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Abstract Two novel genomes comprising &4.9 kb were

identified by next-generation sequencing from pooled or-

gans of Tadarida brasiliensis bats. The overall nucleotide

sequence identities between the viral genomes character-

ized here were less than 80 % in comparison to other

polyomaviruses (PyVs), members of the family Poly-

omaviridae. The new genomes display the archetypal or-

ganization of PyVs, which includes open reading frames

for the regulatory proteins small T antigen (STAg) and

large T antigen (LTAg), as well as capsid proteins VP1,

VP2 and VP3. In addition, an alternate ORF was identified

in the early genome region that is conserved in a large

monophyletic group of polyomaviruses. Phylogenetic

analysis showed similar clustering with group of PyVs

detected in Otomops and Chaerephon bats and some spe-

cies of monkeys. In this study, the genomes of two novel

PyVs were detected in bats of a single species, demon-

strating that these mammals can harbor genetically diverse

polyomaviruses.

Bats (order Chiroptera) are considered to be the natural

reservoirs for a large variety of potentially zoonotic RNA

viruses, such as lyssaviruses, paramyxoviruses, Ebola and

Marburg viruses, and the recently emerged severe acute

respiratory syndrome coronavirus (SARS-CoV) and Mid-

dle East respiratory syndrome (MERS) coronavirus [1, 8,

19]. Several DNA viruses, including circoviruses [7],

polyomaviruses [22], adenoviruses [15], parvoviruses [2]

and herpesviruses [26], have also been detected in a

number of bat species; however, their pathogenic and po-

tential zoonotic role remain unclear.

Polyomaviruses (PyVs) are small DNA viruses of the

family Polyomaviridae. Members of this family possess a

double-stranded, circular genome, of approximately 5 kb.

Viral genes have classically been subdivided into regula-

tory, early and late regions according to the order in which

their role in replication is performed. The regulatory re-

gion, known as the noncoding control region (NCRR), is

responsible for controlling transcription of the early and

late promoters and regulating the initiation of viral DNA

synthesis. After expression of the early region by a com-

mon primary transcript, splicing takes place to produce the

large T antigen (LTAg) and small T antigen (STAg). The

expression of the late region occurs after the initiation of

replication and encodes the structural proteins VP1, VP2,

and VP3 [12].

Recently, a new protein was identified, expressed

from an alternate frame of the large T open reading

frame (ALTO) in the early region of Merkel cell poly-

omavirus (MCPyV). This protein was found to be phy-

logenetically related to the middle T antigen of murine

polyomaviruses but not necessary for DNA replication.

It has been suggested that ALTO may play an accessory

role in the viral life cycle, similar to many other over-

printing ORFs [3].
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(IPVDF), Estrada do Conde 6000, Eldorado do Sul,

Rio Grande do Sul CEP 92990-000, Brazil

3 Health Monitoring-Centro Estadual de Vigilância em Saúde
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Using novel nucleic acid detection approaches, several

PyVs have been identified in diverse mammalian species,

including monkeys, elephants, cattle and rodents [17, 21].

In addition, PyVs have also been reported in birds [13]. In

humans, to date, 10 PyVs have been discovered, including

the well-studied JC and BK polyomaviruses, associated

with multifocal leukoencephalopathy and nephropathy,

respectively [20, 23].

Mutations, deletions and duplications within the highly

variable NCCR region of PyVs are considered the primary

mechanisms of host adaptation [24]. Apparently, PyVs

have been co-diverging with their hosts on timescales of

many millions of years [17]. Notwithstanding, a recent

study on bats has partially refuted the virus-host relation-

ship theory, given that distinctive PyVs have been identi-

fied in different bat species, providing evidence for

extensive diversity [22].

In this study, we report the detection and genome

characterization of two novel polyomaviruses in Tadarida

brasiliensis bats, using high-throughput sequencing

approaches.

Twelve Brazilian free-tailed bat specimens (Tadarida

brasiliensis) were submitted to the laboratory (IPVDF) as

part of the national rabies surveillance program. All spe-

cimens used in this study tested negative for rabies and

were identified to the species level based on anatomical and

morphological characteristics. Spleen, liver, lungs, kidneys

and intestines were collected, pooled, macerated, cen-

trifuged at low speed, filtered through a 0.45-lm filter for

removal of small debris, and subjected to ultracentrifuga-

tion (200,0009g for 4 h). The pellet was mixed with nu-

cleases to eliminate non-capsid-protected nucleic acids.

DNA was then extracted with phenol-chloroform following

usual procedures and enriched by multiple displacement

amplification (MDA) [6]. After extraction, DNA was pu-

rified using a QIAGEN MinElute Purification Kit. The

quality and quantity of the DNA were assessed using a

Qubit 2.0 Fluorometer. DNA fragment libraries were fur-

ther prepared with 50 ng of purified DNA using a Nextera

DNA sample preparation kit and sequenced using an Illu-

mina� MiSeq System.

Reads were assembled into contigs using SPAdes and

compared to sequences in the GenBank nucleotide and

protein databases using BLASTn/BLASTx. Geneious

software was used for open reading frame (ORF) prediction

and genome annotation. Multiple nucleotide sequence

alignments were produced with the aid of MUSCLE.

Phylogenetic trees were constructed with MrBayes v3.2.1

[9] using Bayesian analysis coupled with Markov chain

Monte Carlo methods of phylogenetic inference. Analysis

of the data sets showed the best-fitting evolutionary model

to be the Whelan and Goldman (WAG) ? Gamma model,

which was applied for 100,000 generations, sampling 10

trees every 100 generations. Trees obtained before con-

vergent and stable likelihood values were discarded (i.e., a

5,000 tree burn-in).

A total of 370,099 reads were produced. These se-

quences were assembled into 2,199 contigs, analyzed using

BLAST with the National Center for Biotechnology In-

formation (NCBI) databases, and 3,276 of these sequences

were related to PyV. Two full-length circular genomes of

novel polyomaviruses (GenBank accession numbers:

KM655868 and KM655869) were identified. These were

tentatively named Tadarida brasiliensis polyomavirus 1

and 2 (TbPyV1 and TbPyV2).

The two generated PyV genomes were 4,882 and

4,893 bp long, with 69.8 % whole-genome pairwise iden-

tity to each other. The overall GC content of TByV1 is

41.9 %, and that of TbPyV2 is 40.1 %, similar to those of

previously described bat PyVs [22]. Both genomes display

the archetypal genome organization of PyVs, including a

region responsible for coding regulatory proteins STAg and

LTAg, as well as other region coding for the capsid pro-

teins VP1, VP2 and VP3 (Fig. 1). These two regions are

separated by a non-coding regulatory region (NCCR) that

is homologous to those of previously described poly-

omaviruses [10], showing nucleotide sequence identity

ranging from 74 % to 78 % when compared to other bat

PyVs (data not shown). The sizes and molecular weights of

the deduced proteins encoded by both genomes are sum-

marized in Table 1.

Analysis of the putative proteins revealed the presence,

although sometimes modified, of the typical elements that

are necessary for polyomaviruses to perform their

replicative cycle. In the regulatory region of both genomes,

several conserved elements were identified, including the

AT-rich region, containing six copies of the consensus

pentanucleotide LTAg binding site GAGGC and its reverse

complement GCCTC [18]. These elements are likely to

constitute the core of the origin of replication [14]. The LT-

Ag is generated by alternative splicing of the early mRNA

transcript. In the early region of both genomes, a conserved

(CXXAG/GTXXX, with ‘/’ representing the breakpoint)

splice donor site is located at base positions 4365 to 4369

(CCCAG/GTTTT) and 4372 to 4376 (CACAG/GTTTT)

for TbPyV1 and TbPyV2, respectively. The LT-Ag region

of both genomes varied from 701 to 716 aa (Table 1),

showing less than 74 % similarity to the corresponding

region of previously reported PyVs. In these protein se-

quences, the conserved ‘‘J’’ domain, which is responsible

for efficient DNA replication and transformation, was

identified [25]. In addition, a serine-rich profile, a zinc-

binding motif (CX2CX7HX3HX2H), and an ATP/GTP-

binding site (GPVNSGKT) were also identified [16, 21].

The STAgs in TbPyV1 and TbPyV2 each contain a

cysteine-rich motif at the C-terminal end of the protein,
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which is nearly perfectly conserved in both genomes

(CX7CX7CXCX17CX5CXCX2CX3WYG in TbPyV1, or

WFG in TbPyV2).

VP1 is the major PyV structural protein. In the se-

quences identified, as expected, it is the most conserved

ORF, containing the essential antigenic determinants for

entry of the virus into host cells [12]. Both genomes have a

proline-rich profile in the putative VP1, encompassing a

387 (TbPyV1)- or 394 (TbPyV2)-long amino acid chain.

TbPyV1 VP1 had \78 % sequence identity when com-

pared to those of other PyVs, whereas the one from

TbPyV2 showed less than 83 % of identity with other bat

PyVs.

In polyomaviruses, VP3 is usually encoded by the same

open reading frame as VP2, using an internal initiation

codon. In TbPyV1 and TbPvV2, the first methionine is

Fig. 1 Schematic diagram

showing the genome

organization of Tadarida

brasiliensis polyomaviruses 1

and 2 (TbPyV1 and TvPyV2).

Putative coding regions for VP1

to VP3, small T antigen (STAg),

large T antigen (LTAg), and the

alternate large T open reading

frame (ALTO) are marked by

arrows
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Table 1 Main features of TbPyV-1 and TbPyV2 genomes

Genome TbPyV-1 (4,882 bp) TbPyV-2 (4,893 bp)

Region Position (nt) Length (nt/aa) MW (kDa) Position (nt) Length (nt/aa) MW (kDa)

VP1 1133-2296 1164/387 42.2 1174-2358 1185/394 42.9

VP2 478-1182 705/235 25.3 519-1229 711/237 25.7

VP3 616-1182 570/190 20.9 654-1229 576/192 21.2

Large T antigen 4882-4664 2151/716 80.8 4893-4675 2106/701 79.8

4278-2347 4284-2398

Small T antigen 4882-4268 615/204 24.1 4893-4330 564/187 22.0

NCCR* 1-477 n/a n/a 1-518 n/a n/a

URR** 2297-2346 n/a n/a 2359-2397 n/a n/a

*, noncoding region; **, upstream regulatory region

Fig. 2 Bayesian phylogenetic trees of the large and small T antigens,

the major capsid protein VP1, and the minor capsid proteins VP2/VP3

of the novel bat PyV genomes. Amino acid sequences were compared

to those of 28 polyomaviruses from mammals and birds, retrieved

from GenBank. Posterior probability values are indicated above the

branches. In these phylogenies, well-supported clades that contained

the bat PyVs are shaded in gray
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positioned at amino acid 46 of the VP2 protein sequence

and is considered to be the N-terminal amino acid of VP3,

resulting in 190- and 192-aa-long protein sequences for

genomes 1 and 2, respectively. The VP2 and VP3 proteins

might play a role in viral entry and may ensure specific

encapsidation of PyVs genomes [5, 12]. VP2/VP3-associ-

ated proteins from the two genomes reported here showed

low sequence similarity (\72 % at the aa level) as well as

different lengths when compared to each other and to other

bat PyVs. In the minor capsid protein VP2 sequence, the

N-terminal consensus sequence MGX4S, which is myris-

toylated in the avian polyomavirus VP2 [11], is found, but

it is modified to MGX3S in both genomes.

The recently described alternate reading frame gene

(called ALTO), which overlaps the LTAg gene [3], has

been identified in TbPyV1 and TbPyV2 genomes and is

represented in Figure 1. To our knowledge, this is the first

description of this alternate ORF in bat polyomaviruses.

ALTO is located at base positions 4268 to 3747 (TbPyV1)

and 4298 to 3798 (TbPyV2), resulting in a 173- and

166-aa-long protein for genome 1 and 2, respectively.

The amino acid sequence similarity between the ALTO

sequences described here and the one present in Otomops

polyomavirus [22] is less than 82 %. On the other hand,

when compared to each other, ALTO sequences from

TbPyV1 and 2 showed low nucleotide and amino acid

sequence identity (73 % and 58.3 %, respectively), with

72 % overall similarity.

Figure 2 shows phylogenetic trees for LTAg, STAg and

the structural proteins VP1, VP2 and VP3 of both poly-

omaviruses and those of 28 other polyomaviruses from

mammals and birds, based on Bayesian analysis. Separate

analyses of the proteins from TbPyV1 and 2 revealed

similar clustering, with a heterogeneous group of PyVs

detected in Otomops and Chaerephon bats and some spe-

cies of monkeys (vervet monkey, Piliocolobus monkey,

and chimpanzee), revealing a strong congruence. The re-

lationship between PyVs of primates and bats supports the

hypothesis of Tao et al., suggesting that PyVs have ap-

parently ‘‘jumped’’ between bats and primates during

evolutionary history; however, the direction of the host-

switching event cannot be determined [22]. Our findings

are also in accordance with those of Tao et al. [22], sug-

gesting that bats are unlikely to be a direct source of PyV

infection of humans, given that none of the bat sequences

detected here and in previous studies seem to be related to

known human PyVs.

The newly characterized viruses belong to the proposed

genus Orthopolyomavirus and differ genetically from the

previously described bat polyomaviruses. According to the

demarcation criteria set by the ICTV, a member of a novel

PyV species should have \81-84 % sequence identity to

other PyV genomes. The viruses described here all have

\81 % sequence identity. In analogy with the nomencla-

ture of the other bat polyomaviruses, we propose the name

Tadarida brasiliensis polyomavirus (TbPyV) 1 and 2, for

the newly discovered viruses.

Approximately 1200 bat species have been documented

worldwide andmore than 140 species are settled in Brazil [4].

The identification of distinct PyVs in bats of the same species

sheds some light on the evolution andwide host range of these

viruses, showing that bat of the same species can harbor

multiple polyomaviruses. In this report, the genomes of two

novel PyVswere detected inTadarida brasiliensisbats. These

viruses are genetically distinct from other PyVs recovered

frombats and othermammals, suggesting that bats can play an

important role in PyV evolution and ecology [22].
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