. The IOP elevation was even more pronounced 

when measured at nighttime. This IOP elevation was correlated with a 50% reduction in the 

aqueous outflow facility, measured in live mouse eyes.

This model was used to explore potential therapies and to dissect the molecular signaling 

pathways involved in GC-OHT. The TM develops ER and protein stress after topical ocular 

DEX administration (Zode et al., 2014). To determine whether this TM protein stress was a 

cause of DEX-OHT, mice received the small chemical chaperone, 4-phenylbutyrate (PBA), 

in their drinking water (Zode et al., 2014) or by topical ocular administration (Zode et al., 

2012). PBA reduced markers of ER/protein stress in the TM, and significantly lowered IOP 

as well as inhibited functional damage to retinal ganglion cells. There are 2 alternatively 

spliced isoforms of the glucocorticoid receptor (GR); GRα is the ligand activated biological 

receptor for GCs, while GRβ does not bind ligand and acts as a dominant negative regulator 

of GC activities. We showed that gene therapy with Ad5.GRβ totally reversed the DEX-

OHT, even though these mice continued to receive weekly DEX-Ac injections (Patel et al., 

2018) (Figure 15). GCs alter gene expression by two major signaling pathways involving 

ligand activated binding to GRα. In transactivation, the activated GR binds to GC response 

elements (GREs) to directly increase or decrease gene expression. In transrepression, 

activated GR monomers bind to other transcription factors such as AP1 and NFkB to prevent 

binding to their DNA response elements, thereby suppressing activation of their gene 

expression. It has been assumed that the major anti-inflammatory activities of GCs are 

mediated by transrepression, while the GC-OHT side effects are mediated by transactivation 

(Figure 16). This hypothesis was directly tested in GRdim mice that have a mutation in the 

GR DNA binding and dimerization domains and are defective in GR transactivation but still 

are able to transrepress. Periocular DEX-Ac administration induced OHT in WT but not in 

GRdim mice, demonstrating that GC-OHT is mediated by transactivation (Patel et al., 2019). 

These findings suggest that agents such as SEGRAs that specifically activate transrepression 
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without causing GR transactivation may be suitable ocular anti-inflammatory agents without 

causing GC-OHT.

Another group developed a DEX nanoparticle formulation that was administered bilaterally 

to mouse eyes by subconjunctival/periocular injections every 1 or 2 weeks. These mice 

developed significant OHT beginning at 3 days that lasted to greater than 60 days (Wang et 

al., 2018b; Li et al., 2019). This IOP elevation was associated with an apparent decrease in 

the aqueous humor outflow facility, although this was not statistically significant. This 

model was used to determine the effect of DEX treatment on TM tissue stiffness, and both 

atomic force microscopy and SD-OCT evaluation of pressure-induced changes Schlemm’s 

canal area indicated that the TM tissue was stiffer in the DEX treated animals (Wang et al., 

2018b; Li et al., 2019). These findings correlate nicely with increased TM tissue stiffness in 

POAG donor eyes (Last et al., 2011) and increased ECM stiffness in TM cells cultured with 

DEX (Raghunathan et al., 2015).

Rats also develop DEX-induced OHT after topical ocular administration of 0.1% DEX four 

times/day for 4 weeks. lOPs increased by greater than 20% (~5–6 mmHg) starting at 2 

weeks (Sawaguchi et al., 2005; Shinzato et al., 2007), and at 4 weeks proteomics analyses 

were conducted on TM tissue in attempt to understand pathways involved in the 

development of OHT. Additional studies used topical ocular DEX administered 2 times per 

day for 40 days as an experimental OHT model to study the IOP lowering activities of a 

variety of test compounds, including trans-resveratrol and ROCK inhibitors (Razali et al., 

2018; Marcus et al., 2019).

It should be noted that there has been mixed success between labs in generating GC-induced 

OHT in rodents. Nakazawa and colleagues treated Sprague Dawley rats with topical ocular 

0.1% DEX three times as day for 4 weeks, and the rats progressively lost body weight as 

well as showed decreased IOP, perhaps due to the considerable systemic side effects in these 

animals (Sato et al., 2016). In addition, Faralli and colleagues reported that topical ocular 

administration of 0.1% DEX-phosphate to C57/BL6 mice induced a modest elevation in IOP 

by 3 weeks that returned to baseline at 5 weeks (Faralli et al., 2018). The DEX treated mice 

lost approximately 20% body weight, and DEX treatment did not appear to significantly 

increase FN protein expression in whole eye lysates. It is likely that a number of additional 

labs have attempted to develop a GC-OHT model in their own labs and have not reported 

negative results.

4. Pressure-independent models of glaucoma

Although IOP is a risk factor for the progression of both ocular hypertensive and 

normotensive glaucoma, other factors also appear to play important roles (Table 5). A 

number of other rodent models have been developed to address and study these non-pressure 

related factors. They are intended to address specific pressure-independent, 

pathophysiological mechanisms of the disease. It should be noted that many of these models 

do not necessary mimic exact features of glaucomatous damage, but they have provided 

important insights into pathways and mechanisms of damage to RGCs and the optic nerve. 

The most prevalent ones are described below.
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4.1. ON transection or ON crush

By selectively protecting the RGC soma versus the ON axons of a spontaneous glaucoma 

mouse model, the DBA/2J mouse, Howell and colleagues demonstrated that local insult to 

axons in the ON is the initial site of glaucomatous damages (Howell et al., 2007). This 

observation corroborates with important findings in human and non-human primates with 

glaucoma, which also indicate that degenerative changes of axons in the lamina cribrosa area 

is a primary early site of injury (Anderson and Hendrickson, 1974; Anderson and 

Hendrickson, 1977; Quigley and Anderson, 1976; Quigley and Addicks, 1980; Quigley et 

al., 1981; Quigley and Anderson, 1977; Quigley et al., 1980; Quigley et al., 1983). Because 

of these results, ON injury is expected to represent certain characteristics of optic 

neuropathy seen in glaucoma and is therefore an often-used animal model for glaucoma 

research.

ON transection or ON crush of the rat or mouse produces ON injury. In the rat, transection 

causes complete axotomy of the ON (Kielczewski et al., 2005), producing a complete and 

specific apoptotic RGC loss in approximately two weeks (Isenmann et al., 1999; Ju et al., 

2000; Kermer et al., 2000; Kittlerova and Valouskova, 2000). Correspondingly, ON 

transection also completely obliterates the PERG (Domenici et al., 1991; Kittlerova and 

Valouskova, 2000), significantly diminishes the scotopic threshold response (Bui and 

Fortune, 2004), as well as abolishes visual function (Kittlerova and Valouskova, 2000), 

without affecting a- and b-waves (Bui and Fortune, 2004). Inhibition of the apoptosis 

pathway is efficacious in protecting RGC against ON transection-induced cell death 

(Chaudhary et al., 1999; Heiduschka and Thanos, 2000; Lingor et al., 2005). Similar 

damages were also reported in the mouse; most RGC are lost 2 weeks post injury (Kilic et 

al., 2002). Total disappearance of RGC, ON axons, and PERG response occurs within 2 

months after transection (Chierzi et al., 1998).

Some argue that total damage of the ON axons may be too severe to represent glaucomatous 

changes. Levkovitch-Verbin et al (2003) developed a partial transection model, in which 

only one third of the rat ON is cut. In doing so, the model allows the study of direct 

axotomy-induced changes, as well as indirect, secondary insults to the uncut axons of the 

ON and RGCs (Levkovitch-Verbin et al., 2003). It is believed that the secondary insult plays 

an important role in glaucomatous retinopathy and optic neuropathy.

Crushing the ON with forceps or clamps is another technique to induce ON injury. In both 

the rat and mouse, ON crush injures ON axons (Minzenberg et al., 1995; Yoles and 

Schwartz, 1998; Zalish et al., 1993) and causes RGC death (Choudhury et al., 2015; Liu et 

al., 2014) (Figure 17), concomitant with reduction in PERG (Choudhury et al., 2015; Liu et 

al., 2014) (Figure 4). It is important to note that, because of differences in techniques and 

magnitudes of the applied crush force, levels of RGC damage can vary, ranging from 

minimal to practically total loss (Gellrich et al., 2002; Klocker et al., 2001; Liu et al., 2014). 

The time course of apoptotic, and sometimes necrotic, RGC loss can also be different from a 

few days to several weeks (Allcutt et al., 1984; Barron et al., 1986; Buys et al., 1995; 

Freeman and Grosskreutz, 2000; Levkovitch-Verbin et al., 2000; Libby et al., 2005b; Maeda 

et al., 2004; Misantone et al., 1984; Naskar et al., 2002; Schlamp et al., 2001; Schmitt and 

Sabel, 1996; Schuettauf et al., 2000; Swanson et al., 2005; Tezel et al., 2004a). Similarly, 
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various degrees of decreases in VEP and pattern VEP amplitudes have also been reported 

(Klocker et al., 2001; Liu et al., 2014). However, based on our experience, which appears to 

be true in other laboratories, the RGC and ON damage are typically consistent within each 

research group.

4.2. Reti nal ischemia/reperfusion injury

Many studies showed a decrease in ocular blood flow in glaucoma patients and an 

association between glaucomatous changes versus blood flow decrease (Hwang et al., 2012; 

Jia et al., 2012; Kim et al., 2012). The reduced blood flow may be a result of elevated IOP, 

vascular dysregulation, systemic hypotension, or other vascular disorders. Regardless the 

etiology or exact mechanism, abnormality of retinal blood supply is one of the probable 

mechanisms for glaucoma pathophysiology (Harris et al., 1994; Kaiser et al., 1993; Rader et 

al., 1994; Waldmann et al., 1996).

4.2.1. Ocular cannulation—Retinal ischemia models have been used to study disease 

changes and evaluate neuroprotective approaches. A very common method to induce retinal 

ischemia is to cannulate the eye with a cannula connected to a raised reservoir, which 

generates hydrostatic pressure above the systolic blood pressure and temporarily stops blood 

flow in the eye (Buchi et al., 1991; Hughes, 1991; Li et al., 2002; Smith and Baird, 1952). 

The success of the technique is typically evidenced by blanching of the iris and retina, which 

indicates complete and global ocular ischemia. Transient ischemia for approximately 60 

minutes is commonly used, followed by reperfusion.

Retinal ischemia/reperfusion produces apoptotic loss of RGC in the rat (Inoue-Matsuhisa et 

al., 2003; Joo et al., 1999; Junk et al., 2002; Kaneda et al., 1999; Lafuente et al., 2002; Lai et 

al., 2002; Lam et al., 1994; Selles-Navarro et al., 1996; Wood et al., 2003) and thinning of 

the RNFL (Chidlow and Osborne, 2003; Chidlow et al., 2002; Dijk et al., 2004a; Nash and 

Osborne, 1999). Retinal ischemia/reperfusion also induces ON injury, including axonal 

degeneration, disruptions of mitochondria, and disordered myelin sheaths (Adachi et al., 

1996). The damages produced by retinal ischemia/reperfusion are not specific to the RGC or 

ON. Instead, it produces panretina damage. Photoreceptors and inner nuclear layer cells are 

affected, too (Buchi et al., 1991; Chun et al., 1999; Dijk and Kamphuis, 2004; Dijk et al., 

2004b; Grozdanic et al., 2003d; Hughes, 1991; Katai and Yoshimura, 1999; Singh et al., 

2001). Amplitudes of scotopic a- and b-waves of the ERG were significantly reduced 

(Ettaiche et al., 1999; Grozdanic et al., 2003a; Inoue-Matsuhisa et al., 2003; Junk et al., 

2002; Katano et al., 2001; Lai et al., 2002; Wood et al., 2003). In addition, ischemic injury 

changes amplitude, latency, and maximum velocity of the pupillary light reflex (Barnett and 

Grozdanic, 2004; Grozdanic et al., 2003a), showing ocular functional deficits.

Although cannulation of the mouse eye is technically more challenging to perform due to its 

smaller size, successful operations with similar pathological changes were reported. 

Apoptosis of cells in the inner nuclear layer and GCL, thinning of retinal IPL and INL 

(Figure 18), as well as diminished ERG a- and b-wave as well as pSTR amplitudes have 

been observed after retinal ischemia/reperfusion in the mouse (Kim et al., 2016; Nashine et 

al., 2014; Wang et al., 2002) (Figure 19). Unilateral retinal I/R injury also causes loss of 
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RGC synaptic connections and atrophy of target neurons in the contralateral superior 

colliculus (Kim et al., 2016) (Figure 20).

4.2.2. Photothrombosis—Another technique to produce retina! ischemia is by 

photothrombosis. This is achieved by a green light irradiation of the central retinal artery 

after an intravenous rose bengal injection. Upon green light irradiation, rose bengal releases 

singlet molecular oxygen, which initiates platelet activation and consequently local 

thrombosis (Mosinger and Olney, 1989). Reperfusion can be accomplished by intravenous 

injection of tissue-type plasminogen activator to dissolve the thrombus. Apoptosis of RGC 

and cells in the inner nuclear layer by photothrombosis-induced transient ischemia was 

reported (Daugeliene et al., 2000; Romano et al., 1993). Some noted drawbacks of this 

technique are that, in addition to ischemia, phototoxicity may contribute to the resulting 

injuries, and it produces highly variable morphological damages (Buchi et al., 1994). These 

limitations make data analysis and comparison among studies challenging.

4.2.3. Ligation—A more invasive procedure, ON ligation, has also been described to 

produce retinal ischemia. This procedure places a suture around a surgically exposed ON 

and ligates it to stop blood flow in the central retinal artery and posterior ciliary arteries, 

which produces ischemia of the retina and other ocular structures (Stefansson et al., 1988). 

Removal of the suture causes reperfusion. This method, similar to other retinal ischemia/

reperfusion methods, causes apoptotic death of the RGC (Chintala et al., 2002; Vidal-Sanz et 

al., 2001; Zhang et al., 2003; Zhang and Chintala, 2004) and other retinal cells (Nonaka et 

al., 2000; Osborne et al., 1995; Rosenbaum et al., 2001). Functionally, it reduces a- and b-

wave ERG amplitudes (Chiou and Li, 1993; Nonaka et al., 2000; Osborne et al., 1995; 

Rosenbaum et al., 2001). A major limitation of this technique is that ligation may produce 

mechanical injury to the ON in addition to ischemia. Cautious interpretation of results is 

advised. To overcome this limitation, Lafuente et al. described a technique of selective 

ligation of rat ophthalmic vessels. They used nylon sutures to constrict the dural sheath and 

blood vessels surrounding the ON, without mechanical damage to the axons (Lafuente et al., 

2001, 2002b). This method induced RGC loss; the extend of loss was dependent on the 

duration of ischemia, ranging from approximately 50% RGC loss with a 30-min ischemia to 

100% loss with 120-min ischemia.

4.2.4. Suture-Pulley System—A less common, but interesting, approach to induce 

transient retinal ischemia in the rat is by placing a suture around the equator of the eye 

immediately behind the limbus; the suture is then tightened by fixed weights through a 

pulley system (Li et al., 2002). The tightening of the suture elevates pressure inside the eye 

and, if sufficiently high, can produce ocular ischemia. Loss of a- and b-wave amplitudes and 

cell density in the RGCL have been reported (Li et al., 2002).

4.3. Intra vitrea! injection of excitotoxic amino acid

In the retina of vertebrates, glutamate is the essential excitatory neurotransmitter, having 

major roles in transmission of vision signals. However, overstimulation of a subtype of 

glutamate receptors, the N-methyl-D-asparate (NMDA) receptor, leads to excessive calcium 

influx into neurons (Lipton and Rosenberg, 1994; MacDermott et al., 1986), and 
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consequently neuronal cell death. In the retina, NMDA receptor-mediated RGC apoptosis 

has been demonstrated both in vitro or in vivo (Furuya et al., 2012; Lucas and Newhouse, 

1957; Luo et al., 2001; Sucher et al., 1991). Based on the observation that glutamate level in 

the vitreous was elevated in glaucomatous monkey and human eyes (Dreyer et al., 1996), 

excitotoxicity was proposed to play a role in glaucomatous retinopathy (Dreyer and 

Grosskreutz, 1997). However, this critical piece of evidence could not be substantiated in 

subsequent studies (Wamsley et al., 2005). Despite the controversy, changes in levels of 

glutamate metabolite, transporters, and receptors suggest an involvement of glutamate in 

glaucomatous retinopathy (Carter-Dawson et al., 2002; Dreyer et al., 1996; Naskar et al., 

2000; Park et al., 2009). It is important to note that excitotoxicity is not limited to the RGC, 

nor unique in glaucoma or glaucoma study models (Ju and Kim, 2011; Levinger et al., 

2012).

As a model for retinal diseases, researchers have injected NMDA or glutamate intravitreally 

to induce excitotoxicity in the retina. In both rats and mice, intravitreal administration of 

NMDA or glutamate (typically 20 to 200 nmol) induces RGC apoptosis in a dose-dependent 

manner. In the rat, several days after NMDA injection, apoptosis (El-Remessy et al., 2003; 

Kwong et al., 2003; Ma et al., 2010; Sun et al., 2001) and depletion of more than 80% of 

RGC (Schuettauf et al., 2004; Vorwerk et al., 1996), as well as reduction of retinal Thy-1, an 

RGC marker, immunoreactivity and mRNA (Chidlow and Osborne, 2003; Nash and 

Osborne, 1999; Osborne et al., 1999) were reported. Nevertheless, the NMDA-induced 

toxicity affects not only the RGC, but also other retinal neurons, such as amacrine cells, as 

evidenced by a dose-dependent reduction of choline acetyltransferase (Casson et al., 2004; 

Siliprandi et al., 1992). Intravitreal injection of NMDA causes apoptosis of neurons in the 

inner nuclear layer, too (Lam et al., 1999).

Functionally, NMDA injection in the rat diminishes the negative scotopic threshold response 

(Bui and Fortune, 2004) and the pattern VEP (Kermer et al., 2001). The electrophysiological 

changes correspond to a complete but transient loss of the rat’s visual function as evaluated 

by behavioral studies. Intriguingly, the visual discrimatory behavior recovers gradually to 

close to baseline level even though more than half of RGCs are lost by the injection (Sabel et 

al., 1995; Sisk and Kuwabara, 1985; Sisk et al., 1984; Vorwerk et al., 1996). Consistent with 

morphological results, intravitreal injection of NMDA also significantly reduces the b-wave 

response (Bui and Fortune, 2004; Casson et al., 2004; Maruyama et al., 2002).

In the mouse, NMDA and glutamate produce similar injuries as in the rat retina. RGC 

apoptosis occurs as soon as 1 h and peaks 2 days after NMDA injection (Li et al., 2002; Li et 

al., 1999). Similar to the rat, NMDA also causes apoptosis of mouse inner nuclear layer 

neurons (Kumada et al., 2005; Li et al., 1999).

Intravitreal administration of excitotoxic amino acid is relatively easy to perform and its 

effects can be assessed in a few days. However, this technique as a study model for 

glaucoma is somewhat controversial because of the uncertainty of the role of excitotoxicity 

in disease pathophysiology.
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4.4. infra vitrea! injection of tumor necrosis factor alpha

Tumor Necrosis Factor Alpha (TNFα) has been implicated to play a role in glaucomatous 

neurodegeneration (Tezel, 2008). The level of TNFα in aqueous humor is typically very low 

and often below the sensitivity threshold of many immunoassays. Despite that, Sawada and 

coworkers were able to detect TNFα in a significantly higher percentage of glaucoma 

patients compared to cataract patients (Sawada et al., 2010). Using a highly sensitive bead-

based immunoassay, Balaiya et al found that the average TNF-α level in aqueous samples of 

POAG patients was approximately 70% higher than the control samples (Balaiya et al., 

2011). Recently, the mean plasma TNFα was also reported to be higher in POAG patients 

than the controls. In this study, logistic regression analysis suggests that the risk of POAG 

correlated most significantly with plasma TNFα level but not with gender or age (Kondkar 

et al., 2018). In donor eyes of glaucoma patients, expression of TNFα and its receptor TNF-

R1 are upregulated in both the RGCs (Tezel et al., 2001) and in astrocytes at the ONH (Yuan 

and Neufeld, 2000).

Intravitreal injection of TNFα causes retinal changes akin to glaucoma damages, notably, 

the decline of survival of RGCs and oligodendrocytes (Nakazawa et al., 2006). The insult 

also causes significant degeneration and loss of ON axons (Kitaoka et al., 2006). It has been 

used as a research model to assess potential neuroprotective strategies for glaucoma therapy.

4.5. infra vitrea! injection of endothelin-1

Endothelin-1 (ET-1) has been implicated in glaucoma pathogenesis (Prasanna et al., 2011; 

Yorio et al., 2002). ET-1 levels in plasma and aqueous humor samples of POAG patients 

(both normal tension and OHT) are significantly higher than those of control subjects (Emre 

et al., 2005; Noske et al., 1997; Sugiyama et al., 1995; Tezel et al., 1997). Initially, because 

of its vasoconstrictive action, it was used to induce chronic ON ischemia (Cioffi et al., 

1995). The peptide was subsequently discovered to cause injuries directly to the RGC and 

ON, unrelated to its effect on ocular circulation (Chauhan et al., 2004; Krishnamoorthy et 

al., 2008; Lau et al., 2006; Stokely et al., 2002; Wang et al., 2008b). For example, 

intravitreal injection or local administratioin of ET-1 to the rat ON reversibly reduces axonal 

transport (Stokely et al., 2002; Wang et al., 2008b) and stimulates astrocyte proliferation 

(Prasanna et al., 2002). Furthermore, delivery of ET-1 continuously by an osmotic pump 

over a prolonged period to the intraorbital ON effects a time-dependent (21 to 84 days of 

treatment) losses of RGC and ON axons (Chauhan et al., 2004), without obvious injuries to 

other retinal structures. ET-1-induced optic neuropathy may be an interesting model for 

glaucoma research (Prasanna et al., 2011; Blanko et al., 2017).

5. Future studies and challenges

5.1. Future studies

It is clear that there are a number of different mouse and rat models of glaucoma, each of 

which has its own strengths and weaknesses (Table 1). Some of these models have been 

successfully used by numerous laboratories, with consistant results (e.g. the Morrison 

hypertonic saline-induced ocular hypertension models and the mouse model of optic nerve 

crush). However, additional models need to be better characterized and independently 
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reproduced in other laboratories. The also will be opportunities to develop additional rodent 

models of glaucoma given advances in better understanding the molecular pathogenesis of 

glaucoma in man and new molecular techniques to selectively alter the expression of specific 

genes in specific tissues.

Recent advances in genome editing has quickly changed the ability to specifically modify 

individual nucleotides in genes and/or alter gene expression (Patsali et al., 2019). CRISPR/

Cas9 and related systems can examine the functions of specific genes, study the epigenetic 

regulation of transcription, introduce disease associated mutations to generate new disease 

models, and be used therapeutically. This relatively new technology has allowed the 

generation of new relevant disease models, although potential off target editing needs to be 

seriously addressed. In addition, using viral delivery of Cre to specific cells based on the 

tropism of the transducing virus has taken advantage numerous “floxed” (fl/fl) mouse strains 

to selectively knockout/knockdown gene expression (Hernandez et al., 2018; Raychaudhuri 

et al., 2018). Several organizations are involved in increasing the number of genes that are 

being floxed to expand the availability of floxed mouse strains (http://

www.mousephenotvpe.org/; https://www.komp.org/).

The generation of new rodent glaucoma models is not only being used to study molecular 

pathogenesis, but also provides more relevant models in which to test new therapies and 

therapeutic approaches. For example, several new approaches to treat GC-induced OHT 

including gene therapy with GRβ (Patel et al., 2018) and the topical ocular administration of 

the small chemical chaperone PBA (Zode et al., 2012) were tested in new mouse models of 

GC-OHT. Topical ocular administration of a small molecule GSK-3β inhibitor was used to 

lower OHT induced by inhibition of Wnt signaling by overexpressing SFRP1 in the 

trabecular meshwork (Wang et al., 2008a). Although there already are a number of inducible 

rodent models of glaucoma, we fully expect to see the development of more relevant models 

based on new discoveries on the molecular pathogenesis of human glaucoma, including 

subtypes of glaucoma (e.g. exfoliation glaucoma). This in turn, will lead to the discovery 

and testing of new therapeutic approaches.

The power of mouse genetics is being used to identify genes associated with glaucoma 

endophenotypes. Recombinant inbred mouse strains such as the BXD set (C57BL/6 crossed 

with DBA/2 mouse strains) have allowed fine mapping of a number of glaucoma 

endophenotypes (Geisert et al., 2009). For example, elevated IOP is one of the most 

important risk factors for the development and progression of glaucoma (Kass et al., 2002) 

and therefore is a major endophenotype. IOP was measured in over 500 eyes of 38 BXD 

recombinant inbred strains of mice, which showed a wide range of IOPs (King et al., 2015). 

QTL mapping identified nonsynonymous SNPs in two cadherin genes, Cdh8 and Cdh11, as 

candidates for modulating IOP. Interestingly, inhibition of the canonical Wnt signaling 

pathway decreased the expression of several cadherins in the as well as elevated IOP 

(Webber et al., 2018). This OHT was reversed by over-expressing Cdh6 further implicating 

cadherins in the regulation of IOP (Webber et al., 2018). In addition, there is a 3-fold 

difference in the ability of different BXD strains to regenerate ON axons after ON crush, 

showing that genetic background regulates regeneration (Wang et al., 2018a).
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5.2. Challenges

The similarity of an animal model to its corresponding human conditions determines its 

relevance.

Despite rodents’ ocular structures that are anatomically very similar to those of human, their 

biochemical, physiological, or pharmacological responses may still differ. Therefore, a 

major challenge is the relevance and “translatability” of these rodent models of glaucoma to 

glaucoma in man. A number of pathogenic pathways initially discovered in glaucomatous 

human TM tissues and cells (Table 4) also elevate IOP in mice (see section 3.6.), so it 

appears that there is some overlap in these pathogenic pathways between mouse and man. 

However, the new glaucoma therapies that have worked in mouse models have not been 

evaluated in man, leaving the issue of translatability to be determined.

Furthermore, because some of the IOP-independent pathophysiological mechanisms of 

glaucoma are still controversial, non-pressure models may not represent the disease changes 

accurately. For example, involvement of excitotoxicity in glaucomatous retinopathy is still 

regarded as uncertain, results obtained using models based on this theory may have minimal 

clinical relevance if excitotoxicity is proven non-essential in the disease.

Therefore, the translatability of discoveries in rodent glaucoma models to human glaucoma 

is still in question. Future studies on taking compounds or biologics that work well in mouse 

models into the clinic will determine the overall importance of these inducible mouse 

models of glaucoma.

Another challenge is the size of the eye, blood flow rate, drug metabolism, and other 

pharmacokinetic factors are very different between rodents and human. The 

pharmacokinetics of administered compounds or biologics to rodent eyes will be much 

different than in human eyes. Topical ocular administration in rodents generally also leads to 

more systemic exposure often due to the relatively large volume delivered vs the ocular 

surface area as well as the grooming behavior of rodents, who rub the remaining dose from 

their eyes and then lick their forelimbs. The vitreous volume is very low in rodent eyes due 

to the very large lenses, so intravitreally administered therapies will have very different 

dilutions and distribution kinetics. There also are species differences in metabolism of these 

administered compounds between rodent eyes and human eyes.

For drug discovery and development, preclinical animal models are important for their 

generation of meaningful data ready for translational studies. In that regard, rat and mouse 

glaucoma models are useful and relevant. However, caution is necessary in interpreting the 

rodent findings because of biological divergent among the species, uncertain 

pathophysiological mechanims, and pharmacokinetic parameters.

Abbreviations

Ad5 Adenovirus serotype 5

BMP Bone morphogenic protein
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CTB Cholera toxin B

CTGF Connective tissue growth factor

DEX Dexamethasone

ER Endoplasmic reticulum

ERG Electroretinography

ET Endothelin

GC Glucocorticoid

GR Glucocorticoid receptor

GWAS Genome wide association studies

IOP Intraocular pressure

IPL Interplexiform layer

MYOC Myocilin

NHP Nonhuman primate

NMDA N-Methyl-D-asparate

OCT Optical coherence tomography

OHT Ocular hypertension

ON Optic nerve

ONH Optic nerve head

PBA 4-Phenylbutyrate

PERG Pattern electroretinography

POAG Primary open-angle glaucoma

PPD Paraphenylenediamine

pSTR Positive scotopic threshold response

PTS1 Peroxisomal targeting signal-1

RGC Retinal ganglion cell

RGCL Retinal ganglion cell layer

RNFL Retinal nerve fiber layer

SEGRA Selective glucocorticoid receptor agonist

SFRP1 Secreted frizzled-related protein 1
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TGF Transforming growth factor

TM Trabecular meshwork

TNFα T umor necrosis factor alpha

Tuj1 β-Tubulin-III

VEP Visual evoked potential
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Figure 1. 
Regions in the eye and brain damaged in primary open-angle glaucoma (POAG). Elevated 

IOP is due to damage to the aqueous humor outflow pathway (particularly the TM). Elevated 

pressure insults the ONH and damages the unmyelinated axons of the optic nerve, which 

eventually leads to RGC death and loss of target neurons in the brain.
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Figure 2. 
TonoLab rebound tonometer measurements of IOP in rats and mice. TonoLab measured 

IOPs were highly correlated with actual IOPs of manometerically controlled IOPs in the 

anterior chambers (Figure from Wang et al., 2005).
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Figure 3. 
Live SD-OCT imaging of retinal layers of contralateral control mouse eyes (A) and ONC 

injured eyes (B) 28 days post-injury. (C) The combinded RNF, RGC, and IP layer thickness 

progressively decreased over time (p< 0.001 for days 7–28). (D) There was a strong and 

statistically significant correlation between the OCT measured loss of RNFL/GCL/IPL 

thickness and GCGL cell density in this ONC model (R2=0.9663, p<0.001) (Figures from 

Liu et al. 2014).
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Figure 4. 
Progressive loss of pattern electoretinography (PERG) in mice with ONC injury. (A) 

Representative PERG waveforms at 0 (red), 3 (blue), and 7 (green) days post ONC injury. 

(B) PERG amplitudes were significantly decreased at 3 days (p<0.05) and totally gone at 7 

days (p<0.001) post ONC injury. (Figures from Liu et al. 2014)
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Figure 5. 
Progressive loss of total RGCs (NeuN staining) and intrinsically photosensitive (ip) 

melanopsin (MEL) RGCs after ONC injury. (A) Upper panel = NeuN stained for total 

RGCs; middle panel = immunostained for melanoptsin (MEL) ipRGCs; lower panel = 

merged image. (B) Survival curve of total RGCs (red) and RGC subtypes (see figure legend) 

from 0–14 days post ONC injury showing differing RGC soma susceptibilities to ONC 

damage. (Figures from Daniel et al. 2018)
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Figure 6. 
Assessment of optic nerve damage in PPD-stained optic nerve cross-sections using a 10 

point optic nerve damage score (ONDS). Examination of the entire PPD stained ON (A), 

outlining zones of injury (B), and higher magnification examination (C) allows the 

identification and semi-quantitation of darker stained damaged axons and areas of gliosis. 0 

= no damage, 9 = total loss of ON axons. Examples of ONDS include grades of 0, 3, 6, and 

7. Right side: correlation between ON damage grade and axonal survival determined by 

manual counting. (Figures from Chauhan et al. 2006)
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Figure 7. 
Hypertonic saline-induced OHT in rats (“Morrison model”). A glass needle is attached to 

flexible tubing (A) to inject hypertonic saline into an isolated episcleral vein (B) to sclerose 

Schlemm’s canal and trabecular meshwork, which significantly decreases aqueous outflow 

leading to elevated IOP. (C) Optic nerve damage (ONIG scaled from 1–5) is correlated with 

mean IOP in this model. (Figures from Morrison et al., 1997)
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Figure 8. 
Loss of RGCs in a transient IOP elevation model in rats. (A) Controllable compression of 

the rat eye globe using pulleys and weights (45 mmHg for 7 hours) caused loss of BRN3a 

labelled RGCs in both the central (A) and peripheral (B) retina, which were statistically 

significant (p<0.001 in C and D, respectively). Daily systemic treatment with the JNK 

inhibitor SP600125 significantly protected RGCs from transient IOP elevation (p<0.001, A-

D). (Figures from Sun et al., 2011)
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Figure 9. 
Mouse eyes were transduced with Ad5 expressing wild type (WT) human MYOC as well as 

mutated forms of human MYOC associated with POAG to determine effects of IOP in mice. 

(A) Overexpression of normal (WT) MYOC in the mouse TM did not elevate IOP. Although 

when stop mutant MYOC.Q368X did not elevate IOP (B), co-expression with WT MYOC 
did (C). Point mutations G346V and Y437H also significantly elevated IOP (p<0.01), and 

the degree of IOP elevation for these mutations nicely correlated with the genotype severity 

of MYOC glaucoma (i.e. genotype/phenotype correlation Y437H > G364V > Q368X). The 

requirement for MYOC dimerization (C) as well as the carboxy terimal PTSR1 signal 

(SKM) for IOP elevation is nicely demonstrated using this transient transduction (B, D, G) 

OHT model. (Figure from Shepard et al., 2007)
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Figure 10. 
TGFβ2-induced OHT in mouse eyes using Ad5 delivery of bioactivated TGFβ2C226/228S. 

(A) Ad5.TGFβ2C226/228S transduction of the mouse TM significantly elevated IOP 5–28 

days post-injection (* p<0.05; *** p<0.001) compared to Ad5.null or noninjected eyes, 

which did not elevate IOP. (B) TGFβ2-induced OHT was closely correlated with the amount 

of TGFβ2 mRNA in the mouse TM (r = 0.88; p<0.0001). (Figures from Shepard et al., 

2010)
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Figure 11. 
TGFβ2-induced ocular hypertension and glaucomatous optic neuropathy. One eye of each 

BALB/cJ mouse was injected with Ad5.TGFβ2C226/228S and IOPs of both eyes were 

measured with a TonoLab tonometer over 168 days (n= 22; p<0.001 for days 4–168). Optic 

Nerve Damage Score (ONDS) was determined using the 5-point system (1 = no damage, 5 = 

severe damage) from PPD stained optic nerve cross-sections at 2, 4, and 6 weeks of ocular 

hypertension (n=4–6; p<0.05). (unpublished data from Luan T, Pang IH, and Clark AF)
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Figure 12. 
SFRP-induced ocular hypertension involves K-cadherin. Wnt signaling in the TM is 

involved in regulating IOP, and expression of the Wnt antagonist SFRP1 is elevated in 

glaucomatous TM cells and tissues, leading to IOP elevation (Wang et al., 2008). SFRP1 

decreases K-cadherin expression in the TM (Webber et al., 2018). Ad5.SFRP1 transduction 

of the mouse TM significantly elevates IOP (p<0.001), but concomitant expression of K-

cadherin significantly suppresses this SFRP1-OHT (p<0.001). (Figure from Webber et al., 

2018)
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Figure 13. 
Transduction of Bambifl/fl mice with Ad5.Cre elevates IOP. Increased expression of 

bioactivated TGFβ2 in the mouse TM significantly elevates IOP (C) (p<0.001) compared to 

Ad5.null transduced eyes (A) (see also Fig 11). TGFβ2 inhibitor Bambi suppresses TGFβ2 

signaling in the TM (Hernandez et al., 2018) as part of the homeostatic regulation of the 

profibrotic effects of TGFβ2. Ad5.Cre knockdown of Bambi in the TM of Bambifl/fl mice 

inhibits this homeostatic balance, leading to significantly elevated lOP (B) (p<0.001), which 

was not further enhanced by co-treatment with TGFβ2 (D). (E) Elevated IOP due to the 

knockdown of Bambi or increased expression of TGFβ2 in the TM is due to significant 

decreases in the aqueous outflow facility (p<0.05). (Figures from Hernandez et al., 2018)
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Figure 14. 
Glucocorticoid (GC)-induced ocular hypertension and glaucomatous optic neuropathy/

retinopathy in mice. (A) Mice administered dexamethasone (DEX) 21-phosphate three times 

daily developed significantly elevated IOP compared to mice receiving vehicle control 

(p<0.01). The DEX treated mice also developed retinopathy due to significant loss of RGCs 

(C-D) (p<0.01) and optic neuropathy due to significant loss of optic nerve axons (E-F) 

(p<0.05). (B) In addition to structural loss, DEX treatment also caused signicant RGC 

functional loss assessed by PERG amplitudes (p<0.01). (Figures from Zode et al., 2014)
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Figure 15. 
DEX 21-acetate (DEX-Ac) induced ocular hypertension in mice is reversed by Ad5.GRβ 
transduction of the TM. The biological and pharmacological effects of glucocorticoids are 

mediated by the glucocorticoid receptor, GRα. An alternatively spliced isoform of the GR, 

GRβ acts as a dominant negative regulator of GC activities. (A) Weekly bilateral fornix 

based injections of DEX-Ac significantly elevate IOP (p<0.0001), which can be totally 

reversed by Ad5.GRβ transduction of the TM at day 19, despite continuous DEX-Ac 

treatment (p<0.0001). (B) DEX-Ac significantly decreased aqueous outflow in mouse eyes 

(p<0.01), which returned to normal after Ad5.GRβ treatment (p<0.05). (Figures from Patel 

et al., 2018)
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Figure 16. 
Mechanism of glucocorticoid-induced ocular hypertension. Glucocorticoids (GCs) enter the 

cell and bind to glucocorticoid receptors (GRα). Ligand activated GRα undergoes a 

conformational change leading to dimerization and translocation to the nucleus. Once in the 

nucleus, the homodimerized GRα can bind to glucocorticoid response elements (GREs) to 

directly regulate gene expression in a process known as transactivation. Activated GRα 
monomers alsocan bind to other transcription factors (TF) such as AP-1 and NFkB to 

prevent these TFs from binding to their response elements (TREs) in a process known as 

transrepression. The alternatively spliced variant GRβ does not bind GCs and acts as a 

dominant negative regulator of GC activity for both transactivation and transrepression. 

Regulation of GC transcription can damage the trabecular meshwork (TM) leading to 

decreased aqueous outflow and elevated IOP.
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Figure 17. 
Caspase 7 deficiency (Casp7−/−) protects mouse RGCs from ONC injury. (A) Retinal cross 

sections immunostained for RGC marker RBPMS 7 and 28 days post ONC show loss of 

RGCs in wild type (WT) mice, while there is little loss of RGCs in Casp7−/− mice. (B) 

Retinal flat mounts immunostained for RGC marker RBPMS 7, 14, and 28 days post ONC 

show loss of RGCs in wild type (WT) mice, while there is little loss of RGCs in Casp7−/− 

mice. (C) Quantification of RGC density in retinal flat mounts immunostained for RGC 

marker RBPMS post ONC show significant loss of RGCs in wild type (WT) mice at days 7, 
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14, and 28 (p<0.05), while there was significantly less loss of RGCs in Casp7−/− mice 

(p<0.05). (Figure from Choudhury et al., 2015)
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Figure 18. 
Progressive thinning of inner retina in a mouse model of retinal ischemia/reperfusion (I/R) 

injury. One eye of each mouse was cannulated and pressure was elevated to 120 mmHg for 

60 minutes, then normal pressure was restored when the needle was removed from the 

anterior chamber. The contralateral eye served as control. Mouse eyes were fixed 3, 7, 14, 

21, and 28 days post I/R injury. Retinal cross sections were stained with H&E (A), and 

thickness of entire retina as well as individual retinal layers were measured (B). Total retina 

as well as inner plexifirm and inner nuclear layer thickness increased at 3 days due to 
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edema, and progressively thinned due to degeneration, with significant loss at 21 and 28 

days (p<0.05). (Figure from Kim et al., 2016)
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Figure 19. 
Progressive loss of RGC function assessed by pSTR ERG in mouse model of retinal 

ischemia/reperfusion (I/R) injury was partially protected by Chop deficiency (Chop−/−). One 

eye from each mouse in WT and Chop−/− strains was cannulated and had pressure was 

elevated to 120 mmHg for 60 minutes, then pressure was lowered when the needle removed 

from the anterior chamber. The contralateral eye served as control. Flash ERG at varying 

intensities were measured at 3, 7, 14, and 28 days post I/R injury, and pSTR amplitudes (A) 

were calculated and graphed (B). WT mice had significantly reduced pSTR amplitutes 

starting at 3 days which lasted throught 28 days (p<0.05). pSTR amplitudes were partially 

but significantly protected in Chop−/− mice (p<0.05). (Figure from Nashine et al., 2014)
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Figure 20. 
Retinal I/R injury causes degeneration of target neurons in the contralateral superior 

colliculus (SC) that was protected by treatment with the JNK inhibitor SP600125. Mice 

were treated daily with vehicle control or SP600225 (5, 15, 30 mg/kg) for 28 days and 

brains were cryopreserved and serial sections through the superior colliculus were stained 

with black gold. The volumes of the black gold stained serial sections were determined for 

both ipsilateral and contralateral superficial layers of the SC. I/R injury caused an 16% 

volume loss in the contralateral SC (p<0.05) but the JNK inhibitor protected the SC with no 

significant volumes losses at all 3 doses. (Figure from Kim et al., 2016).
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Table 1.

Inducible rodent models of glaucoma

Models Outcomes Advantages Challenges References

Pressure-Dependent 
Models

 • Intracameral injection 
microbead

  ○ Microbead 15 mmHg IOP increase; 
23% RGC death

Relatively easy 
procedure

Duration of IOP 
elevation; multiple 
injections

Urcola et al, 2006

  ○ Microbeads with 
viscoelastic material

20 mmHg IOP increase; 
27% RGC death

Relatively easy 
procedure; may 
improve IOP increase

Slow induction of OHT; 
multiple injections

Urcola et al., 2006

  ○ Magnetic 
microbeads

6 mmHg IOP increase; 36% 
RGCL cell loss

Direct microspheres to 
iridocorneal angle

Initial IOP spike; 
duration of IOP 
elevation; multiple 
injections

Samsel et al, 2011

 • Intracameral 
administration of viscous 
agents

8–10 mmHg IOP increase Relatively easy 
procedure

Duration of IOP 
elevation; multiple 
injections

Benozzi et al., 2002

 • Sclerosis of the 
outflow pathway

  ○ Episcleral 
injection of hypertonic 
saline

10–28 mmHg IOP increase; 
10–100% ON axon loss

Spectrum of IOP 
responses

Surgical skills; 
Spectrum of IOP 
responses

Morrison et al., 1997

  ○ Laser 
photocoagulation of 
outflow pathway

6–24 mmHg IOP increase; 
50–70% ON axon loss

Mimics a well-studied 
a primate IOP model; 
relatively high success 
rate.

IOP spike; transient IOP 
elevation; laser 
equipment needed

Ueda et al., 1998
WoldeMussie et al., 2001
Levkovitch-Verbin et al., 
2002
Aihara et al., 2003a

 • Cautery of extraocular 
veins

12 mmHg IOP increase; 4% 
RGC loss per week

Relatively easy 
procedure

Cautery of vortex veins; 
vasocongestion; IOP 
spike

Shareef et al., 1995; 
Laquis et al., 1998

 • Transient/intermittent 
IOP elevation

50 mmHg for 30 min 
(mouse): decreased RGC 
function; 60 mmHg for 8 h 
(rat): ON axon degeneration 
& pSTR decrease

Mouse: reproducible 
and recoverable; 
responses age/diet 
dependent
Rat: reproducible; 
model of early ON 
axon injury

Repeated/prolonged 
anesthesia; does not 
directly model glaucoma

Sun et al., 2011
Crowston et al., 2015
Morrison et al., 2016

 • Transduction of the 
TM with glaucoma related 
genes

  ○ MYOC 4–10 mmHg IOP increase; 
ON axon degeneration

Reproducible; 
genotype/phenotype 
correlation; data used 
to develop Tg mouse 
model

Shepard et al., 2007; 
McDowell et al. 2012

  ○ TGFβ2 10–15 mmHg increase; role 
of Smad signaling

Reproducible; 
prolonged IOP 
elevation with single 
Ad5 injection

Anterior segment 
inflammation; potential 
RGC and ON axon loss 
not reported

Shepard et al., 2010; 
McDowell et al. 2013

  ○ GREM1 10 mmHg IOP increase; role 
of Smad signaling

Reproducible Potential RGC and ON 
axon loss not reported

Wordinger et al., 2007; 
McDowell et al. 2015

  ○ CTGF 5 mmHg IOP increase; 13% 
ON axon loss

Data used to develop 
Tg.CTGF mouse 
model

Junglas et al., 2012
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Models Outcomes Advantages Challenges References

  ○ SFRP1 10–15 mmHg elevation Reproducible; proof of 
concept

Potential RGC and ON 
axon loss not reported

Wang et al., 2008a

  ○ CD44 15 mmHg IOP increase Proof of concept Potential RGC and ON 
axon loss not reported

Giovingo et al., 2013

  ○ Cre 15 mmHg IOP increase in 
Bambifl/fl mice

Selectively targets 
TM; useful for wide 
variety of floxed genes

Potential RGC and ON 
axon loss not reported

Hernandez et al., 2018

  ○ Genome editing - 
MYOC

4–5 mmHg IOP lowering in 
Tg.MYOCY437H mice; 
improves aqueous outflow & 
PERG amplitudes

Knockout of MYOC 
confirmed; in vivo 
proof of concept for 
genome editing of TM

Jain et al., 2017

 • Glucocorticoid-
induced ocular 
hypertension

3–12 mmHg IOP elevation; Reproducible within 
specific labs

Potential for systemic 
side effects

Whitlock et al., 2010
Zode et al., 2014
Patel et al., 2017, 2018, 
2019
Li et al., 2019

Pressure-Independent 
Models

 • Optic nerve 
transection or crush

Up to 100% RGC death Reproducible Surgical skills Allcutt et al., 1984
Barron et al., 1986
Domenici et al., 1991
Isenmann et al., 1999
Levkovitch-Verbin et al., 
2003
Villegas-Perez et al., 
1993

 • Retinal ischemia/
reperfusion injury

30% RGC loss; significant 
damage to inner retina (in 
addition to RGCs)

Reproducible; 
longitudinal follow by 
SD-OCT and ERG 
deficits

Surgical skill required; 
prolonged anesthesia; 
damages more than 
RGCs (ERG b-wave 
deficits)

Mosinger and Olney, 
1989
Buchi et al., 1991
Hughes, 1991
Li et al., 2002
Lafuente et al., 2002a,b; 
Kim et al. 2013

 • Intravitreal injection 
of excitotoxic amino acid

Rapid apoptosis in RGCL; 
thinning of IPL

Reproducible; ivt 
injection

Damages cells in 
addition to RGCs; 
elevated vitreal 
glutamate hypothesis in 
glaucoma contradicted

Lucas and Newhouse, 
1957

 • Intravitreal injection 
of TNFα

40% loss of RGCs (8 wks); 
50% loss of ON 
oligodendrocytes

Models OHT 
induction of retinal 
and ON TNFα

Nakazawa et al., 2006
Kitaoka et al., 2006

 • Intravitreal injection 
of ET-1

30% RGC loss & thinning of 
RNFL & inner retina; 
defective ON axonal 
transport

Relatively easy 
procedure; model 
potential ET-1-
mediated pathology

Need to assess potential 
effects on retinal blood 
flow; variable results 
between labs

Stokely et al., 2002
Nagata et al., 2014
Blanco et al., 2017
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Table 2.

Rodent genetic models of glaucoma

Models References

DBA/2J mice John et al., 1998
Anderson et al., 2002
Libby et al., 2005

Tg.Col1a1r/r (tm1Jae) mice Aihara et al., 2003b
Mabuchi et al., 2004
Dai et al., 2009

Nee mice Mao et al., 2011

Tg.MYOCY437H mice Zode et al., 2011

Tg.Ctgf mice Junglas et al., 2012

sGCα1 KO Buys et al., 2013

A1A2 KO Thomson et al., 2014

Glast KO mice Harada et al., 2007

EAAC1 KO mice Harada et al., 2007

Tg.TBK1 (CNV) mice Fingert et al., 2017
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Table 3.

Experimental approaches to assess glaucoma in inducible rodent models

Techniques References

Intraocular pressure

 • Invasive cannulation John et al., 1997

 • Tonopen tonometer Moore et al., 1993

 • Rebound tonometer (TonoLab®) Danias et al., 2003a
Wang et al., 2005

Aqueous humor dynamics

 • In vivo Millar et al., 2011

 • Ex vivo Lei et al., 2011

Non-invasive imaging of the retina

 • OCT Li et al., 2001
Ruggeri et al., 2007
Liu et al., 2014

 • Fluorescent protein labeled RGCs Leung et al., 2008
Tosi et al., 2010

RGC counting

 • Fluorescent protein labeled RGCs (and RGC subsets) Daniel et al., 2018
El-Danaf and Huberman, 2015

 • Retina flatmounts with immunohistochemistry (Brn3, Tuj1, NeuN, RBPMS) Xiang et al., 1993
Danias et al., 2003b
Kwong et al., 2010

 • Retrograde fluorescent tracers (fluorogold, diI, etc.) Vidal-Sanz et al., 1988
Hull and Bahr, 1994

ERG (PERG, pSTR) Berardi et al., 1990
Bui and Fortune, 2004

ON damage

 • ON axon counts Quigley et al., 2011
Ebneter et al., 2012
Oglesby et al., 2012

 • ON damage score Fortune et al., 2004
Libby et al., 2005a
Chauhan et al., 2006

 • Anterograde, retrograde transport Aviles-Trigueros et al., 2003
Lambert et al., 2011

Visual function

 • VEP Porciatti et al., 1999

 • Optokinetics Stahl, 2004
Dietrich et al., 2019
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Table 4.

Human glaucoma pathogenic pathways confirmed in mice

Gene Pathway Human Mouse

MYOC mutations ER stress Stone et al., 1997 Shepard et al., 2007

TGFβ2 TGFβ2 fibrotic pathway Tripathi et al., 1994 Shepard et al., 2010

CTGF TGFβ2 fibrotic pathway Junglas et al., 2009
Wallace et al., 2013

Junglas et al., 2012

GREM1 TGFβ2 and BMP pathways Fuchshofer et al., 2007
Wordinger et al., 2007

Wordinger et al., 2007
McDowell et al., 2015

SFRP1 Wnt β-catenin pathway Wang et al., 2008a Wang et al., 2008a

CD44 To be determined Knepper et al., 2002
Nolan et al., 2007

Giovingo et al., 2013
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Table 5.

Pressure-independent Factors Associated with POAG

Factor Evidence Rodent Model Reference(s)

NT depletion Obstruction of BDNF and TrkB transport in 
ON

ON crush/transection; 
acute chronic exp 
glaucoma

Pease et al., 2000

Ischemia/
reperfusion

Increased retinal and ON HIF-1; decreased 
retinal & ONH blood flow; disc hemorrhages

Retinal I/R injury Tezal and Wax, 2004b; Krakau 1994; 
Flammer 1994

ON axonopathy ONH site of initial OH injury; blockade of ON 
transport at ONH

ON crush/transection Syc-Mazurek & Libby, 2019; Nickells 
et al., 2012

Toxic factors:

Excitotoxic AAs EAAs kill RGCs in vivo; defective glu uptake 
in glaucomatous retina

Ivt injection of EAA Li et al., 1999; Martin et al., 2002

TNFα Increased TNFα in glaucomatous ONH Ivt injection of TNFα Yan et al., 2000
Yuan et al., 2000

ET-1 Increased ET-1 expression; ET-1 kills RGCs; 
ET-1 blocks ON transport and activates ONH 
astrocytes

Ivt injection of ET-1 Prasanna et al., 2011; Blanco et a., 
2017; Stokely et al., 2002
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