
Photoredox-Catalyzed Multicomponent Petasis Reaction with 
Alkyltrifluoroborates

Jun Yi†,‡,§, Shorouk O. Badir†,§, Rauful Alam†, Gary A. Molander*,†

†Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 
South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

‡Jiangsu Laboratory of Advanced Functional Materials, School of Chemistry and Materials 
Engineering, Changshu Institute of Technology, Changshu 215500, China

Abstract

A redox-neutral alkyl Petasis reaction has been developed that proceeds via photoredox catalysis. 

A diverse set of primary, secondary, and tertiary alkyltrifluoroborates participate effectively in this 

reaction through a single-electron transfer mechanism, in contrast to the traditional two-electron 

Petasis reaction, which accommodates only unsaturated boronic acids. This protocol is ideal to 

diversify benzyl-type and glyoxalate-derived aldehydes, anilines, and alkyltrifluoroborates toward 

the rapid assembly of libraries of higher molecular complexity important in pharmaceutical and 

agrochemical settings.

Graphical Abstract

Multicomponent reactions (MCRs) have emerged as powerful transformations to condense 

three or more partners to deliver novel scaffolds with inherent molecular complexity.[1] The 
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advantages of MCRs include the preservation of atom- and step economies, shorter reaction 

times, and the ability to access highly diverse chemical space rapidly and efficiently. These 

integral benefits make MCRs highly attractive for diversity-oriented synthesis of small 

molecule libraries in drug discovery,[2] as well as in a variety of other useful endeavors.[3]

Presently, the tool box of a synthetic chemist is composed of many MCRs, including 

Mannich,[4] Biginelli,[5] Passerini,[6] and Ugi transformations.[7] The Petasis reaction[8] is 

another such reaction, and is perhaps unique by virtue of its generation of amines and amino 

acid derivatives with pivotal activity in biology. The majority of traditional Petasis 

applications require adjacent heteroatoms as directing groups to form the key boron “ate” 

complex intermediate (Scheme 1a).[9] This initial complexation is followed by an 

irreversible, two-electron nucleophilic addition to an imine or iminium ion intermediate, 

stemming from a condensation reaction of the aldehyde and amine. The propensity of the 

boron “ate” complex to migrate depends on its ability to stabilize negative charge: alkynyl > 

aryl ≈ alkenyl > alkyl.[10] Thus, the traditional Petasis reaction is restricted to alkenyl, aryl, 

alkynyl, allyl, benzyl, and allylic boronic acid derivatives.[8, 9] As far as we are aware, there 

are no reports of multicomponent Petasis reactions using alkylboron derivatives. A widely 

utilized alternative approach to amines stemming from two-electron nucleophilic addition to 

imines or iminium ions uses strongly nucleophilic organometallic reagents.[11] These 

transformations, however, rely on harsh reaction conditions that compromise functional 

group tolerability, restricting their widespread use in late-stage functionalization of complex 

molecules. It is also important to note that the formation of water as a byproduct under a 

multicomponent platform would hinder the efficacy of these pyrophoric reagents. In the 

context of single-electron transfer (SET) in the multicomponent Petasis reaction, the only 

examples reported require preformed imines[12] or the use of stoichiometric indium as a 

reductant with limited scope, being restricted to secondary alkyl iodides.[13]

Other SET approaches to C═N bond alkylation, including Minisci reactions, are well 

documented.[14] Our group, as well as others, recently demonstrated that photoredox 

catalysis enables the generation of alkyl radicals from organotrifluoroborates, while 

maintaining broad functional group tolerance.[15] Given the robust stability of alkyl radicals 

to aqueous conditions, a photoredox approach to a multicomponent Petasis-type reaction 

would appear feasible. We envisioned that a suitable photocatalyst in its excited state ([PC]*, 

II) would initiate the process by oxidizing an alkyltrifluoroborate IV to the desired alkyl 

radical V (Scheme 1b), generating BF3 as a byproduct. The radical V could then add to the 

in situ condensed imine VIII to form the amine radical cation IX. A subsequent reduction of 

IX by the reduced state of the photocatalyst III terminates the photocatalytic cycle. The use 

of trifluoroborates as radical precursors was viewed as critical for the success of the 

proposed protocol, because the BF3 Lewis acid generated in the SET process was anticipated 

to facilitate the condensation between the aldehyde and the amine, and could also activate 

the resultant imine toward radical addition.

Relevant to the present investigation, the Doyle[16] and Gaunt[17] groups recently reported 

elegant multicomponent reactions to access benzhydryl amines as well as tertiary amines, 

respectively. In a unique transformation, Li reported a Ru-catalyzed addition of aldehydes to 

preformed aryl imines, accessing phenylalkyl amines. The scope of this process was 
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restricted predominantly to benzaldehydes.[18] The multicomponent synthesis of analogous 

phenylalkyl amines is thus underexplored.

After a systematic survey of reaction parameters (see Supporting Information), we were able 

to identify suitable reaction conditions. Thus, in exploratory studies a mixture of methyl 4-

formylbenzoate (1), aniline (2, 1.5 equiv), and potassium cyclohexyltrifluoroborate (3, 1.5 

equiv), was catalyzed by [Ir{dF(CF3)ppy}2(bpy)]PF6 (2 mol %, E1/2
red[*IrIII/IrII] = +1.32 V 

vs. SCE)[19] in the presence of sodium bisulfate (1.0 equiv) in 1,4-dioxane (0.1 M) (Scheme 

2). The desired product (4) was afforded in 84% isolated yield under irradiation with blue 

LEDs for 24 hours at rt.[20, 21] In expanding the method, diverse secondary 

alkyltrifluoroborates, including heteroaromatic-based systems, were found to be amenable 

substrates in this transformation. In the heteroaromatic substructures (e.g., 10), no Minisci 

byproduct was detected. Sterically disfavored tertiary alkyltrifluoroborates gave excellent 

yields (12, 13). Surprisingly, primary aliphatic alkyltrifluoroborates, with a markedly higher 

oxidation potential (E1/2
red = +1.90 V vs. SCE)[22] reacted well under the reaction 

conditions (14-16).

Assessing the aldehyde scope, halo-substituted benzaldehyde derivatives whose products are 

suitable for further processing provided the targets in good yield (25-27). The reaction is 

highly chemoselective. In a dicarbonyl substrate, only the aldehyde derivative reacted, while 

the ketone remained untouched (24). Electron-donating groups are amenable structural 

motifs (32-37). Given that heteroarenes represent prevalent substructures in 

pharmaceutically relevant molecules,[23] a variety of such systems were evaluated and 

proved to be effective partners (38–43). Additionally, an unnatural α-amino acid derivative 

is accessible using glyoxyl aldehyde instead of a benzaldehyde derivative (44).

Next, we turned our attention to the aniline partner, where a wide array of functional groups 

was tolerated, such as chloro (45, 46, 49, 50), trifluoromethyl (47), ester (48), and methoxy 

(54). The electronic effect on the aniline component was inconspicuous. Meanwhile, the 

reactions were not sensitive to steric hindrance at the ortho position of the aniline (52, 53).

To demonstrate the utility of this protocol for late-stage modification of intricate molecules, 

we prepared benzaldehyde derivatives from commercially available drug cores.[24] Both 

Indomethacin and Fenofibrate were successfully converted to the corresponding products in 

excellent yields (55, 56). Sulfadimethoxine was also elaborated with acceptable yield, 

especially considering its high functional group density (57). To highlight the application of 

this photoredox alkyl Petasis reaction further, we utilized this method to expedite the 

synthesis of a key intermediate toward a Pfizer glucagon receptor modulator (Scheme 3b).
[25] The key intermediate (60) was assembled with good yield in one step using this newly 

developed, convergent MCR reaction.

To highlight the amplification of this method, a transformation was successfully performed 

on a larger scale, whereby the desired product 54 was obtained in 51% yield, in agreement 

with the small-scale reaction. It is worth indicating that the para-methoxyphenyl (PMP) 

group of 54 could be readily removed by ceric ammonium nitrate (CAN) oxidation to 

release the primary amine (61).[26]
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To probe the reaction pathway, we conducted preliminary mechanistic studies. The ring-

opening product was exclusively observed when potassium 

(cyclopropylmethyl)trifluoroborate was used as the starting material (Scheme 4a). In the 

presence of the radical scavenger TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], the 

reaction was completely inhibited, and a TEMPO-alkyl adduct was isolated, as well as the 

imine (Scheme 4b). This is suggestive of the involvement of alkyl radical generation under 

this reaction manifold. When the preformed imine was used instead of the aldehyde/aniline 

partners, a yield similar to that obtained in the multicomponent reaction was observed 

(Scheme 4c). Furthermore, during the course of the reaction, the reductive dimerization 

byproduct of the imine was not observed.[27] Although Stern-Volmer studies indicate no 

significant quenching of the excited state of the photocatalyst (E1/2
red [IrIV/*IrIII] = −1.00 V 

vs. SCE)[19] by the imine intermediate, we cannot rule out the possibility of direct reduction 

of the imine (E1/2
red= −1.91 V vs. SCE)[14e, 28] by the reduced state of the photocatalyst 

(E1/2 [IrIII/IrII] = −1.37 V vs. SCE).[19] In particular, variabilities in reaction concentration 

and pH levels could exert an impact on redox potential values.[29]

In conclusion, a multicomponent alkyl Petasis reaction under photoredox conditions has 

been developed. This procedure employs bench stable, commercially available 

alkyltrifluoroborates, easily accessible benzaldehydes, and anilines as feedstock. Taking 

advantage of the stability of alkyl radicals in water, preformed imines are no longer required, 

providing a highly step-efficient process that should be amenable to the industrial setting. 

Other favorable factors include the elimination of harsh reaction conditions (elevated 

temperatures and strong organometallic reagents), and the toleration of an exceptional array 

of functional groups as well as complex structural scaffolds. The facile diversification 

inherent in this MCR positions this technology as being extremely suitable for diversity-

oriented synthesis in drug discovery scenarios.
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Scheme 1. Mechanistic Rationale: SET-based Petasis reaction and phenylalkyl amine bioactive 
molecules
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Scheme 2. Scope of alkyltrifluoroborates, aldehydes and anilinesa

a Reaction conditions: aldehyde (0.5 mmol), alkyltrifluoroborate (0.75 mmol), aniline (0.75 

mmol), [Ir{dF(CF3)ppy}2(bpy)]PF6 (0.01 mmol), NaHSO4 (0.5 mmol) and 1,4-dioxane (5 

mL) under blue LED irradiation for 24 h. Isolated yields are given. bIrradiated by 34 W 

Kessil lamp.
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Scheme 3. Late-stage functionalization of pharmaceutical analogues and modular bioactive 
molecule synthesisa

a See Supporting Information for details.
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Scheme 4. Large-scale reaction and removal of the PMP groupa

aSee Supporting Information for details.
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Scheme 5. Preliminary mechanistic studiesa

aSee Supporting Information for details.
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