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Summary. Influenza virus infection in pigs is both an animal health problem and
a public health concern. As such, surveillance and characterization of influenza
viruses in swine is important to the veterinary community and should be a part
of human pandemic preparedness planning. Studies in 1976/1977 and 1988/1989
demonstrated that pigs in the U.S. were commonly infected with classical swine
H1N1 viruses, whereas human H3 and avian influenza virus infections were very
rare. In contrast, human H3 and avian H1 viruses have been isolated frequently
from pigs in Europe and Asia over the last two decades. From September 1997
through August 1998, we isolated 26 influenza viruses from pigs in the north-
central United States at the point of slaughter. All 26 isolates were H1N1 viruses,
and phylogenetic analyses of the hemagglutinin and nucleoprotein genes from 11
representative viruses demonstrated that these were classical swine H1 viruses.
However, monoclonal antibody analyses revealed antigenic heterogeneity among
the HA proteins of the 26 viruses. Serologically, 27.7% of 2,375 pigs tested
had hemagglutination-inhibiting antibodies against classical swine H1 influenza
virus. Of particular significance, however, the rates of seropositivity to avian H1
(7.6%) and human H3 (8.0%) viruses were substantially higher than in previous
studies.

Introduction

Influenza is a commonly encountered respiratory disease of pigs throughout the
swine-raising regions of the United States. Infections are manifest most com-
monly as explosive outbreaks of acute respiratory disease with fever, anorexia
and weight loss, lethargy, nasal and ocular discharge, coughing and dyspnea [23].
It has been estimated that the clinical signs of influenza in pigs add 2 weeks
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to the time that it takes animals to reach market weight (B.C. Easterday, pers.
comm.). Therefore, swine influenza may be a substantial economic concern for
farmers, and there is growing concern for the impact of synergistic infections with
influenza and porcine reproductive and respiratory syndrome viruses [29, 40, 78].

From a public health perspective, influenza virus infections in pigs pose two
threats. It is well documented that classical H1N1 swine influenza viruses are
zoonotic pathogens. Human infections with swine influenza viruses have been
documented in the U.S. [19, 31, 82], Europe [20] and New Zealand [22], in-
cluding fatal infections [22, 41, 57, 63, 70, 75, 81]. On a broader scale, pigs are
susceptible to infection with influenza viruses of both avian and mammalian origin
because their tracheal epithelium contains virus receptor sialyloligosaccharides
with both 2,3- (preferred by avian influenza viruses) and 2,6- (preferred by mam-
malian influenza viruses) N-acetylneuraminic acid-galactose linkages [36]. As
such, they have been implicated as the intermediate host for adaptation of avian
influenza viruses to mammals [12] and as the “mixing vessels” in which human-
avian influenza virus reassortment occurs [64, 65, 80]. The major pandemics of
human influenza this century were caused by viruses that were reassortants be-
tween pre-existing human and avian viruses [80]. More recently, human-avian
influenza virus reassortants have been isolated from commercially-raised pigs in
Europe [14] and subsequently from children in the Netherlands [17]. Further-
more, maintenance of older human influenza virus strains in the pig population
[3, 39, 49, 51, 54] may allow for re-introduction of antigenic variants back into
the human population, and swine influenza viruses may also be transmitted into
domestic turkey and wild bird populations [32, 33, 46].

Given the important role that pigs can play in the ecology and evolution
of influenza viruses [80], it is critical as part of an overall pandemic prepared-
ness plan to maintain surveillance over the nature of influenza viruses circulating
among pigs [71, 79]. Previous serologic surveillance studies conducted during
1976/1977 [31] and 1988/1989 [16] demonstrated that influenza virus infections
were common among pigs in the north-central portion of the United States, with
seropositivity rates against classical swine H1N1 viruses of 20–47% in 1976/1977
and 51% in 1988/1989. In contrast, serologic evidence of H3 influenza virus ex-
posure was remarkably lower in both studies (1.4% in 1976/1977 and 1.1% in
1988/1989). In 1988/1989, sera were also tested for antibodies to an avian virus,
A/Duck/Alberta/16/87, but none of the 2,337 samples tested contained detectable
antibodies to this virus.

These surveillance studies clearly demonstrated that classical swine H1 in-
fluenza viruses were the predominant subtype circulating among pigs in the United
States from 1976 through 1989. Nonetheless, variant H1 viruses have been iso-
lated subsequently from pigs in North America and influenza viruses of other
subtypes have been isolated from pigs in Europe and Asia. An H1N1 swine in-
fluenza virus with an antigenically and genetically unique hemagglutinin (HA)
was isolated in Nebraska in 1992 [53] and a novel H1N1 influenza virus was
associated with atypical proliferative and necrotizing pneumonia among pigs in
Quebec in 1991 [21, 60]. Outside of North America, avian-like H1N1 viruses
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became the predominant influenza virus among pigs on the European continent
[58, 66] and avian H1 viruses were also isolated from pigs in the United Kingdom
[7, 10] and Asia [30]. A variety of reassortant influenza viruses have also been
isolated from pigs. Reassortant H1N2 viruses were isolated from pigs in France
in 1987 and 1988 [28], in Japan in 1978 [52] and 1989/1990 [55], and in the
United Kingdom since 1994 [6, 8]. In addition, an H1N7 virus containing an HA
gene most closely related to human H1 viruses and an NA gene most similar to
equine N7 viruses was isolated from pigs in the United Kingdom in 1992 [9],
and human/swine H3N2 reassortant viruses have been isolated in southern China
[69].

Given the wide variety of influenza viruses that have been isolated from pigs
around the world during recent years, we sought to determine whether there
have also been changes in the nature of the viruses infecting pigs in the United
States since the last large-scale surveillance study was conducted in 1988/1989.
In this paper, we report the results of a year-long (September 1997–August 1998)
virologic and serologic evaluation of influenza virus infections among pigs in
the north-central United States. We specifically addressed the hypotheses that
antigenic variants of swine H1N1 influenza viruses were circulating among pigs
in the United States and that pigs in the United States were being exposed to
human H3 and avian influenza viruses to a greater degree than in the past.

Materials and methods

Reference viruses

Three influenza viruses were used as reference strains for serologic testing during this study.
A classical swine influenza virus, A/Swine/Indiana/1726/88 (Sw/IND) (H1N1), and an avian
H1 virus, A/Duck/Alberta/35/76 (Dk/ALB) (H1N1), were kindly provided by Dr. V. Hinshaw
from the Influenza Virus Repository of the University of Wisconsin-Madison. A human
H3N2 influenza virus representative of the viruses circulating among people in the U.S.
during the two years prior to our study, A/Wuhan/359/95 (A/WUH) (H3N2), was kindly
provided by the Influenza Branch of the Centers for Disease Control and Prevention, Atlanta,
Georgia.

Sample collections

A total of 2,375 serum samples were obtained from two sources over the period from Septem-
ber 1, 1997 through August 31, 1998. One thousand, one hundred and seventy five samples
were selected randomly (approximately 100 samples/month) from sera submitted to the Wis-
consin Animal Health Laboratory (Madison, WI) for pseudorabies virus testing. One thousand
two hundred samples (50 samples approximately every 2 weeks) were collected from pigs
at the time of slaughter at a commercial abattoir. Samples of nasal secretions were collected
from these same pigs at slaughter for virus isolation. Dacron swabs were inserted into the
nasal passages of the pigs immediately after stunning, but before exsanguination. Swabs were
placed in viral transport media (50% glycerol in phosphate-buffered saline [PBS] containing
1000 units Penicillin G, 200mg streptomycin, 50 units nystatin and 40mg gentamicin per ml)
and maintained at 4◦C overnight until inoculated into eggs for virus isolation. The abattoir at
which the samples were collected obtained pigs from southwest Wisconsin, northeast Iowa
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and northwest Illinois. However, because it was not possible to trace the origin of each pig
sampled, all viruses have simply been designated as Wisconsin isolates.

Virus isolation and antigenic and genetic characterizations

Nasal swab samples were inoculated into the allantoic cavities of 10-day-old embryonated
chicken eggs and virus growth was detected by hemagglutination assay [56] on the allantoic
fluid following 3 days of culture at 35◦C. Influenza viruses were identified and subtyped by
hemagglutination-inhibition (HI) and neuraminidase-inhibition (NI) assays [56] using H1-,
H3-, N1- and N2-monospecific sera. The HA proteins of the isolates and H1 reference strains
were characterized antigenically by HI assay using a panel of 4 monoclonal antibodies (Mabs)
previously shown to recognize 4 epitopes in 3 antigenic sites on swine H1 HA molecules
[48, 67]. These assays were conducted using serial 2-fold dilutions (1:100 to 1:204,800) of
Mabs in PBS. The monospecific sera and Mabs were kindly provided by Dr. V. Hinshaw,
University of Wisconsin-Madison.

The full-length HA genes of 11 isolates representative of each Mab-defined antigenic
pattern, the full-length nucleoprotein (NP) genes of these isolates, and the HA and NP
genes of our working stock of Sw/IND were amplified by RT-PCR using AMV reverse
transcriptase (Promega Corporation, Madison, WI) and Pfu polymerase (Stratagene, La-
Jolla, CA). Amplifications were carried out as suggested by the manufacturers, except that
the RT reactions were conducted using 1mg of primer per reaction and reaction condi-
tions of 48.5◦C for 45 min. The HA genes were amplified using primers specific for nu-
cleotides 1-21/forward (5′-AGCAAAAGCAGGGGAAAATAA-3 ′) and 1747–1771/reverse
(5′-CAAGGGTGTTTTTTCTCATGTCTC-3′). The NP genes were amplified using primers
specific for nucleotides 1-21/forward (5′-GCAGGGTAGATAATCACTCAC-3′) and 1533–
1557/reverse (5′-CAAGGGTATTTTTCTTTAATTGTC-3′) (for isolates 125, 136, 163, 164,
166, 168, 235) or the SZANP+ (5′-CTCGAGAGCAAAAGCAGGGT-3′) and SZANP-(5′-
AGTAGAAACAAGGGTATTTTTC-3′) primers of Zou [85] (for isolates 238, 457, 458 and
464). (The later NP genes could not be amplified using the 1–21 and 1533–1557 NP primers
used for the other isolates, presumably because of minor sequence differences detected in
the 5′ and 3′ non-coding regions of the genes.)

The sequences of the amplified genes were determined from the PCR products by cycle
sequencing (ABI Big Dye, PE Applied Biosystems, Foster City, CA). Sequence comparisons
at the nucleotide and deduced amino acid levels were conducted using the Multiple Alignment
Construction & Analysis Workbench program (Version 2.0.5, Win32I). The phylogenetic re-
lationships among the sequenced virus isolates and selected reference strains were estimated
by the method of maximum parsimony (PAUP, Version 4.0b2, Dr. David Swofford, Smithso-
nian Institution), using the tree-bisection-reconnection branch swapping algorithm and with
the MULTREES option in effect. The GenBank accession numbers for the reference virus
sequences used in the phylogenetic analyses are listed in Table 1.

Serologic testing

The 2,735 serum samples were tested by HI assay [56] for the presence of antibodies recog-
nizing 3 reference viruses: Sw/IND (swine H1); Dk/ALB (avian H1); and, A/WUH (human
H3). Prior to conducting the assays, the serum samples were treated with receptor-destroying
enzyme (RDE) (Denka Siken Company, Tokyo) at 37◦C for 18 h, followed by heat inactiva-
tion at 56◦C for 30 min. All sera were screened at a dilution of 1:40. Positive and negative
serum controls were included with each set of sera tested. In addition, each serum sample
was tested against chicken RBCs in the absence of virus to rule out induction of non-specific
hemagglutination.
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Table 1. Reference virus gene sequences employed in phylogenetic
analyses of the HA and NP genes of the H1N1 swine influenza viruses

isolated during this study

Virus GenBank accession no. Ref.

HA genes

A/USSR/90/77 K01330 [18]
A/Taiwan/1/86 D00407 [61]
A/Bayern/7/95 n.a.a [34]
A/Wuhan/359/95 AF038268 [44]
A/Swine/Iowa/15/30 X57492 [73]
A/Swine/New Jersey/11/76 K00992 [4]
A/Swine/Ehime/1/80 X57494 [73]
A/Swine/Germany/2/81b Z30276 [46]
A/Swine/QC/81 U03720 [60]
A/Swine/Indiana/1726/88 M81707 [48]
A/Swine/QC/91 U03719 [60]
A/Swine/Germany/8533/91b Z46434 [47]
A/Swine/England/195852/92b U72667 [10]
A/Swine/Nebraska/1/92 L09063 [53]
A/Swine/England/283902/93 U72668 [10]
A/Duck/Alberta/35/76 D10477 [2]
A/Duck/Hong Kong/196/77 D00839 [37]
A/Duck/Wisconsin/1938/80 L25071 [35]

NP genes

A/Singapore/1/57 M63752 [26]
A/Victoria/5/68 M63753 [26]
A/Udorn/307/72 M14922 [11]
A/Hong Kong/5/83 M22577 [25]
A/Ohio/4/83 M59334 [62]
A/Memphis/8/88 L07370 [68]
A/Beijing/337/89 L07374 [68]
A/Guangdong/38/89 L07373 [68]
A/Shanghai/6/90 L07357 [68]
A/Swine/Wisconsin/1/67 M76607 [1]
A/Swine/Tennessee/24/77 M30748 [27]
A/Swine/Germany/2/81b M22579 [24]
A/Swine/Ontario/2/81 M63767 [26]
A/Swine/Hong Kong/126/82b M63771 [26]
A/Swine/Indiana/1726/88 L46849 [50]
A/Swine/Iowa/17672/88 M63768 [26]
A/Swine/Wisconsin/1915/88 M76608 [1]
A/Swine/Italy/839/89b M63772 [26]
A/Swine/England/195852/92b L40332 [10]
A/Swine/Nebraska/1/92 L11164 [53]
A/Shearwater/Australia/72 M27298 [24]
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Table 1 (continued)

Virus GenBank accession no. Ref.

A/Duck/Bavaria/2/77 M22574 [25]
A/Turkey/England/647/77 M76603 [1]
A/Turkey/Minnesota/833/80 M30769 [27]
A/Duck/Australia/749/80 M63783 [26]
A/Teal/Iceland/29/80 M63784 [26]
A/Mallard/Astrakhan/244/82 M30764 [27]
A/Equine/Prague/1/56 M63748 [26]
B/Lee/40 K01395 [5]

an.a.Not available – This sequence has not been deposited in Gen-
Bank

bThese strains are avian-like swine viruses

GenBank accession numbers

The GenBank accession numbers for the HA genes sequenced as part of this study are as
follows: A/Swine/WI/125/97 (AF222026), A/Swine/WI/136/97 (AF222027), A/Swine/WI/
163/97 (AF222028), A/Swine/WI/164/97 (AF222029), A/Swine/WI/166/97 (AF222030),
A/Swine/WI/168/97 (AF222031), A/Swine/WI/235/97 (AF222032), A/Swine/WI/238/97
(AF222033), A/Swine/WI/457/98 (AF222034), A/Swine/WI/458/98 (AF222035), A/Swine/
WI/464/98 (AF222036). The GenBank accession numbers for the NP genes sequenced as
part of this study are as follows: A/Swine/WI/125/97 (AF222768), A/Swine/WI/136/97
(AF222769), A/Swine/WI/163/97 (AF222770), A/Swine/WI/164/97 (AF222771), A/Swine/
WI/166/97 (AF222772), A/Swine/WI/168/97 (AF222773), A/Swine/WI/235/97 (AF222774),
A/Swine/WI/238/97 (AF222775), A/Swine/WI/457/98 (AF222776), A/Swine/WI/458/98
(AF222777), A/Swine/WI/464/98 (AF222778).

Results

Virus isolation rates

A total of 26 influenza viruses were isolated during the course of this study, giving
an overall rate of virus recovery of 2.2% of the pigs sampled. However, a distinct
seasonal pattern was noted, with a substantially higher rate of virus shedding
during the fall and early winter months of the year. Specifically, 24 of the 26
isolates were obtained between October and January, with virus shedding rates
of up to 16% of the pigs tested during this time period.

Antigenic analysis of the H1 virus isolates

All of the virus isolates were defined as H1N1 subtype viruses by HI and NI assays.
However, reactivity by HI assay with a panel of 4 H1-specific Mabs differed
substantially among the isolates. Using a greater than 4-fold difference (either
decrease or increase) in HI titer to conservatively define variations compared to
our prototype classical H1 swine virus, Sw/IND, 7 different reactivity patterns
were evident (Table 2). Despite this antigenic variability, however, all of the
viruses reacted to the same titer as Sw/IND (1:512) with polyclonal sera collected
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Table 2. Hemagglutination-inhibition titers of four H1 HA Mabs against the H1N1 swine influenza
viruses isolated during this study and reference avian, human and swine H1 viruses

Virus Mab 2-15F1 Mab 7B1b Mab 1-6B2 Mab 3F2c

H1N1 reference viruses
A/Swine/Indiana/1726/88 12,800 102,400 102,400 400
A/Duck Alberta/35/76 <100 25,600 102,400 <100
A/Bayern/7/95 <100 <100 <100 <100
H1N1 viruses isolated during
this study
A/Swine/Wisconsin/125,127, 12,800–51,2001,600–3,200 102,400–204,800 200–1,600
129,130,134,135,136,137/97
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/163/97 1,600 12,800 25,600 6,400
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/164/97 1,600 25,600 <100 204,800
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/168/97 3,200 25,600 204,800 204,800
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/166, 12,800− 102,400− 204,800 204,800
167,246/97 51,200 204,800
A/Swine/Wisconsin/303,1005/98
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/238/97 204,800 204,800 204,800 204,800
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
A/Swine/Wisconsin/235,247/97 1,600 204,800 204,800 25,600−

204,800
A/Swine/Wisconsin/457,458, 400–800 51,200− 51,200− 25,600−
460,463,464,470,1003/98 102,400 204,800 204,800

Greater than 4-fold differences (decreases or increases) in HI titer compared to Sw/IND are indicated
in bold, italic font. Dashed lines separate groups of viruses with different Mab profiles as defined by those
differences

from pigs that had received 2 doses of the commercially-available H1N1 influenza
virus vaccine for pigs (MaxiVac-Flu, Syntrovet, Lenexa, KS, serial #07205) as
part of a previous experimental study [43].

Genetic analyses of the HA genes of the virus isolates

Eleven isolates, representative of each of the Mab-defined antigenic profiles, were
chosen for genetic analyses. The full-length HA genes of these viruses were se-
quenced and their deduced amino acid sequences are presented in Fig. 1 in com-
parison to our reference swine H1 influenza virus, Sw/IND. Pairwise sequence
analysis of the HA1 segments indicated that all 11 HA genes are more closely
related to the HA of a classical swine H1 virus, Sw/IND (95–97% nucleotide
identity and 95–98% amino acid identity), then the HAs of a recent human H1
virus, A/Bayern/7/95 (74% nucleotide identity and 71–72% amino acid identity),
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Fig. 1. Multiple sequence alignment (Multiple Alignment Construction & Analysis Work-
bench program, Version 2.0.5, Win32I) of the predicted HA amino acid sequences of 11
H1N1 influenza viruses isolated from pigs in the north-central United States, September
1997 to August 1998, compared to a reference classical swine H1 virus, Sw/IND. Amino
acid mutations in each isolate compared to Sw/IND are shown, whereas dashed lines indicate
regions of sequence identity to Sw/IND. (∗ When the HA gene of the Sw/IND virus stock
used for this study was sequenced, a single nucleotide difference from the sequence present

in GenBank was noted, predicting an amino acid change from N>K at position 505.)
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Fig. 2. Phylogenetic tree of the HA gene nucleotide sequences of 11 H1N1 influenza viruses
isolated from pigs in the north-central United States, September 1997 to August 1998, com-
pared to selected swine, human and avian reference strains. The tree was generated by the
method of maximum parsimony (PAUP, Version 4.0b2, Dr. David Swofford, Smithsonian
Institution), using the tree-bisection-reconnection branch swapping algorithm and with the
MULTREES option in effect. The tree shown represents the best (score 1,717) of 9,737 re-
arrangements tried. Horizontal line distances are proportional to the minimum number of
nucleotide changes needed to join nodes and HA sequences. The vertical lines are simply for
spacing branches and labels. The tree is rooted to the HA gene of A/Wuhan/359/95 (H3N2).
The GenBank accession numbers for the HA genes of the viruses isolated during this study
are listed in the Materials and methods. The accession numbers for the reference virus HA

sequences used in this analysis are shown in Table 1



Swine influenza in the United States 1409

Fig. 3. Phylogenetic tree of the NP gene nucleotide sequences of 11 H1N1 influenza viruses
isolated from pigs in the north-central United States, September 1997 to August 1998, com-
pared to selected swine, human and avian reference strains. The tree was generated by the
method of maximum parsimony (PAUP, Version 4.0b2, Dr. David Swofford, Smithsonian
Institution), using the tree-bisection-reconnection branch swapping algorithm and with the
MULTREES option in effect. The tree represents the best (score 1970) of 382,645 rear-
rangements tried. Horizontal line distances are proportional to the minimum number of
nucleotide changes needed to join nodes and NP sequences. The vertical lines are sim-
ply for spacing branches and labels. The tree is rooted to the NP gene of B/Lee/40. The
GenBank accession numbers for the NP genes of the viruses isolated during this study are
listed in the Materials and methods. The accession numbers for the reference virus NP

sequences used in this analysis are shown in Table 1
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or an avian H1 virus, Dk/ALB (76–77% nucleotide identity and 76–77% amino
acid identity). The swine virus origin of these HA genes is further supported by
the results of their phylogenetic analysis (Fig. 2). The HA gene phylogenetic tree
clearly shows that all 11 isolates evolutionarily segregate with the classical swine
H1 viruses, and are distinct from human, avian and avian-like H1 swine viruses.
(Note: Despite the fact that the sequences of the full-length HA genes were deter-
mined for the viruses isolated during this study, these genetic analyses included
only the HA1 sequences, because HA2 sequence information was not available
in GenBank for most of the reference strains.)

Genetic analyses of the NP genes of the virus isolates

To provide additional information regarding the genetic background of these
viruses, their full-length NP gene sequences were also determined. Nucleotide
and amino acid pairwise sequence comparisons indicated that the NP genes of
each of the 11 viruses are more closely related to the NP of a classical swine
influenza virus, Sw/IND (95–97% nucleotide identity and 98–99% amino acid
identity), than the NPs of a human virus, A/Ohio/4/83 (85% nucleotide identity
and 90–91% amino acid identity), or an avian virus, A/Duck/Australia/749/80
(82–83% nucleotide identity and 95% amino acid identity). The swine virus origin
of these NP genes was also confirmed by phylogenetic analysis (Fig. 3).

Serologic surveillance

We used a conservative HI titer cut-off of 1:40 to define seropositivity, as was done
in previous swine influenza virus serosurveys [16, 31]. Based on this definition,
27.7% of samples tested positive for antibodies to the swine H1 virus, Sw/IND.
The rate of seropositivity against the human H3 virus, A/WUH, was 8.0%, while
7.6% of the samples tested positive for antibodies against the avian H1 virus,
Dk/ALB (Table 3). When examined temporally, seropositivity followed a similar
pattern to that of virus isolation, with peak rates of seropositivity against all
3 reference viruses occurring between November and January. However, it is

Table 3. Results of hemagglutination-inhibition assays
of swine sera against classical swine H1, avian H1 and

human H3 influenza viruses

Reference virus % of positivea samples

A/Swine/Indiana/1726/88 27.7% (657/2,375)
(classical swine H1N1)
A/Duck/Alberta/35/76 7.6% (180/2,375)
(avian H1N1)
A/Wuhan/359/95 8.0% (190/2,375)
(human H3N2)

aNumber of positive samples (a positive sample is one
reacting in HI assay at a titer= 1:40)
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Fig. 4. Temporal distribution of seropositive serum samples by month. Approximately 200
swine serum samples were collected each month and tested by HI assay [56] for the presence
of antibodies recognizing 3 reference viruses: Sw/IND (classical swine H1N1 virus); Dk/ALB
(avian H1N1 virus); and, A/WUH (human H3N2 virus). The percentage of samples that tested
positive (reacting in HI assay at a titer= 1:40) is plotted on the Y-axis against the month of

collection on the X-axis

important to note that serum samples were positive for HI antibodies against each
of the 3 reference viruses during every month of the year (Fig. 4).

Discussion

Influenza in pigs poses public health concerns because of the zoonotic nature
of swine influenza viruses [19, 20, 22, 31, 41, 57, 63, 70, 75, 81, 82], as well
as the potential for pigs to serve as hosts for the adaptation of avian viruses to
mammals [12] and for reassortment of mammalian and avian influenza viruses
[64, 65, 80]. Data concerning the nature of influenza viruses circulating among
pigs may, therefore, provide important sentinel information in surveillance for
novel strains of influenza viruses in the human population. Additionally, regular
and continual antigenic and genetic characterization of swine influenza viruses
will help the veterinary community determine when it is necessary to update swine
influenza virus vaccines with contemporary antigenic variant strains. Effective
vaccination of pigs against influenza virus infection will reduce both morbidity
among pigs and the potential for pigs to serve as a reservoir of influenza viruses for
humans.

In this paper, we provide antigenic and genetic information on a series of
recent H1N1 swine influenza viruses, as well as serologic evidence of human,
avian and swine influenza virus infections among pigs in the north-central United
States in 1997–1998. The 26 influenza viruses isolated from pigs at slaughter
were all H1N1 viruses. This is consistent with previous virologic and serologic
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data [16, 31] indicating that H1N1 viruses have been the predominant influenza
viruses among pigs in the United States for many years. Antigenic differences in
the HA proteins of these viruses compared to the classical swine H1 influenza
reference strain, Sw/IND, were detected by Mab analysis. In fact, none of the
viruses isolated during this study matched the Mab profile of Sw/IND (Table 2).
Currently, however, this level of antigenic drift is unlikely to impact the efficacy
of the swine influenza virus vaccine that is available in the United States, since all
of the viruses reacted with post-vaccinal pig sera to the same titer as the reference
swine H1 virus, Sw/IND.

The HA genes of 11 of the viruses in this study, representing each of the
7 Mab-defined antigenic patterns, were sequenced. The nucleotide and deduced
amino acid sequences were compared to reference swine, human and avian H1 in-
fluenza viruses to determine their percents identity, and the nucleotide sequences
were subjected to phylogenetic analysis (Fig. 2). These results indicate that the
HA genes of the viruses isolated during this study are clearly from the classical
swine H1 influenza virus lineage (Fig. 2). Additionally, the HA gene sequences
were analyzed for mutations in potential glycosylation sites. Only a single glyco-
sylation change was identified: mutations in isolates 125 and 136 at amino acid
306 (S>N) alter the motif (N∼P-S/T∼P) for glycosylation at amino acid 304.
Finally, the HA sequences were examined for mutations in specific amino acids
previously defined as comprising the antigenic sites on the H1 HA [15, 45, 48,
53, 59, 83]. By doing so, the possible genetic bases for some of the antigenic
variability observed in the HI assays could be determined. For example, muta-
tion at amino acid 138 can explain the reduced reactivity of isolates 125 and 136
with Mab 7B1b (antigenic site Sa), mutation at amino acid 156 can explain the
reduced reactivity of isolates 458 and 464 with Mab 2-15F1 (antigenic site Ca)
and mutation at amino acid 142 can explain the lack of reactivity of isolate 164
with Mab 1-6B2 (antigenic site Sa). However, there are no mutations in or to-
pographically near previously defined antigenic sites to explain the other altered
Mab reactivity patterns noted. Sequencing of additional H1 isolates in the future
and comparison to the sequences reported here may help to further define the
amino acid residues that directly or indirectly contribute to each of these Mab
epitopes.

The NP of influenza viruses has been suggested to be an important determi-
nant of virus host range [64, 72, 74]. We sequenced the NP genes of our isolates
to assess the possibility that these viruses are reassortants with human or avian
internal protein genes. However, both pairwise sequence comparisons and phy-
logenetic analyses (Fig. 3) indicate that the NP genes of our isolates are, like the
HA genes, derived from classical swine influenza viruses.

Several aspects of our serologic findings (Table 3 and Fig. 4) deserve com-
ment. Given a 27.7% seropositivity rate against Sw/IND, it is clear that classical
swine H1 influenza viruses continue to circulate widely within the pig popula-
tion of the north-central United States. It is likely that the vast majority of these
seropositive pigs had antibodies because of previous infection rather than vacci-
nation. Vaccination of pigs against H1 influenza virus infection is practiced in the
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United States, with approximately 9 million doses of vaccine sold nationwide in
1998 (J. McMillen, pers. comm.). However, only about 40% of this vaccine is used
in slaughter pigs, the remainder being used in breeding animals (R. Sibbel, pers.
comm.). In 1997 [76] and 1998 [77], 92 and 101 million pigs, respectively, went
to slaughter in the United States. Therefore, if animals received the recommended
2 doses/animal, and assuming relatively uniform vaccine usage throughout the
country, at most only 1.8–2.0% of slaughtered animals would be expected to be
seropositive because of vaccination.

Our finding of 7.6% and 8.0% seropositivity rates against avian H1 and human
H3 viruses, respectively, indicates that pigs in the north-central United States
were exposed to these types of viruses in 1997–1998 to a substantially greater
degree than was documented in 1976–1977 [31] and 1988–1989 [16]. The fact
that seropositivity to these viruses was detected throughout the year (Fig. 4) and
that seropositive samples were obtained from both the slaughterhouse and State
Laboratory sample populations (data not shown) indicates that these overall levels
of seropositivity cannot be explained by a large-scale outbreak on a single farm. In
addition, several factors strongly indicate that seropositivity against the avian and
human influenza viruses reflects actual infection of pigs with these virus types,
and not simply cross-reactivity in the HI assays with classical swine viruses.
First of all, although some serum samples had antibodies against either Dk/ALB
or A/WUH and Sw/IND, suggestive of dual infections during a pig’s lifetime,
many samples reacted only with the avian or human viruses. Specifically, 12% of
the sera with antibodies to Dk/ALB and 65% of the samples with antibodies to
A/WUH tested negative for antibodies to Sw/IND. Furthermore, these sera that
tested positive to Dk/ALB or A/WUH and not to Sw/IND also failed to react
in HI assays with representative viruses from each of the groups (Table 2) of
recent antigenic variant swine H1 viruses [data not shown]. And conversely, sera
from pigs that had been experimentally infected with Sw/IND during a previous
experiment [42] were tested and completely lacked cross-reactivity in H1 assays
with Dk/ALB and A/WUH. Specifically, swine sera with HI titers of 1:128 to
1:512 against Sw/IND had no detectable reactivity (<1:8) with either Dk/ALB
or A/WUH.

The finding that 8.0% of the pigs in our study population tested positive sero-
logically to human H3 influenza virus during late 1997 and 1998 is of particular
significance. H3-subtype influenza viruses have been detected regularly among
pigs in Asia and Europe [12, 13, 49, 51, 54], but infection of pigs in the United
States with this subtype has been quite rare in the past. Only 1.4% and 1.1% of pigs
in the United States had antibodies to H3 influenza viruses in studies conducted
in 1976–1977 [31] and 1988–1989 [16], respectively, and only a single H3 isolate
had been reported from pigs in the United States prior to 1998 [31]. However, this
pattern changed dramatically in 1998. Although we did not isolate any H3 viruses
from our slaughterhouse samples, we did isolate H3N2 viruses from pigs on farms
in Nebraska, Iowa and Minnesota beginning in March, 1998 [38], and Zhou and
colleagues characterized additional viruses from North Carolina, Texas, Iowa and
Minnesota [84]. Genetic analyses of these viruses indicated that their HA and
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neuraminidase genes were of human influenza virus origin, while the internal
genes were either all of swine virus origin or were a mixture of swine and avian
virus genes [38, 84]. We cannot determine from our data whether the H3 seropos-
itivity that we observed in 1997–1998 reflects infection of pigs with these reassor-
tant viruses or infection with wholly human H3 viruses that are likely to have en-
tered the swine population prior to development of the reassortant viruses. Given
the current presence of multiple subtypes of influenza viruses among American
pigs, the potential exists for the emergence of additional reassortant viruses in
this population in the future. Therefore, regular and frequent surveillance of swine
influenza viruses should continue as part of an overall approach to the prevention
of swine influenza epizootics and human influenza pandemics.
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