
GENOME-WIDE ASSOCIATION META-ANALYSIS OF AGE AT 
FIRST CANNABIS USE

A full list of authors and affiliations appears at the end of the article.

Abstract

Background and aims—Cannabis is one of the most commonly used substances among 

adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes 

including multi-substance use and dependence. Here we estimate the heritability of age at first 

cannabis use and identify associations with genetic variants.

Methods—A twin-based heritability analysis using 8,055 twins from three cohorts was 

performed. We then carried-out a genome wide survival meta-analysis of age at first cannabis use 

in a discovery sample of 24,953 individuals from nine cohorts, and a replication sample of 3,735 

individuals.

Results—The twin-based heritability for age at first cannabis use was 38% (95% confidence 

interval [CI] 19–60%). Shared and unique environmental factors explained 39% (95% CI 20–56%) 

and 22% (95% CI 16–29%). The genome wide survival meta-analysis identified five SNPs on 

chromosome 16 within the Calcium-transporting ATPase gene (ATP2C2) at P < 5E-08. All five 

SNPs are in high LD (r2>0.8) with the strongest association at the intronic variant rs1574587 

(P=4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 

(P=1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated 

with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium 

signalling pathway, has been previously associated with opioid dependence. SNP-based 

heritability for age at first cannabis use was non-significant.

Conclusion—Age at cannabis initiation is moderately heritable, and individual differences in 

onset can be explained by separate but correlated genetic liabilities. The significant association 

between age of initiation and ATP2C2 is consistent with the role of calcium signalling 

mechanisms in substance use disorders.
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INTRODUCTION

Cannabis is one of the most commonly used substances among adolescents and young adults 

(1). Annually, approximately 147 million people, or 2.5% of the world’s population, 

consume cannabis. In the last decade, cannabis use disorders have grown more rapidly than 

either cocaine or opiate use disorders, with the most rapid growth seen in developed 

countries in North America, Western Europe, and Australia (2). Accompanying these 

changes, there has also been a global trend towards decreasing age at first cannabis use (3, 

4).

Globally, younger cohorts are more likely to engage in substance use including cannabis. In 

the United States, the mean age at first cannabis use is 18 years, whereas the mean age at 

first cannabis use among individuals who initiate prior to age 21 is 16 years (1). European 

data suggest that age at first cannabis use is lower in countries where prevalence of cannabis 

use is higher (5). In addition, the male-female gap commonly observed in older cohorts, is 

closing in more recent cohorts (6, 7). Overall, these trends are likely due to lower risk 

perception (8), and increased availability due to medicalisation and decriminalisation.

Early cannabis initiation is linked to a number of maladaptive behaviors. These include 

educational under-achievement (9, 10), possible cognitive decline (11, 12), negative life 

events (13), differences in brain maturation in at-risk adolescents (14), conduct disorder 

(15), risk-taking behaviors (16), psychosis and other psychopathology (17–20). Early age at 

onset of use is also linked to more frequent progression to cannabis misuse and increased 

likelihood of substance use disorders (21–24).

Despite its widespread use, emerging trends in use, and associations with adverse outcomes, 

very little is known about the genetic aetiology of age at first cannabis use. A meta-analysis 

of twin studies (25) reported a heritability (h2) of ~45% for lifetime cannabis use (ever 

versus never). In contrast, only a limited number of biometric genetic studies have explored 

the heritability of age at first cannabis use. In a population-based sample of lifetime users, 

Richmond-Rakerd et al. (26) estimated a non-significant heritability of 19% for age at first 

cannabis use. Lynskey et al. (27) reported a much larger heritability (h2=80%) for early-

onset use (≤16 years), whereas Sartor et al. (28) reported a heritability of 52% when age at 

first cannabis use was categorized as ‘never’, ‘late’ (≥17 years), or ‘early’ (≤16 years). These 

discrepancies might be due to differences in the biometrical genetic methods employed and 

the inclusion versus exclusion of never users. To address these limitations, we estimated 

heritability of age at first cannabis use using three different models to determine if cannabis 

initiation and age at initiation fall along the same continuum, represent two independent 

liabilities, or two distinct but related liabilities (29).

We are aware of only one genome-wide association study (GWAS) for age at first cannabis 

use. Minică et al. (30) performed a genome-wide survival analysis in a sample comprising 

5,148 participants. This study found no single nucleotide polymorphisms (SNPs) or genes 

significantly associated with age at first cannabis use, possibly due to a lack of statistical 

power (30). Because age at first use is likely to be highly polygenic (subjected to the 

influence of many genetic variants with small effects), identifying genetic variants will 
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require much larger samples than previously employed. The application of survival-based 

methods (30) is expected to improve statistical power over GWASs limited to cannabis 

users, or logistic regressions based on samples of users and non-users (31–33). Therefore, 

we applied a survival-based approach to nine cohorts from the International Cannabis 

Consortium (ICC; 34) to detect genetic variants associated with age at first cannabis use.

The ICC was established to identify genetic variants underlying individual differences in 

cannabis use phenotypes by combining data from numerous cohorts and studies. The ICC 

has previously identified four genes significantly associated with lifetime cannabis use: 

NCAM1; CADM2; SCOC; and KCNT2 (34). Interestingly, both NCAM1 and KCNT2 have 

been previously linked to other substance use phenotypes (34). Of note is also our novel 

finding at CADM2, which was recently associated with alcohol consumption (35), 

personality (36), behavioral reproductive outcomes and risk-taking behavior (37).

Our aim was to explore the genetic etiology of age at first cannabis use. First, we performed 

a biometrical heritability analysis in 8,055 twins from three cohorts. Second, we performed a 

GWAS meta-analysis of age at first cannabis use in a discovery sample of 24,953 individuals 

from nine cohorts from Europe, Australia, and the United States. The top findings were 

tested for replication in a sample of 3,735 individuals from three cohorts. The outline of the 

analyses steps is illustrated in Figure 1.

MATERIALS AND METHODS

Biometrical heritability

The heritability of age at first cannabis use was estimated based on data from three cohorts: 

NTR comprising 2027 monozygotic (MZ) and 1771 dizygotic (DZ) twin pairs; QIMR 

comprising 1282 MZ and 1969 DZ twin pairs; and BLTS comprising 429 MZ and 577 DZ 

twin pairs (38). We applied three models to determine if cannabis initiation and age at 

initiation fall along the same continuum (single liability), represent two independent 

liabilities (independent model), or two distinct but related liabilities (combined model) (29).

For the best-fitting model, individual differences in liability to early age at initation of 

cannabis use were disentangled in additive genetic (A), shared environmental (C), and 

unshared environmental variation (E) (39) (see Supplementary File S2 and Supplementary 

File S4 for details).

Study samples

The current discovery meta-analysis was based on genome-wide summary statistics from 9 

European, North American, and Australian cohorts comprising N=24,953 individuals. The 

mean age ranged from 17.3 to 46.9 years (Table 1). Females represented 53.3% of the 

sample, and 44.4% of the observations were uncensored, i.e. individuals who acknowledged 

having initiated cannabis use (see Supplementary Table S1 for more details).

Phenotyping

Age at first cannabis use was assessed from questionnaires or clinical interviews (see 

Supplementary File S1 for information on the exact phrasing of the question). For 
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individuals who had not initiated cannabis use at the time of the assessment, age at last 

survey or interview was used. Depending on initiation status, individuals were coded as 

uncensored (initiated), or censored (did not initiate at the time of the last measurement). 

Given the young average age of the participating cohorts, we included all available data to 

maximize sample size, i.e. censored and uncensored observations without imposing age 

restriction.

Genotyping

Genotyping followed by extensive quality control (QC) was performed by each participating 

cohort (see Supplementary Table S2 for details). Generally, QC criteria involved removal of 

SNPs with minor allele frequency (MAF) below 1%, call rates <90%, and Hardy Weinberg 

equilibrium (HWE) p-values below 1E-04. SNPs with evidence of poor clustering on visual 

inspection of intensity plots were also discarded. At the subject level, additional QC criteria 

involved removal of individuals with low overall call rates, conflicting sex designation, or 

excess autosomal heterozygosity (indicative of genotyping errors). Duplicate samples and 

unintended 1st or 2nd degree relatives (in samples of unrelated individuals) were removed. In 

Supplementary Table S2 the exact QC thresholds used by each cohort can be found.

Imputation

All cohorts performed genotype imputation using the 1000 Genomes Phase 1 March 2012 

release as reference (40) (see Supplementary Table S2 for further imputation details). We 

used best-guess genotypes and restricted analyses to autosomal SNPs.

Quality checks prior to meta-analysis

Prior to the meta-analysis, results for each cohort underwent additional QC pertaining to 

imputation quality, minor allele frequency and HWE, and only SNPs with high imputation 

quality (>0.8) were selected. The average imputation quality for the included SNPs ranged 

from 0.95 to 0.99 across all 9 discovery cohorts. Second, we retained SNPs with MAF 

greater than √(5/N), where N is the sample size. This ensured that there were at least 5 

individuals in the least frequent genotype group. Third, genotyped SNPs were retained if 

HWE was not violated (p-value >1E-04). We also removed SNPs with invalid alleles, or 

allele frequencies mismatched with the 1000 Genomes phase 1 European reference panel 

(i.e. if the allele frequency difference exceeded |0.2|). The discovery meta-analysis included 

6,163,759 unique bi-allelic SNPs that passed our QC criteria in at least two cohorts (see 

Table 1 for the number of SNPs in each input file meeting quality control criteria).

Statistical analysis of individual samples

Cohort-specific analyses were performed using a standardized analysis protocol. Each site 

performed a Cox proportional hazards regression analysis where age at first cannabis use (or 

age at the last survey for censored observations) was regressed on the SNP (coded additively 

co-dominant as 0, 1, 2) and the following covariates: sex, birth-cohort (to correct for 

generation effects), the first four principal components (to correct for possible population 

stratification), and study-specific covariates (to correct for chip and/or batch effects; see 

Supplementary Table 2 for details). To account for relatedness in family-based cohorts we 
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used the ‘cluster’ option in the R survival package (41). This ensured that standard errors 

were robust to possible misspecification of the familial covariance matrix (42). The survival 

package was accessed either directly in R, or called from Plink (43) via the Rserve package 

(44).

Meta-analysis

The discovery meta-analysis was performed in Metal (45), using a fixed-effects model and 

the ‘SCHEME STDERR’ option, which weighs the beta coefficients by the inverse of their 

associated standard errors. To ensure that the bulk of the test statistic distribution follows the 

expectation under a theoretical null model, we applied genomic control to each cohort’s 

input file prior to meta-analysis. This ensured that none of the input cohorts contributed 

disproportionately to the meta-analysis results (46). Similar to the method applied by 

Furberg et al. (47) and Allen et al. (48), we computed the standard error (and the 

corresponding p-value) by multiplying the variance of the beta by the lambdaGC (Genomic 

Control) estimate for each sample (see Supplementary Table S2). An alpha of 5E-08 was 

used as the genome-wide significance thresholdStatistical analyses were performed on the 

Lisa Genetic Cluster Computer (http://www.geneticcluster.org).

Gene-based tests of association

Results from the genome-wide meta-analysis were then used to test for gene-based 

association. We employed the Gene-based Association Test using the Extended Simes 

procedure (GATES) in the Knowledge-based mining system for Genome-wide Genetic 

studies (KGG) (Version 3.5) (49, 50). GATES combines the p-values of the SNPs within a 

gene by taking into account the linkage disequilibrium (LD). The SNPs were mapped onto 

(or within 5 kb) 25,655 genes based on NCBI gene coordinates. LD structure was inferred 

based on the 1000 Genomes haplotypes (version March, 2012). For this analysis, a False 

Discovery Rate (FDR) of 0.05 (51) was used as the genome-wide significance threshold.

SNP-based heritability analysis

The proportion of phenotypic variance explained by the retained SNPs was estimated using 

two different methods. The density estimation (DE) method developed by So et al. (52), 

estimates the genome-wide distribution of effect sizes based on the difference between the 

observed distribution of test statistics in the meta-analysis and the corresponding null 

distribution (for a detailed overview of the DE method, see 53). SNPs present in 25% or 

more of the meta-analysis samples were selected and pruned for LD. We used the r2=.15 

pruning level as the primary result for consistency with other applications of this method. 

The second method used LD Score Regression analysis (54). Here, the SNP-based 

heritability estimate was based only on SNPs present in all cohorts to avoid artefacts 

resulting from differing Ns per SNP. In both methods, SNP-based heritability depends on the 

relationship between sample size, effect size, and the corresponding test statistic. Using a 

Cox proportional hazards model and applying genomic control affects that relationship. 

Therefore, we approximated the effective sample size (i.e. the sample size with the intended 

statistical behavior for heritability analysis) of the current GWAS (for details see 

Supplemental File S3).
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Replication analyses

Genes reaching significance and the top 8 independent signals in the discovery meta-

analysis (present in at least one of the replication samples) were taken forward for 

replication in a sample of 3,735 individuals from three cohorts. In addition, the top SNPs 

were analyzed in the combined discovery and replication samples. Furthermore, we tested 

whether a polygenic risk score based on the meta-analysis results predicts age at first 

cannabis use in one of the replication samples (See supplementary File S5 for details on the 

replication analyses). We also evaluated the power to detect a significant association in the 

replication sample using the R library “powerSurvEpi”.

RESULTS

Biometrical Heritability

The combined model with separate but correlated liabilities provided the best fit to the data 

(See Supplementary file S4 for model fitting details and twin correlations). In this model, the 

heritability (A) of age at first cannabis use was 38% (95% CI 19–60%). Shared (C) and 

unique (E) environmental factors explained 39% (95% CI 20–56%) and 22% (95% CI 16–

29%) of the variance, respectively. A, C, and E explained 48% (95% CI 30–65%), 37% 

(95% CI 21–52%) and 15% (95% CI 11–20%), respectively, of the variance in risk of 

cannabis initiation. We found no evidence for qualitative or quantitative sex differences.

GWAS meta-analysis

The quantile-quantile plot for the fixed effects genome-wide discovery meta-analysis is 

shown in Supplementary Figure 1a. Note that the bulk of the test statistic distribution 

follows the expectation under a null hypothesis of no association (lambdaGC = 1). The test 

statistic behaved similarly when no genomic control was applied (see Supplementary Figure 

1b). These results indicate that the meta-analysis is robust to slight deviations of the test 

statistic distribution from the theoretical null model observed in some of the cohorts. The 

Supplementary Figures S2a–i and S3a–i show cohort-specific lambda-corrected Manhattan 

and quantile-quantile plots.

The Manhattan plot in Figure 2a displays the genome-wide association results. One region 

on chromosome 16 passed the significance threshold of P < 5E-08, with other suggestive 

signals on chromosomes 6, 10 and 14. Table 2 includes association results and details on the 

top 8 independent SNPs. The top 100 SNPs in the discovery sample are shown in 

Supplementary Table S3. Regional association plots and forest plots for the top SNPs are 

shown in Supplementary Figures S4a–l, Figure 1b, and Supplementary Figures S5a–k.

The genome-wide significant signals come from a set of six highly correlated SNPs on 

chromosome 16 (r2 > 0.8) located within the calcium-transporting ATPase (ATP2C2) gene. 

The strongest predictor of age at onset of cannabis use was rs1574587 (yielding the lowest 

p-value, P = 4.09E-09). rs1574587 reached statistical significance regardless of whether GC 

was applied or not (P = 1.08e-08). This SNP has a MAF ranging from 0.105 to 0.185 across 

the discovery samples (commensurate with MAFs reported for European ancestry 
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populations by Ensemble), and an imputation quality ≥ 0.89 (see Supplementary Table S4a 

for more details on this SNP).

The I2 statistic for the top SNP was 32.6% (χ2(7)=10.38, P=0.16), indicating no evidence of 

between-cohort heterogeneity in the observed effect. Indeed, the top SNP showed the same 

direction of the effect in all but one of the discovery cohorts (Figure 2b).

Gene-based tests of association

Figure 3 provides an overview of the gene-based results. The quantile-quantile plot 

(Supplementary Figure S6) shows that the bulk of the test statistic distribution follows the 

expectation under the null hypothesis and that several genomic regions are enriched for 

small p-values. Coding genic regions, and not noncoding regions, were enriched for SNPs 

that yielded strong association signals in the single variant analysis (Supplementary Figure 

S6).

As shown in the Manhattan plot in Figure 3a, the calcium-transporting ATPase (ATP2C2) 

gene on chromosome 16 reached the FDR threshold of 0.05 in the gene-based tests of 

association (nominal P=1.33E-06, corrected P=0.034). See Supplementary Table S5 for the 

top 100 genes identified in the discovery meta-analysis and Figure 3b for the zoom plot of 

the significant gene.

ATP2C2 is located at 16q24.1 (Figure 3b) in the vicinity of KCNG4 and COTL1. This gene 

was also identified in the SNP-based analysis and the top SNP rs1574587 is located in this 

gene. According to the Gene Ontology annotations (56, 57) the ATP2C2 gene is involved in 

calcium-transporting ATP-ase activity, calcium ion transmembrane transport, ATP binding 

and metal ion binding.

SNP-based heritability analyses

The selected SNPs did not significantly contribute to the variance in age at first cannabis use 

according to either the density estimation method (h2=0.056; P=0.29) or the LD score 

regression analysis (h2=0.036; P=0.22).

Replication analyses

The power to replicate the top 8 SNPs was low, ranging from 0.04 to 0.10 (see Supplemental 

file S5Table 2–S5). We refer to Supplemental File S5 for results of the replication analyses.

DISCUSSION

To our knowledge, this is the largest biometrical and molecular genetic study investigating 

the genetic etiology of age at first cannabis use. The biometrical twin analysis of 8,055 twin 

pairs showed that genetic factors explain 38% of the variance in age at first cannabis use 

(95% CI 19–60). The discovery genome-wide meta-analysis identified significant 

associations with five highly correlated SNPs within the calcium-transporting ATPase gene 

(ATP2C2) on chromosome 16. The strongest association was observed for the intronic 

variant rs1574587. The gene-based tests provided further evidence linking ATP2C2 to age at 
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first cannabis use. The failure of the smaller independent replication sample to replicate the 

discovery findings was likely caused by insufficient statistical power.

The top associated ATP2C2 gene is expressed in the brain (58) and is involved in calcium 

homeostasis (59), which in turn regulates synaptic plasticity, memory and learning (60). 

Several studies showed that variation in the ATP2C2 gene is associated with language 

impairement (e.g. 61). ATP2C2 has also been linked to cocaine dependence. Gelernter et al. 

(62) found that the highest ranked gene networks significantly associated with cocaine 

dependence include ATP2C2 along with ATPase, Ca2+ -transporting, and the plasma 

membrane gene (ATP2B2). Noteworthy is that calcium signalling pathways have also been 

implicated in opioid dependence (63). These findings are consistent with observed 

associations between early-onset of cannabis use and experimentation with other drugs (64), 

and progression to escalated use/dependence (65). It is therefore plausible that some of the 

same genetic factors increase the probability of early initiation of substance use and 

progression to substance use disorders (see e.g. 66, 67). Taken together, the effects of 

ATP2C2 are likely to be general rather than substance specific.

Early age at first cannabis use may be a proxy for more severe phenotypes such as substance 

use disorder and externalizing behaviors such as conduct disorder. Indeed, we know from 

previous work that there is high comorbidity between conduct disorder and use of cannabis 

and other substances (e.g. 68) and twin studies have shown that part of the covariation is due 

to overlapping genetic influences (69–71). It is therefore plausible that genes for age at first 

cannabis use also play a role in the broader spectrum of externalizing behavior.

The SNP-based heritability for age at first cannabis use was non-significant. Moreover, the 

polygenic risk score based on a small selection of genotyped SNPs present in at least 7 

cohorts provided no evidence of association with age at first use of cannabis in the 

replication sample (N=2082, P>0.10). These null findings suggest that common SNPs 

explain a relatively small proportion of total heritability in age at first cannabis use. The 

difference between the biometric ‘family-based’ and the ‘SNP-based’ heritability estimates 

suggests that a large proportion of genetic variation in age at first use of cannabis cannot be 

captured by current GWAS arrays (e.g., rare genetic variants having a MAF<0.05) at current 

sample sizes. Additional sources of discrepancy may be attributable to interactions between 

genetic loci and environmental factors (75). Detecting interaction effects also requires larger 

sample sizes and measures of environmental exposures harmonized across cohorts.

Strengths and limitations

Strengths—To our knowledge, this is the largest genome-wide study of age at first 

cannabis. This meta-analytic sample identified ATP2C2 as a risk gene, which is 

commensurate with the hypothetical role of calcium signalling mechanisms in substance 

use. We are unaware of any similarly sized meta-analysis that has fitted a survival-based 

method to identify genetic loci associated with addiction phenotypes. This approach allowed 

us to exploit all available information in the participating cohorts, while accounting for the 

censored nature of observations. Using information from both censored (i.e. individuals who 

reported not to have initiated cannabis use at the last interview) and uncensored observations 
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for parameter estimation reduces the likelihood of misclassification (i.e. misclassification 

due to young participants becoming users at later ages) thereby increasing statistical power.

Limitations—Our results should be interpreted in the context of five potential limitations. 

First, the replication sample was much smaller than the discovery sample. The size of the 

replication sample was rather modest in the context of standard GWAS of highly polygenic 

traits (76), making it difficult to distinguish false negatives from null effects. Replication 

sample sizes varied across the loci. The top genome-wide significant SNP rs1574587 met 

our quality control criteria in only one of the replication samples comprising 593 

individuals. We conjecture that the lack of replication was most likely due to lack of 

statistical power. Second, we imposed stringent selection criteria on the SNPs comprising 

the polygenic scores by selecting only variants present in at least 7 discovery samples and 

genotyped in the NTR2/RADAR replication sample (i.e. we removed imputed SNPs). 

Although this was done to maximize the prediction accuracy of the polygenic scores, it is 

possible SNPs in imperfect linkage disequilibrium with the causal variants were retained, as 

SNPs GWASs do not perfectly tag all causal variants, in particular, those with low frequency 

and rare variants, see (77). Rare genetic variants have been shown to explain part of the 

variation in addiction phenotypes (78). However, sequencing of much larger samples is 

required to reliably locate rare variants. For example, we would need to include 80,000 

individuals in the discovery sample to detect rare SNPs (MAF=0.001) with a hazard ratio of 

2, and an alpha threshold of 5E-08. Third, because our sample comprised retrospective and 

longitudinal cohorts, longer intervals between initiation and assessment may result in recall 

bias. However, when stratified by design, differences in mean age of initiation between 

retrospective (16.9 years) and longitudinal (17.1 years) studies were minor. Also, the mean 

age at initiation and the degree of censoring varied between cohorts, likely due to differences 

in sampling, assessment, drug policy, legality, and availability. To the extent to which these 

discrepancies were driven by age-related differences, the survival analyses were adjusted for 

the effects of birth cohort if variation in date of assessment spanned 20 or more years. 

Moreover, despite these differences, the top SNPs generally had an effect in the same 

direction across the samples and there was no evidence of significant between-cohort 

heterogeneity in the estimated effects (Figure 2b, Supplemental Figures S5 and 

Supplementary Table S3 for I2 heterogeneity statistic). Furthermore, the forest plots indicate 

that the 95% confidence intervals surrounding the effect for each cohort mostly overlap and 

contain the meta-analytic effect. Fourth, the sample was limited to individuals of European 

ancestry. Whether our conclusions generalize to populations of other ethnicities remains 

subject to further investigation. Fifth, we did not collect information on cannabis use 

opportunities. Recent findings suggest that drug use opportunity should be taken into 

account when investigating genetic influences on drug use as high genetic risk for drug use 

may not lead to initiation of use when there is a lack of opportunity to do so.

Conclusion—To date, this study is the largest GWAS meta-analysis of age at first cannabis 

use. Our SNP-based findings support the involvement of the ATP2C2 gene. The gene-based 

tests also identified the ATP2C2 gene as a significant predictor of age at onset. Our findings 

are commensurate with the role of calcium signalling mechanisms in substance use 

disorders. The failure to replicate is likely attributable to lack of statistical power. Further 

Minică et al. Page 9

Addiction. Author manuscript; available in PMC 2020 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigation of these signals in larger samples is warranted and may yield valuable insights 

into the genetic etiology of substance use initiation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The outline of the analysis steps, and references to the Supplementary Material relevant to 

each step. Abbreviations: AFC – age at first cannabis use; DE – density estimation; LDSR – 

linkage disequilibrium score regression.
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Figure 2: 
The Manhattan plot of the meta-analysis results for the discovery sample (a). In the 

Manhattan plot, the y-axis shows the strength of association (-log10(P)) and the x-axis 

indicates the chromosomal position. The blue line indicates suggestive significance level (P 

< 1E-05) while the red line indicates genome-wide significance level (P < 5E-08); (b) Forest 

plot of the top SNP (rs1574587) on Chromosome 16 in eight discovery cohorts.
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Figure 3: 
Results of the gene-based tests: (a) Manhattan plot for the gene-based tests; and (b) Regional 

plot around the significantly associated gene.
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Table 1:

Descriptive information on the participating discovery cohorts.

Cohort N (or range) % Females %Uncensored 
Observations

Mean age (SD) Mean age at first use (sd) 
(in users)

Number of SNPs

Discovery

ALSPAC 6147 51.9 38.4 17.3 (1.7) 14.8 (1.6) 6,284,747

BLTS 721 57.1 59.5 26.2 (3.3) 18.8(2.8) 4,093,835

FinnTwin 1029 51.7 27.5 22.8 (1.3) 18.0 (2.5) 4,362,100

HUVH 581 31.3 30.3 28.7 (12.5) 16.0 (3.0) 4,319,651

NTR 5148 62.3 16.6 46.9 (17.5) 18.9 (5.1) 4,773,834

QIMR 6758 53.8 51.3 45.2 (10.9) 19.9 (5.8) 5,953,917

TRAILS 1249 53.8 61.7 20.0 (1.6) 16.3 (2.0) 4,819,504

Utrecht 958 51.3 59 17.4 (3.2) 15.5 (2.1) 4,139,839

Yale-Penn 2362 41.2 92.6 38.2 (10.6) 17.0 (9.4) 5,732,659

N = sample size (or range if sample size varied across SNPs), % uncensored observations (i.e., individuals who have initiated cannabis use). Mean 
age: age when completing survey or interview. Mean age at first use: mean age at first cannabis use.

Addiction. Author manuscript; available in PMC 2020 March 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Minică et al. Page 23

Table 2.

Top 8 independent SNPs in the meta-analysis of the discovery samples (present in at least one replication 

sample). SNPs are displayed when not in linkage disequilibrium (R2<0.1. For SNPs with R2 >= 0.1 only the 

most significant SNP is shown in the top 8).

SNP Chr BP (hg19) A1 A2 Freq A1 beta (s.e.) P Direction*

rs1574587 16 84453056 T C 0.1415 0.09 (0.016) 4.0×10−9 +?+++++−+

rs4935127 10 56654986 C G 0.7741 −0.06 (0.013) 4.6×10−7 −−−+−−−+−

rs2249437 6 1595216 T C 0.4595 0.07 (0.014) 5.1×10−7 ++++?+?++

rs9266245 6 31325702 A G 0.2655 −0.07 (0.015) 1.6×10−6 −−−−?−−?−

rs28622199 8 5392103 T C 0.8012 0.07 (0.015) 2.7×10−6 +++−+++++

rs215069 16 16091237 T C 0.0685 −0.11 (0.025) 3.8×10−6 −?−?−−??−

rs4924506 15 41129467 A C 0.7318 0.06 (0.013) 5.5×10−6 ++++++−−+

rs7773177 6 139143088 A G 0.7383 −0.06 (0.013) 8.5×10−6 −−−−−−−+−

*
Direction per sample: allele A1 increases (+) or decreases (−) liability for cannabis use, or sample did not contribute to this SNP because it did not 

pass the post-imputation quality control (?). Only SNPs present in at least 2 samples were included in the meta-analysis. Order of samples in the 
discovery: ALSPAC, BLTS, FinnTwin, HUVH, NTR, QIMR, TRAILS, Utrecht, Yale Penn EA. Sample information can be found in Table 1.

Chr = Chromosome; BP (hg19) = location in base pairs in human genome version 19, A1 = allele 1, A2 = allele 2, Freq A1 = Frequency of allele 1, 
s.e. = standard error, P = p-value.
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