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homology domain protein 1 (EHD1)-mediated fission
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Following endocytosis, receptors that are internalized to sort-
ing endosomes are sorted to different pathways, in part by sort-
ing nexin (SNX) proteins. Notably, SNX17 interacts with a mul-
titude of receptors in a sequence-specific manner to regulate
their recycling. However, the mechanisms by which SNX17-1a-
beled vesicles that contain sorted receptors bud and undergo
vesicular fission from the sorting endosomes remain elusive.
Recent studies suggest that a dynamin-homolog, Eps15 homo-
logy domain protein 1, catalyzes fission and releases endosome-
derived vesicles for recycling to the plasma membrane. How-
ever, the mechanism by which EHD1 is coupled to various
receptors and regulates their recycling remains unknown. Here
we sought to characterize the mechanism by which EHD1 cou-
ples with SNX17 to regulate recycling of SNX17-interacting
receptors. We hypothesized that SNX17 couples receptors to
the EHDL1 fission machinery in mammalian cells. Coimmuno-
precipitation experiments and in vitro assays provided evidence
that EHD1 and SNX17 directly interact. We also found that
inducing internalization of a SNX17 cargo receptor, low-density
lipoprotein receptor—related protein 1 (LRP1), led to recruit-
ment of cytoplasmic EHD1 to endosomal membranes. More-
over, surface rendering and quantification of overlap volumes
indicated that SNX17 and EHD1 partially colocalize on endo-
somes and that this overlap further increases upon LRP1 inter-
nalization. Additionally, SNX17-containing endosomes were
larger in EHD1-depleted cells than in WT cells, suggesting that
EHD1 depletion impairs SNX17-mediated endosomal fission.
Our findings help clarify our current understanding of endo-
cytic trafficking, providing significant additional insight into
the process of endosomal fission and connecting the sorting and
fission machineries.

The early/sorting endosome (SE)? serves as the initial intra-
cellular focal site for fusion of receptor-laden vesicles that have
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internalized from the plasma membrane (1). Receptors are
sorted at the SE and packaged into budding vesicles that are
ultimately released for intracellular transport to a variety of
destinations, including recycling endosomes, the plasma mem-
brane, late endosomes and lysosomes, and other cellular organ-
elles (1, 2). Until recently, the mechanisms by which receptors
are sorted at the SE have been poorly understood, and little is
known about the mechanisms by which budding vesicles
undergo fission from SE. Moreover, the mode of coupling
between the sorting and fission machineries at SE remains
elusive.

The retromer is a key sorting complex at SE, comprised of a
cargo selection complex trimer of VPS35, VPS29, and either a
VPS26a or VPS26b isoform, along with a dimer of sorting nex-
ins (SNX1 or SNX2 and SNX5, SNX6, or SNX32) involved in
sorting of cargo receptors at the SE (3, 4). Although the cargo
selection complex was initially thought to be the primary con-
tact site for interactions with receptors, recent studies have
demonstrated that sorting nexins, especially SNX27 and
SNX17, directly interact with receptor tails (5-8). For example,
SNX17, a sorting nexin that attaches to the SE via its Phox
homology (PX) domain (9-12), interacts with an additional
complex called Retriever at the SE to regulate recycling of
receptors by interaction of the SNX17 FERM domain with
canonical NPXY/NXXY motifs, thus controlling the recycling
of the B1 integrin receptor, LRP1 receptor, and more than 100
additional receptors (9, 11, 13).

When receptors at SE have been packaged into budding
transport vesicles to be trafficked to their next destination, the
budding vesicles need to undergo fission. The mechanisms of
endosomal fission are not well-defined, but evidence supports a
role of the Wiskott-Aldrich syndrome protein (WASH) com-
plex in this process. The WASH complex is comprised of
WASHI1 (also known as WASHC1), Strumpellin (WASHCS5),
CCDC53 (WASHC3), KIAA1033/SWIP (WASHC4), and
Fam21 (also known as WASHC?2) (61, 62), which binds to the
Retromer and initiates filamentous actin nucleation on SE (63,
64), potentially facilitating fission and vesicle release. However,
whether WASH complex—mediated actin nucleation is suffi-
cient for fission at SE remains unknown, and how receptor
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cargo is coupled to sorting and the fission machinery is similarly
not understood.

A growing body of literature suggests that the endocytic reg-
ulatory protein Epsl5 homology domain protein 1 (EHD1)
localizes to SE and recycling endosomes and is capable of
inducing ATP-catalyzed fission of membranes (14-21).
Indeed, it has been demonstrated that EHD1 function is
required for normal recycling of a wide variety of receptors that
traverse endocytic pathways (22, 23). However, to date, the
mechanism of EHDI1 recruitment and coupling to SE has not
been elucidated. Here we demonstrate that EHD1 undergoes
recruitment to endosomal membranes upon induction of
receptor-mediated endocytosis. Recruitment of EHD1 to the
SE leads to its direct interaction with SNX17 and depends on
the presence of the SNX17 FERM B and FERM C domains.
Indeed, EHD1 depletion leads to enlarged SE structures, sup-
porting a role of EHD1 in SE fission. Our data are consistent
with a new model of endosomal fission in which the interaction
between SNX17 and EHD1 provides a molecular explanation to
couple the endosomal sorting and fission machineries.

Results

Recent studies have highlighted a significant role of SNX17
in sorting of select cargo receptors at the SE and regulation of
their recycling to the plasma membrane (9-12). However, the
mechanisms of coupling SNX17 and its cargo receptors to spe-
cific fission machinery at the SE remain unknown. The endo-
cytic regulatory protein EHD1 regulates receptor recycling (16,
19, 24-26), and increasing evidence suggests that its primary
function is in the fission of endosomes (14 —21). However, to
date, direct interactions between EHD1 and the cytoplasmic
tails of receptors have not been identified. Accordingly, we
hypothesized that SNX17 may serve as a link to connect the
sorting machinery and recycling receptors with EHD1 and the
endosomal fission machinery.

To first test whether SNX17 and EHDI1 interact in cells
(despite the lack of a NPXY/NXXY motif in EHD1), we per-
formed coimmunoprecipitations. Antibodies specific for
SNX17 detected an ~53-kDa band in HeLa cell lysates and by
immunoprecipitation (IP) with anti-SNX17 (IP SNX17) (Fig.
1A). In addition, IP with anti-EHD1 antibodies also led to detec-
tion of SNX17 (IP EHD1). As a control, an anti-EB3 antibody
failed to precipitate SNX17 (IP EB3). These data demonstrate
that EHD1 and SNX17 reside in a complex in cells.

In addition to SNX17, it has been reported that SNX27 also
associates with the retromer and plays a role in recycling recep-
tors from endosomes to the plasma membrane (5, 7, 8, 27).
Accordingly, we also tested whether EHD1 coimmunoprecipi-
tates with SNX27. Although IP of SNX27 with an antibody to
SNX27 led to detection of the anticipated ~61-kDa band, IP
with antibodies to EHD1 led to detection of a weak, ~50-kDa
band that was not observed in the lysate fraction for SNX27
(Fig. S1A, unknown). Although it remains possible that this is a
different SNX27 species of lower molecular mass, given its
absence in the lysate fraction, the most likely explanation is that
it is a nonspecific band that is enriched in the course of the IP.
Although MS and additional tests will be needed to ultimately
determine whether there may be a weak interaction between
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EHD1 and SNX27, in this study we focused on the novel and
well-defined interaction we identified between EHD1 and
SNX17.

We next asked whether EHD1 and SNX17 directly interact
with one another. Accordingly, we used purified GST-SNX17
(or purified GST as a control) together with purified His-tagged
EHD1 (His-EHD1) to perform in vitro binding assays (Fig. 1B).
Using equal concentrations of His-EHD1 (Fig. 1B, left panel),
we showed that His-EHD1 pulled down significant levels of
GST-SNX17 (roughly equivalent to the 20% observed in the
input), whereas His-EHD1 pulled down no detectable GST (Fig.
1B, center panel, negative control). These data support the
notion that EHD1 and SNX17 reside within a complex in cells
and are capable of direct interaction.

Given that SNX17 and EHD1 interact directly (at least in
vitro), we aimed to delineate the mode of this interaction and
define the specific domains or protein regions involved.
Accordingly, in addition to full-length SNX17, we generated
constructs comprised of the SNX17 FERM B or SNX17 FERM
C regions (Fig. 24), which are capable of interaction with mul-
tiple proteins containing NPXY/NXXY motifs (28). Using equal
concentrations of His-EHD1 as bait (Fig. 2B, left panel), we
observed that, similar to full-length GST-SNX17, both GST-
FERM B and GST-FERM C domains were precipitated,
whereas controls (GST alone or GST fused to the CH1 domain
of MICAL-L1) were not precipitated (Fig. 2B, center panel).
Moreover, densitometric analysis from three experiments
demonstrated that full-length SNX17 as well as each of the indi-
vidual FERM domains showed significant binding to His-EHD1
compared with the control MICAL-L1 CH1 domain (Fig. 2D).
However, although SNX17 W321 is essential for the interaction
with NPXY/NXXY motifs in receptor tails (28), mutation of
SNX17 to W321A had no effect on its ability to bind EHD1 (Fig.
S1B), likely indicating a different mechanism for SNX17 inter-
actions with NPXY/NXXY motifs and EHD1 and also raising
the possibility that SNX17 might be able to simultaneously cou-
ple receptors and the fission machinery. In addition, we also
assessed the ability of the SNX17 PX domain, a region impli-
cated in interactions with phosphoinositides (29, 30), to inter-
act with EHD1. As expected, unlike the full-length SNX17 and
its FERM domains, no interaction with EHD1 was observed
with this lipid-binding domain (Fig. 2C, quantified in Fig. 2E).
These experiments suggest that the SNX17 atypical FERM
domain directly binds to EHD1.

We next asked which EHD1 region is required for binding to
SNX17. Most interaction partners of EHD1 interact with the
C-terminal EH domain (Fig. S2A), usually via an NPF motif
(which is lacking in SNX17) (22, 31, 32), so we used His-EHD1
(full-length), a construct containing only the EHD1 EH domain
(His—EH-1), or His-EHD]1, lacking the EH domain (His-EHD1
AEH), to pull down GST-SNX17 or GST (control) (Fig. S2B and
quantified in Fig. S2C). As demonstrated, His-EHD1 AEH
pulled down similar levels of GST-SNX17 as those observed
upon full-length His-EHD1 pulldown. Moreover, when used as
bait, His—EH-1 showed decreased SNX17 pulldown. These
results support the notion that the EHD1 EH domain is not
required for interaction with SNX17.
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Figure 1. Interaction between EHD1 and SNX17. A, Hela cell lysates were incubated at 4 °C overnight with either anti-SNX17, anti-EHD1, or anti-EB3
antibodies (from /eft to right). Protein G beads were then added to the lysate—antibody mixture at 4 °C for 4 h. Bound proteins were then eluted by boiling at
95 °C in B-mercaptoethanol-containing loading buffer, separated by SDS-PAGE, and immunoblotted with anti-SNX17 antibodies (left panel), anti-EHD1
antibodies (center panel), or anti-EB3 antibodies (right panel). Input lysates (20%) are depicted on the left of the immunoblots. h.c.,immunoglobulin heavy chain.
B, purified His-EHD1 was bound to Ni**-NTA beads prior to incubation with either GST alone or GST-SNX17. Bound proteins were then eluted by boiling at 95 °C
in B-mercaptoethanol-containing loading buffer, separated by SDS-PAGE, and immunoblotted with anti-His (left panel) or anti-GST antibodies (center and
right panels). Input refers to the amounts of purified GST and GST-SNX17 used for incubation with His-EHD1. Data shown are representative of three indepen-

dent experiments.

EHD1 is an ATPase that dimerizes and cycles between the
cytoplasm and endosomes (16, 33-36). To date, however, the
potential triggers for EHD1 recruitment to endosomes have not
been examined. Accordingly, we rationalized that, because
EHD1 appears to be recruited to SE to facilitate fission of cargo
in conjunction with SNX17-based cargo sorting, internaliza-
tion of SNX17 cargo molecules might serve to induce EHD1
recruitment to SE. Accordingly, we used our NIH3T3 CRISPR/
Cas9 gene-edited EHD1-GEFP cells (37, 38) to address this ques-
tion. At steady state, in the absence of select uptake, we visual-
ized EHD1 in the cytoplasm and on a smattering of puncta and
small tubules, consistent with SE (Fig. 34, see inset for more
detail). When incubated with an antibody to the SNX17-sorted
cargo receptor low-density lipoprotein receptor—related pro-
tein 1 (LRP1) (9, 39, 40) to induce its internalization, we
observed a dramatic increase in the number and size of EHD1-
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containing puncta and small tubules (Fig. 3B, see inset for more
detail). Typically, we observed that the LRP1 antibody/LRP1
complex is internalized within 15-30 min and observed in
endosomes (Fig. S3, A and B, quantified in G). Moreover, we
demonstrated that the receptor—antibody complex recycles
and reappears on the plasma membrane within an hour of
internalization and peaks on the cell surface at 2 h before
undergoing additional uptake and removal from the plasma
membrane (Fig. S3, C—F, and quantified in G). Using 3D surface
rendering of z-stacks with IMARIS software, we quantified
the total surface volume of EHD1-containing endosomes in
cells that internalized LRP1 compared with untreated cells,
and we observed a mean ~300% increase per cell (Fig. 3E).
However, SNX17, which interacts with phosphoinositides
directly through its PX domain and is mostly found on endo-
somal membranes (41), showed only a modest mean ~20%
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recruitment upon induction of LRP1 internalization (Fig. 3, C
and D, and quantified in F). Although additional experimenta-
tion will be needed to test a wide range of receptors and deter-
mine whether their internalization induces EHD1 recruitment
to endosomes, addition of a control antibody to the V5 epitope
had no significant impact on EHD1 recruitment compared with
LRP1 uptake (Fig. S4, A—C, and quantified in D). These data
suggest that internalization of an SNX17-sorted receptor can
lead to EHD1 recruitment to SE, potentially to facilitate fission
events and recycling.

Given that EHD1 and SNX17 directly interact and coimmu-
noprecipitate, we next determined whether the two proteins
displayed a degree of colocalization in cells. Accordingly, we
used untreated cells (no uptake) and cells that were incubated
with antibodies against LRP1 to induce receptor uptake and
EHD1 recruitment to endosomes (LRP1 uptake). As demon-
strated in Fig. S5, A—F, insets), induced recruitment of EHD1 to
SNX17-containing endosomes led to increased colocalization.
To quantify the overlap between SNX17 and EHD1, we used
IMARIS software to measure 3D surface overlap volume of
SNX17 with EHD1 (Fig. 4A). Following extensive calibrations
and comparisons with both 2D and 3D measurements of Pear-
son’s correlation and Manders overlap coefficient, we found
that use of multiple z-sections and measurement of voxel over-
lap in this system provides the most accurate assessment of
colocalization within the cell. Essentially, automated analysis
renders 3D surfaces from both channels, removing “haze” from
the cytoplasm, and measures the degree of overlap between the
two sets of 3D surfaces. Representative micrographs display
surface-rendered EHD1 (green) and SNX17 (red) in the absence
of uptake (Fig. 4, B and C, and Video S1, with surface overlap
volume shown in yellow) and following LRP1 uptake (Fig. 4, D
and E, and Video S2, with surface overlap volume shown in
yellow). As indicated, the percentage of SNX17 surface volume
overlap with EHD1 increases significantly by 2- to 3-fold upon
LRP1 uptake. Overall, these data support the notion that ~20%
of SNX17 overlaps with EHD1 at steady state and that inducing
LRP1 internalization and EHD1 recruitment leads to signifi-
cantly more SNX17 overlap with EHD1.

Although we rationalize that coupling between SNX17 and
EHD1 is required to connect the sorting and fission machiner-
ies at SE, EHD1 could initially be recruited to SE through its
interactions with SNX17 or independent of SNX17. To test
whether SNX17 is required for EHD1 recruitment to SE, we
used mock (untreated) NIH3T3 CRISPR/Cas9 gene-edited
EHD1-GFP cells and the same cells after SNX17 siRNA knock-
down (decreased SNX17 expression validated and quantified in
Fig. 5F). As we saw previously, mock-treated cells contained
cytoplasmic EHD1 as well as some puncta and small tubules

representing endosomes (Fig. 54, total surface area of EHD1-
containing endosomes quantified in E) and internalization of
LRP1 significantly increased recruitment of EHD1 to endo-
somal membranes (Fig. 5B and quantified in E). For SNX17
siRNA-treated cells without internalization of LRP1, the distri-
bution of EHD1 remained similar to that observed for mock-
treated cells, with a mostly cytoplasmic distribution pattern and
a smattering of vesicles and tubules (Fig. 5C and quantified in
E). However, when SNX17 knockout cells were subjected to
LRP1 internalization, EHD1 was again recruited to endosomes
in a manner similar to that seen in mock-treated cells (Fig. 5D
and quantified in E). Overall, these data suggest that EHD1
recruitment to SE is independent of SNX17 and may rely on
other interaction partners that are localized to SE.

We postulate that SNX17 selects and sorts cargo into bud-
ding structures on SE and that EHD1 is recruited to the SE
membrane to catalyze fission and release transport vesicles to
be targeted for recycling. Accordingly, we rationalized that, if
EHDL1 is depleted from cells, then SNX17-containing SE would
undergo a decreasing amount of fission and display an enlarged
endosomal size distribution. To test this idea, we again used
CRISPR/Cas9 gene-edited NIH3T3 cells and initially com-
pared the size of SNX17-containing endosomes in EHD1-GFP
and EHD1 knockout cells (Fig. 6, A—C). As shown in the repre-
sentative micrographs (Fig. 6, A and B), EHD1 knockout cells
indeed appeared to have larger SNX17-containing endosomes.
To measure the precise distribution of SNX17-containing SE in
the presence and absence of EHD1, we applied IMARIS soft-
ware to obtain reconstructed 3D surfaces and calculate the fre-
quency and size of thousands of SE from tens of micrographs
and plotted the frequency over the mean interval of SNX17-
containing SE endosome size (Fig. 6D, inset). The distribution
plotis shifted to the right upon EHD1 knockout and shows that,
as the endosomes increase in size (particularly above a thresh-
old of 3 wm?), the relative distribution of endosomes is
increased in EHD1 knockout cells. Calculation of the relative
frequency of endosome size (where the size distribution of
endosomes for each cell type is plotted from a total of 100%)
further highlights the notion that, in the absence of EHD1, the
ratio of larger to smaller endosomes is higher compared with
EHD1-GFP- containing cells (Fig. 6E, see shift to the right for
the knockout in the inset). Overall, these data support the idea
that EHD1 is recruited to SE, where it interacts with SNX17 and
facilitates fission of transport vesicles.

Discussion

Significant advances in our understanding of receptor sort-
ing at the endosome have been made in recent years (reviewed
in Refs. 1, 2, 42—44). Not only have studies demonstrated that

Figure 2. Delineation of the SNX17 and EHD1 domains required for their interaction. A, schematicillustrating the domain architecture of SNX17.Band C,
purified His-EHD1 was bound to Ni*"-NTA beads for 2 h at 4 °C, as described under “Experimental procedures.” The His-EHD1 and purified GST-fusion target
proteins (GST alone, GST-CH1, GST-FERM B, GST-FERM C, GST-PX, and GST-SNX17) were treated with micrococcal nuclease at 30 °C for 10 min. His-EHD1 was
then incubated with GST fusion proteins for 2 h at 4 °C. Samples were washed, eluted, and separated by SDS-PAGE. B, left panel,immunoblotting was done with
anti-His-HRP antibody, showing equivalent amounts of His-EHD1 used to incubate with GST-fusion proteins. B, center and right panels, immunoblotting was
done with anti-GST antibody, as in the top panel in C. C, bottom panel, levels of the purified proteins as stained by Ponceau Red. Input refers to the amounts of
purified GST, GST-CH1, GST-FERM B, GST-FERM C, GST-PX, and GST-SNX17 used for incubation with His-EHD1 bound to beads. D and E, densitometric
quantification of purified GST-CH1, GST-PX, GST-FERM B, GST-FERM C, and GST-SNX17 protein levels precipitated by purified His-EHD1. Error bars denote
standard deviation. The p values were determined by Student’s two-tailed t test. Data shown are representative of three independent experiments. PTB,

phosphotyrosine binding.
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Figure 4. EHD1 and SNX17 surface overlap volume increases upon LRP1 uptake. CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1-GFP were
mock-treated (no uptake) or incubated with anti-LRP1 antibody as described in Fig. 3. The cells were fixed and stained with anti-SNX17 antibody and imaged
by confocal microscopy. Z-stacks were acquired and processed by IMARIS. 3D surface reconstruction was performed simultaneously for both channels to
capture EHD1 and SNX17 voxels. Surface-surface overlap volume was assessed using the IMARIS XT bundle Kiss and Run by integrating it with MATLAB
Compiler Runtime and launching on IMARIS. A, EHD1 surfaces were selected as target surfaces, and SNX17 surfaces were tracked for any overlapping voxels
with those of EHD1. The total surface overlap volume between EHD1 and SNX17 surfaces was quantified and plotted for the no uptake and LRP1 uptake
conditions. Two-tailed t tests were performed. B-E, representative images showing 3D surface reconstruction for EHD1 and SNX17 surfaces without (B and C)

and with LRP1 uptake (D and E). The overlap is indicated in yellow (C and E). Data shown are representative of three independent experiments.

receptor recycling from endosomes is an active process (45),
but key sorting proteins of the sorting nexin family, including
SNX17, SNX27, and others, have been identified as hubs that
can bind to multiple receptors and channel them to select path-
ways (5-7,9-12, 46). However, a central remaining question is
the mode by which sorted receptors are coupled with the endo-
somal fission machinery leading to transport vesicle formation
and recycling.

Here we demonstrated for the first time that a key sorting
nexin, SNX17, can couple internalized receptors with EHD1, a
protein implicated in membrane fission. Binding of SNX17 to
EHDI1 occurs through the SNX17 atypical FERM domain,
which can bind an array of receptor cargos and other molecules
(28). Although it remains unclear whether SNX17 can simulta-
neously bind both receptors and EHD1, these proteins likely

localize to common endosomal membrane complexes slated
for budding and fission.

EHDI1 binding to SNX17 is atypical because most of the
EHDI interaction partners identified to date interact via NPF
motifs (22, 23, 47). However, proteins that interact with EHD1
without an NPF motif have been identified (48).

To better address the mode by which SNX17 and EHD1
coordinately function in the cell, we sought to better visualize
their localization and potential overlap at endosomal mem-
branes. Initial attempts to quantify “colocalization” by imaging
in two or three dimensions followed by application of Pearson’s
or Manders’ coefficients (49) did not accurately reflect the
degree of overlap observed, likely because of the significant
degree of cytoplasmic EHD1 haze that interferes with the anal-
ysis, especially in cells imaged without LRP1 internalization.

Figure 3. EHD1 is recruited to endosomes upon LRP1 uptake. A-D, CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1-GFP were either mock-treated
(A and C, no uptake) or incubated with anti-LRP1 antibody (B and D, 30 min on ice and 30 min at 37 °C) prior to fixation and immunostaining with anti-SNX17
antibody and imaging by confocal microscopy. Representative images consisting of a field of cells are displayed. Regions of interest are shown in the insets, and
dashed ovals outline the nuclei of the cells. £, 3D surface rendering was carried out from z-sections to capture and quantify the total surface volume of EHD1 (E)
or SNX17 (F) (see “Experimental procedures” for details). Error bars denote standard deviation. Two-tailed t tests were performed to derive p values. Data shown
are representative of three independent experiments, each using 10 images with seven z-sections each.
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Figure 5. EHD1 is recruited to endosomes in the absence of SNX17. A-D, CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1-GFP were mock-treated
(Aand B) or subjected to SNX17 siRNA (Cand D) and incubated with LRP1 antibodies (B and D) or left untreated as a control (A and C). £, z-sections obtained from
confocal microscopy were processed with IMARIS software to construct 3D surfaces for EHD1, as discussed under “Experimental procedures,” and the total
EHD1 surface area per cell was calculated. The graph depicts the total surface area of EHD 1-containing endosomes per cell in mock and SNX17 knockdown cells
with or without LRP1 uptake. Two-tailed t tests were performed to derive p values. n.s., not significant. F, immunoblot showing reduced SNX17 expression in
CRISPR/Cas9 gene-edited NIH3T3 EHD1-GFP cells and densitometric quantification of SNX17 protein levels in cells subjected to SNX17 siRNA treatment
compared with untreated cells (mock) plotted. Error bars denote standard deviation, and p values were determined by Student’s two-tailed t test. Data shown
are representative of three independent experiments.

Accordingly, we developed a method using IMARIS surface were converted to “3D surfaces,” allowing us to effectively filter
rendering and Kiss and Run software in which 3D images of out most of the cytoplasmic protein haze. We were then able to
cells with EHD1-GFP and immunostained endogenous SNX17  selectively measure EHD1 and SNX17 surface overlap volume
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Figure 6. SNX17 endosome size increases in the absence of EHD1. A, CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1-GFP were immunostained
with anti-SNX17 antibody and imaged. B, CRISPR/Cas9 gene-edited NIH3T3 cells lacking EHD1 (EHD1-KO) were fixed, immunostained with anti-SNX17 anti-
body, and imaged. Insets are included to highlight the endosomal size difference. C,immunoblot demonstrating loss of EHD1 in NIH3T3 EHD1 knockout cells
(top panel) and expression of EHD1-GFP (molecular weight, ~87 kDa) in NIH3T3 EHD1-GFP cells (bottom panel). D, 3D surface rendering was carried out to
encompass SNX17 voxels, and their total surface area was quantified. A grouped frequency distribution bar graph and curve (inset) for SNX17 endosome size
(square micrometers) are plotted to compare endosome size distribution in EHD1-GFP (black) and EHD1-KO (red) cells. E, the relative frequency of SNX17
endosome size (of 100%) was quantified and plotted to compare the relative frequency of endosome size distribution in EHD1-GFP (black) and EHD1-KO (red)

cells. Data shown are representative of six independent experiments.

in a reliable and automated manner. Our data clearly show that
~20% of SNX17 and EHD1 display overlap in 3D at steady state.
Remarkably, however, we observed a 2- to 3-fold increase in the
surface overlap volume following 30-min internalization of
LRP1. Significantly, because total SNX17 surface volume is only
modestly increased upon LRP1 uptake, the increase in overlap
with EHD1 comes primarily from a massive 3-fold recruitment
of EHD1 to membrane surfaces upon LRP1 internalization.
Indeed, to our knowledge, this is the first evidence that EHD1
and endosomal fission machinery can be recruited to endo-
somal membranes by a specific physiologic signal.

EHD1 is a highly dynamic protein that cycles on and off of
membranes, similar to many ATPases and GTPases (16).
Although the mechanism of recruitment of EHD1 from the
cytoplasm to membranes is not understood, it has been posited
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that posttranslational events such as ATP binding, dimeriza-
tion, and potentially phosphorylation may be required (23).
Given the direct interaction of EHD1 with SNX17, one possi-
bility was that SNX17 is needed for recruitment/anchoring of
EHD1 to endosomes. However, because SNX17 knockdown
had little impact on the recruitment of EHD1 to endosomes,
this suggests the following scenario (Fig. 7). Upon LRP1 inter-
nalization, EHD1 is “activated” in the cytoplasm in a manner
that might include ATP binding, dimerization, and/or phos-
phorylation and potentially other posttranslational modifica-
tions. The EHD1 dimers might then interact with an endosomal
EHDI interaction partner (EEIP) at the endosomal membrane.
Examples of EEIPs include Rabenosyn-5 (50), Rabankyrin-5
(51), MICAL-L1 (20, 52—55), Rab11-FIP2 (34), SNAP29 (56,
57), and Syndapin2 (53, 58). Recruitment of EHD1 to endo-
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Figure 7. Model depicting potential mechanisms for EHD1 endosomal
recruitment and coordination of membrane fission with SNX17.

somes by one or more of these EEIPs would explain why SNX17
knockdown did not affect recruitment. After recruitment,
EHD1 might be able to diffuse along the endosomal membrane,
still bound to the EEIP via EH domain NPF motifs, until it
comes into contact with and binds to SNX17 (in an EH
domain-independent mechanism), which is itself bound to a
receptor cargo. Ultimately, EHD1 might play a significant role
in fission of vesicles slated for recycling.

The process of endosomal fission mediated by EHDI is
highly complex (17, 18) and may include a variety of additional
proteins involved in membrane curvature, such as cPLA2« (14)
and the BAR (Bin, Amphiphysin, Rvs) domain— containing pro-
tein GRAF1 (15). However, EHD1 is only one of several key
mechanisms that regulate endosomal fission; in particular, the
Wiskott-Aldrich syndrome protein and SCAR homolog
(WASH) complex has been implicated in activation of the
Arp2/3 actin polymerization nucleator at endosomes, a process
thought to precede dynamin-controlled endosomal fission (59).
How EHD1-mediated endosomal fission can be integrated into
the latter processes remains to be determined.

Overall, we identified a novel direct interaction between the
sorting nexin SNX17 and the endosomal fission protein EHD1.
Our study demonstrates that receptor-mediated endocytosis of
the LRP1 receptor induces massive recruitment of EHD1 to
endosomal membranes. Although recruitment occurs in a
SNX17-independent manner, our data demonstrate that, in the
absence of EHD1, SNX17-containing endosomes increase in
size, likely as a result of impaired fission. This study provides
new insight into coupling of the endosomal sorting and fission
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machineries, highlighting a significant role of EHD1 in the
endosomal fission process.

Experimental procedures
Cell lines

The HeLa cervical cancer cell line was obtained from the
ATCC and grown in DMEM (high-glucose) containing 10%
FBS, 1X penicillin-streptomycin (Invitrogen), and 2 mm gluta-
mine. CRISPR/Cas9 was applied to generate the NIH3T3 cell
line expressing endogenous levels of EHD1 with GFP attached
to its C terminus as well as EHD1 knockout cells, as described
previously (37). WT and gene-edited NIH3T3 cells were cul-
tured at 37 °C in 5% CO, in DMEM containing 10% FBS with 2
mM L-glutamine and 100 units/ml penicillin/streptomycin. For
treatments, cells were plated on fibronectin-coated coverslips.
All cell lines were routinely tested for Mycoplasma infection.

Antibodies

The following antibodies were used: anti-EHD1 (109311,
Abcam), anti-SNX17 (NBP1-92417, Novus, for immunoblot-
ting; HPA043867, Atlas, for immunofluorescence), anti-EB3
(126953, Abcam), anti-V5 (R960-25, Invitrogen), anti-SNX27
(77799, Abcam), anti-HA (600-401384S, Rockland), anti-GST-
HRP (A01380, GenScript), anti-His-HRP (66005, Proteintech),
anti-GAPDH-HRP (HRP-60004, Proteintech), anti-LRP1
(NB100-64808, Novus), anti-GFP (11814460001, Roche), anti-
caveolin (3238, Cell Signaling), donkey anti-mouse-HRP (715-
035-151, Jackson ImmunoResearch Laboratories), mouse anti-
rabbit IgG light chain—-HRP (211-032-171, Jackson), Alexa
Fluor 568 —conjugated goat anti-rabbit (A11036, Molecular
Probes), and Alexa Fluor 568 — conjugated goat anti-mouse
(A11031, Molecular Probes).

DNA constructs, cloning, and site-directed mutagenesis

pGEX-4T-1-SNX17 (bp 1-1413) was obtained from Gen-
Script (clone S80141), and pET28a-EHD1 was generated from
the original EHD1 constructs designed (16). Primers were
designed using the New England Biolabs primer design tool for
PCR amplification of the ORF encoding human SNX17 FERM
B (bp 328-780), FERM C (bp 781-1200), EHDI1AEH (bp
1-1329), and the EH domain of EHD1 (bp 1330-1603). The
amplified products, SNX17 FERM B and FERM C, were cloned
in pGEX-4T-1, whereas EHDIAEH and the EH domain of
EHD1 were cloned in pET-28a. pGEX-4T-1-SNX17 was
mutated from glutamine to a STOP at amino acid position 110
(Q110STOP), which eventually coded for the GST-PX domain
of SNX17, and pGEX-4T-1-FERM C was mutated from trypto-
phan to alanine at amino acid 321 (W321A) using the
QuikChange site-directed mutagenesis kit (Stratagene, catalog
no. 200518) following the manufacturer’s protocol.

Coimmunoprecipitation

HeLa cells were grown in 100-mm dishes until confluent.
Cells were lysed with lysis buffer containing 50 mm Tris (pH
7.4), 100 mm NaCl, 0.5% Triton X-100, and 1 X protease inhib-
itor mixture (Millipore) on ice for 30 min. Lysates were incu-
bated with a specific antibody at 4 °C overnight. Protein G
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beads for antibodies raised against rabbit antigens (GE Health-
care) or protein L beads for antibodies raised against mouse
antigens (I91R-844, ABT) were added to the lysate—antibody
mixture at 4 °C for 4 h. Samples were then washed three times
with the same lysis buffer. Proteins were eluted from the beads
by boiling in the presence of 4X loading buffer (250 mm Tris
(pH 6.8), 8% SDS, 40% glycerol, 5% B-mercaptoethanol, and
0.2% bromphenol blue) for 10 min. Eluted proteins were then
detected by immunoblotting.

Recombinant gene expression and protein purification

The recombinant DNA constructs were expressed in the
Escherichia coli Rosetta (R2) strain and purified by affinity
chromatography in separate experiments. Briefly, a freshly
transformed colony of E. coli was inoculated in 50 ml of Luria-
Bertani broth (with 50 ug/ml kanamycin for recombinant pET-
28a expression plasmids and 100 pg/ml ampicillin for recom-
binant pGEX-4T-1 expression plasmids) and cultured
overnight at 37 °C with continuous shaking (primary culture).
Next, the primary culture was inoculated in 1000 ml of fresh
Luria-Bertani broth at 1:100 dilution and incubated at 37 °C
with continuous shaking until readings of 0.4—0.6 at Ay m-
The culture was then induced with 1 mm isopropyl 1-thio-3-p-
galactopyranoside overnight either at 18 °C for recombinant
pGEX-4T-1 expression plasmids or 25°C for recombinant
pET-28a expression plasmids. The cells were then centrifuged
at 2100 X gfor 15 min at 4 °C. The bacterial pellet obtained was
resuspended in ice-cold lysis buffer containing 1 tablet/10 ml of
protease inhibitor mixture (Roche). The composition of lysis
buffer for recombinant pET-28a expression plasmids was 50
mM Tris, 200 mm NaCl, and 50 mm imidazole (pH 8.0), whereas
for recombinant pGEX-4T-1 expression plasmids, the compo-
sition of lysis buffer was 1X PBS (pH 7.4). Sample lysis was
performed by six cycles of sonication on ice (2-min bursts/2
min cooling/200—200 watts in a Branson sonicator). The lysate
was centrifuged at 18,000 X g for 30 min at 4 °C, which allowed
separation of clear supernatant and cellular debris (inclusion
bodies were pelleted by centrifugation). The supernatant was
then mixed and allowed to bind with either Ni**-NTA (pET-
28a plasmids) or GSH-Sepharose resin (P GEX-4T-1 plasmids)
for 4 h at 4 °C. To ensure the removal of any nonspecifically
bound proteins, the beads were then washed extensively with
10 bed volumes of wash buffer (for pGEX-4T-1 plasmids, three
times with 2X PBS followed by a final wash with 1X PBS; for
pET-28a plasmids, three times with buffer containing 100 mm
imidazole, 50 mm Tris, and 200 mm NaCl (pH 8.0)) by centri-
fuging at 3000 X gfor 3 min at 4 °C. Finally, the bound histidine-
tagged and GST-tagged proteins were subjected to elution for
4 h at 4 °C in elution buffer containing 300 mm imidazole, 50
mM Tris, and 200 mm NaCl (pH 8.0) and 30 mm GSH (reduced)
in 50 mMm Tris-HCI (pH 8.0), respectively, followed by centrifu-
gation at 2100 X g for 5 min at 4 °C. The purified proteins were
then dialyzed against dialysis buffer (50 mm Tris (pH 8.0), 200
mM NaCl, and 0.1 mm PMSF) overnight at 4 °C.

Direct interaction assay

For the protein—protein interaction assays, 20 ul of a slurry of
Ni**-NTA beads was washed four times with 10 bed volumes of
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beads with TGEM buffer (20 mm Tris-HCI (pH 7.9), 20% glyc-
erol, 1 mm EDTA, 5 mm MgCl,, 0.1% NP-40, 1 mm DTT, 0.2 mm
PMSF, and 0.1 m NaCl) by centrifugation at 13,000 rpm for 30,
followed by addition of three bed volumes of TGEM to packed
beads to which 0.5 ug of the purified histidine-tagged proteins
was incubated for 2 h at 4 °C in a tube rotator. The immobilized
His-tagged bait slurry was then centrifuged at 13,000 rpm for
30 s, followed by two washes with 10 bed volumes of beads with
TGEM buffer (20 mm Tris-HCI (pH 7.9), 20% glycerol, 1 mm
EDTA, 5 mm MgCl,, 0.1% NP-40, 1 mm DTT, 0.2 mm PMSF,
and 1 M NaCl) and then twice with TGMC buffer (20 mm Tris-
HCI (pH 7.9), 20% glycerol, 5 mm CaCl, 0.1% NP-40, 1 mm
DTT, 0.2 mm PMSF, and 0.1 m NaCl). After the last wash, two
bed volumes of TGMC were added to the bait along with 1
unit of micrococcal nuclease and incubated at 30 °C for 10
min, as described by Nguyen and Goodrich (60). 0.5 ug of
target GST fusion proteins was diluted in TGMC to obtain a
40-ul sample (target) volume per reaction and treated with 1
unit of micrococcal nuclease at 30 °C for 10 min. The
nuclease-treated GST-target proteins were then incubated
with bait for 2 h at 4 °C in a tube rotator. The samples were
then washed four times with 10 bed volumes of TGEM and
subjected to SDS-PAGE.

siRNA treatment

CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1
were plated on fibronectin-coated coverslips and grown for
24 h in DMEM containing 10% FBS with 2 mm L-glutamine and
100 units/ml penicillin/streptomycin. The cells were then
treated with mouse SNX17 siRNA oligonucleotides (Dharma-
con, On-TARGETplus SMARTpool, catalog no. L-054627-02-
0005) for 48 h at 37 °C using Lipofectamine RNAiMax trans-
fection reagent (Thermo Fisher Scientific), following the
manufacturer’s protocol.

Immunofluorescence and LRP1 uptake

CRISPR/Cas9 gene-edited NIH3T3 cells expressing EHD1
or lacking EHD1 were treated as indicated. Briefly, LRP1
uptake was performed in NIH3T3 cells expressing EHD1-
GFP by diluting LRP1 antibody (1:70) in DMEM containing
10% FBS with 2 mm L-glutamine and 100 units/ml penicillin—
streptomycin on ice for 30 min, followed by three washes with
1X PBS. Coverslips were switched to 37 °C for another 30 min
and then washed again three times with PBS. Following treat-
ment, cells were fixed in 4% paraformaldehyde in PBS for 10
min at room temperature. After fixation, cells were rinsed three
times in PBS then incubated with primary antibody in staining
buffer (PBS containing 0.5% BSA and 0.2% saponin) for 1 h at
room temperature. Cells were then washed three times in PBS,
followed by incubation with the appropriate fluorochrome-
conjugated secondary antibodies diluted in staining buffer for
30 min. Cells were washed three times in PBS and mounted in
Fluoromount. Z-stack confocal imaging was performed using a
Zeiss LSM 800 confocal microscope with a X63/1.4 numerical
aperture oil objective, and more than 30 cells from three inde-
pendent experiments were assessed using IMARIS.
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Image processing, 3D reconstruction, and Kiss and Run
analysis

Z-sections of images (six slices) acquired from the confocal
microscope were imported into IMARIS x64 9.1.2 software
(Bitplane AG, Zurich, Switzerland) coupled with custom MAT-
LAB (2009 and 2014) programming for 3D surface rendering
and quantitative analysis, as indicated. Briefly, the image dis-
play was adjusted for both of the channels (EHDI1, green;
SNX17, red), and the rendering quality was set to 100%. Sur-
faces were created by selecting source channel and smooth sur-
face detail set at 0.198 um. Background subtraction was set to
0.743 pm, and the threshold was reduced for surfaces to fully
cover all voxels. The surface area and volume of the surfaces
generated were quantified by IMARIS for both of the channels,
and the values were exported into Excel for graphical and sta-
tistical analysis using GraphPad Prism. To quantify surface
overlap volume between two surfaces (EHD1 and SNX17), the
IMARIS XT bundle Kiss and Run was first integrated with
MATLAB and launched in IMARIS. 3D surface-reconstructed
images were then processed for Kiss and Run analysis using the
surface—surface overlap module, which uses a surface mask for
the target and tracks the surface and determines overlap for
each surface independently. This particular Xtension program
analyzes contact events between surfaces that are defined by
having at least one overlapping voxel. Volume of overlap for
each surface was then quantified and exported to Excel for fur-
ther analysis.

Graphical and statistical analysis

Total surface overlap volume was calculated using the
IMARIS XT bundle Kiss and Run surface—surface colocaliza-
tion module with EHD1 set as target surfaces and SNX17 as
tracked surfaces. A bar graph was plotted, and a two-tailed ¢ test
was performed with significance, as indicated in the figures. A
frequency distribution (interleaved) graph was plotted for
SNX17 endosome size in cells expressing EHD1-GFP or lacking
EHD1, with the first bin starting at 0.1 um? up to 20.1 um? and
bin width set at 0.00001 um?. Gaussian curves were also plot-
ted. National Institutes of Health Image] was used to quantify
signal integrated density. All graphical and statistical tests were
done using GraphPad Prism 7.
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