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Abstract
Cryptosporidiosis of calves is caused by the enteroprotozoan Cryptosporidium spp. The disease results in intense diarrhea of
calves associated with substantial economic losses in dairy farming worldwide. The aim of this study was to determine calf, herd,
and within-herd Cryptosporidium prevalence and identify Cryptosporidium species and subtypes in calves with diarrhea in
intensive dairy herds in central Argentina. A total of 1073 fecal samples were collected from 54 randomly selected dairy herds.
Cryptosporidium-oocysts were isolated and concentrated from fecal samples using formol-ether and detected by light micros-
copy with the modified Ziehl-Neelsen technique. Overall prevalence of oocyst-excreting calves was found to be 25.5% (274/
1073) (95% C.I. 22.9; 28.1%). Of the herds studied, 89% (48/54) included at least one infected calf, whereas within-herd
prevalence ranged from the absence of infection to 57% (20/35). A highly significant association was found between the presence
of diarrhea and C. parvum infection (χ2 = 55.89, p < 0.001). For species determination, genomic DNA isolated from oocyst-
positive fecal samples was subjected to PCR-RFLP of the 18S rRNA gene resulting exclusively in Cryptosporidium parvum
identification. C. parvum isolates of calves displaying diarrhea and high rate of excretion of oocysts were subtyped by PCR
amplification and direct sequencing of the 60 kDa glycoprotein (GP60) gene. Altogether five GP60 subtypes, designated
IIaA18G1R1, IIaA20G1R1, IIaA21G1R1, IIaA22G1R1, and IIaA24G1R1 were identified. Interestingly, IIaA18G1R1 and
IIaA20G1R1 were predominant in calves with diarrhea and high infection intensity. Notably, IIaA24G1R1 represents a novel,
previously unrecognized C. parvum subtype. The subtype IIaA18G1R1, frequently found in this study, is strongly implicated in
zoonotic transmission. These results suggest that calves might be an important source for human cryptosporidiosis in Argentina.

Keywords Cryptosporidium parvum . GP60 subtype . Dairy calves . Diarrhea . Prevalence . Zoonotic transmission . Argentina

Introduction

Cryptosporidium spp. is an apicomplexan enteropathogen of a
wide range of vertebrate hosts including humans.
Cryptosporidial infection is common in calves and could
cause severe diarrhea, lethargy, anorexia, and dehydration
leading to substantial economic lossesmainly related to reduc-
tions in weight gain and the application of palliative and pre-
ventive treatments. Although calves with cryptosporidiosis
may recover after 4–6 weeks (Olson et al. 2004), a mortality
rate of 35.5% in younger animals than 30 days has also been
reported (Singh et al. 2006).

High herd prevalence of Cryptosporidium spp. has been
reported in dairies, with values ranging from 50.5 to 96%
(Hamnes et al. 2006; Brook et al. 2008; Trotz-Williams et al.
2008; Silverlås et al. 2009; Tiranti et al. 2011; Smith et al.
2014; Delafosse et al. 2015; AlMawly et al. 2015). It has been
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reported that cryptosporidiosis risk is higher in calves younger
than 30 days old (Tiranti et al. 2011; Smith et al. 2014;
Delafosse et al. 2015; Avendaño et al. 2018).

Mainly, four Cryptosporidium species have been reported
in cattle, Cryptosporidium parvum, Cryptosporidium bovis,
Cryptosporidium andersoni, and Cryptosporidium ryanae
(Santín et al. 2008; Ryan et al. 2014). Among them,
C. parvum and C. bovis are the most common species identi-
fied in pre-weaned calves. C. parvum can be transmitted to
humans via the fecal/oral route, following direct or indirect
contact with infected animals (Ryan et al. 2014; Kinross et al.
2015). Cattle are recognized as a major parasite reservoir and
contributor of zoonotic infection, becauseC. parvum subtypes
infecting humans have been isolated from cattle (Xiao and
Fayer 2008). C. parvum is an important zoonotic pathogen
responsible for serious human diarrhea outbreaks in industri-
alized countries, affecting especially immunocompromised
individuals (HIV patients), children, and the elderly (Xiao
and Feng 2008). In developing countries, Cryptosporidium
infection has been found to be associated with a significantly
increased risk of deaths in toddlers with diarrhea aged 12–
23 months (Kotloff et al. 2013).

Molecular tools have allowed to define and assess the ge-
netic diversity of Cryptosporidium facilitating the quest to
unravel transmission patterns and associated impacts on pub-
lic health (Thompson and Ash 2016). In order to assess a
possible transmission source of C. parvum, intraspecific
subtyping based on the 60 kDa glycoprotein (GP60) gene is
commonly used (Xiao 2010). Accordingly, identification of
Cryptosporidium intraspecific variation has been central in
understanding transmission dynamics of zoonotic parasite
strains. Molecular characterization of C. parvum at the sub-
type level in dairy calves, important to determine zoonotic
potential, have been conducted in several countries (Santín
et al. 2008; Xiao and Fayer 2008; Amer et al. 2010;
Silverlås et al. 2013; Smith et al. 2014; Kaupke and

Rzeżutka 2015). In Argentina, two previous studies have re-
ported C. parvum as the only species present in 120 pre-
weaned dai ry calves and subtypes IIaA16G1R1
IIaA17G1R1, IIaA18G1R1, IIaA19G1R1, IIaA20G1R1,
IIaA21G1R1, IIaA22G1R1, and IIaA23G1R1 have been
identified (Tomazic et al. 2013; Del Coco et al. 2014).
Whereas an association between subtypes and different clini-
cal manifestations has been demonstrated in humans, few
studies have tested the hypothesis that C. parvum-subtypes
are associated with diarrhea intensity in dairy calves (Cama
et al. 2007; Insulander et al. 2013; Adamu et al. 2014).

The aim of this study was to determine (i)Cryptosporidium
prevalence in calves, herds, and within-herd and (ii) the pres-
ence of Cryptosporidium species and C. parvum subtypes in
calves with diarrhea from intensive dairy farms in central
Argentina.

Materials and methods

Study area

A cross-sectional study was carried out between April 2013
and March 2014 in the dairy area located in General San
Martín district, Córdoba, Argentina, (Fig. 1, Supplementary
Table 1). This area included 564 dairy herds (INDEC 2008),
of which the herd size of 68% range from 101 to 500 cows
(Sánchez et al. 2012).

Enrollment of farms

Farms were selected from a database of the Producer’s Rural
Association, registered in the local execution unit Villa María,
General San Martín district in Córdoba, Argentina. The inclu-
sion criterion for dairy farms was a size of 101 to 300 cows as
based on January 2013 data. Based on sample size

Fig. 1 Dairy herds sampled in
General San Martín district,
Córdoba, Argentina
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calculations, a total of 60 farms were required to estimate a
19.3% prevalence with 9% precision and were randomly se-
lected from 365 dairies (EPIDAT 3.1).

Sample collection

Exclusively calves younger than 60 days of age were sampled.
Individual fecal samples were taken directly from the rectum
using sterile plastic gloves and were stored at 4 to 8 °C until
processing. At the moment of sample collection, feces consis-
tency and presence of diarrhea were registered. Fecal consis-
tency was scored as follows, solid (S), semisolid (SS), liquid
(L), runny (R), and meconium (M). Diarrhea was defined as
runny or liquid feces (Mcguirk 2008).

Laboratory methods

Samples were processed with the formol-ether concentration
technique (Young et al. 1979); the supernatant was removed,
leaving a final pellet volume of 2 ml. Fecal smears were pre-
pared with 50 μl of each pellet. Presence of Cryptosporidium
oocysts was detected by microscopic examination at × 1000
magnification using the modified Ziehl-Neelsen technique
(Henriksen and Pohlenz 1981) (Fig. 2). Intensity of
Cryptosporidium infection was scored semi-quantitatively ac-
cording to the average number of oocysts in 20 randomly
selected fields as follows: 0 (no oocysts), 1 (1–5 oocysts), 2
(6–10 oocysts), 3 (11–15 oocysts), and 4 (≥ 16 oocysts)
(Chartier et al. 2013). All tests were performed by one person.

Typing and subtyping

Cryptosporidium oocysts were concentrated from oocyst-
positive fecal samples using the sucrose flotation protocol of
Coklin et al. (2007). Oocysts were ruptured with three freeze-

thaw cycles, and total DNA was extracted with the QIAmp
DNA Stool Mini Kit (Qiagen, Hilden, Germany) following
the instructions of the manufacturer. For species determina-
tion, genomic DNA isolated from oocyst-positive fecal sam-
ples were subjected to PCR-RFLP as described in Xiao et al.
(1999) including the use of an additional restriction enzyme
MboII (Feng et al. 2007). For subtyping, C. parvum isolates
were selected from calves with diarrhea and high infection
intensity (scores 3 and 4), and the PCR amplicon of the gene
encoding the 60 kDa glycoprotein (GP60) was directly se-
quenced and subtyped (Alves et al. 2003). GP60 subtypes
were designated based on the number of trinucleotides TCA
and TCG and the hexanucleotide ACATCA in the polymor-
phic tandem repeat region (Sulaiman et al. 2005). Nucleotide
sequences were deposited in the GenBank database under
accession numbers KX768771-KX768816.

Statistical analysis

Cryptosporidium parvum overall, herd, and within-herd prev-
alence was calculated for all calves. A chi-square test (χ2) was
used to compare the frequency of C. parvum infection in di-
arrheic and healthy animals and to assess the association be-
tween calf age and the occurrence of C. parvum subtype-in-
fection. All analyses were performed with the statistical soft-
ware R 3.2.3.

Results

Descriptive data

From the 60 herds selected, six were excluded; since three
farms had incorrect contact data, two farms send their calves
to a collective artificial breeding system, and one farm had
sold all animals at the time of the study. Altogether, a total
of 1073 fecal samples were collected in the remaining 54 dairy
herds corresponding to an average of 20 samples per herd
(range 10 to 66). Of all sampled calves, 22% (236/1073) pre-
sented diarrhea (95% C.I. 19.5, 24.5).

Calves, herd, and within-herd Cryptosporidium
parvum prevalence

Of 1073 sampled calves, 282 (26.3%) were positive for oo-
cysts excretion after microscopic examination. Prevalence of
oocyst excretion for calves of one, two, three, and four or more
weeks of age was found to be 11.9% (12/101), 46.2% (141/
305), 29.5% (99/336), and 9% (30/331), respectively.

Genomic DNAwas isolated from oocyst-positive samples
and subjected to PCR-RFLP for Cryptosporidium species de-
termination. Eight samples with a low infection intensity
(score 1) failed to amplify, whereas the PCR-RFLP pattern

Fig. 2 Cryptosporidium oocysts under microscopic examination of fecal
smears at × 1000 magnification using the modified Ziehl-Neelsen
technique
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of the remaining 274 samples identified C. parvum resulting
in a prevalence of 25.5% (95% C.I. 22.9; 28.1%) in the study
area. Of the 274 C. parvum-positive samples, 35% (96)
displayed a low (score 1), 41% (113) a medium (score 2),
13% (36) a high (score 3), and 11% (29) a very high (score
4) infection intensity. With regard of feces consistency, 17%
(63/372) ofC. parvum-positive calves displayed feces that had
been graded to be of solid (S), 24% (104/432) semisolid (SS),
44% (39/89) liquid (L), 45% (66/147) runny (R), and 6%
(2/33) meconium (M) consistency.

In 48 of 54 herds, at least one C. parvum positive calf was
identified resulting in an overall herd prevalence of 89%.
C. parvum within-herd prevalence was lower, ranging from
0 to 57% (mean 25%; first quartile 14.7%; third quartile 36%)
and in 50% of herds, C. parvum within-herd prevalence was
higher than average (Fig. 3). Diarrhea was absent in six herds;
in three of these, no oocysts were detected, while in the three
remaining only one or two C. parvum-positive calves with a
low infection intensity (score 1) were found.

Cryptosporidium parvum subtyping

From 65 C. parvum-positive calves exhibiting a high (score 3)
and very high infection intensity (score 4), 47 samples of diar-
rheal calves were selected for amplification and GP60 gene
sequencing. All analyzed C. parvum GP60 subtypes belonged
to the IIa family. Altogether, five C. parvum GP60 subtypes
(IIaA18G1R1, IIaA20G1R1, IIaA21G1R1, IIaA22G1R1, and
IIaA24G1R1) could be identified (Table 1). Interestingly, in all
GP60 alleles, a non-synonymous nucleotide exchange from
BGAC^ to BGGC^ was observed, corresponding to an ex-
change of Asn to Gly at amino acid site 99, as previously
reported (Tomazic et al. 2013).

A highly significant association was found between diar-
rhea presence and C. parvum infection (χ2 = 55.89, p < 0.001,

Supplementary Table 2). The predominant subtype in calves
with diarrhea and high infection intensity was IIaA20G1R1
(25/47), followed by IIaA18G1R1 (12/47). Additionally, a
novel subtype, IIaA24G1R1 was determined in two calves.

No statistically significant relationship was found between
calf age and a specific subtype presence (p = 0.49,
Supplementary Table 3). Nevertheless, particular subtypes
were present only in animals of a certain age. For example,
IIaA21G1R1, IIaA22G1R1, and IIaA24G1R1 subtypes were
observed only in animals of 2 weeks of age or less. In contrast,
the IIaA18G1R1 subtype was found exclusively in calves
2 weeks of age or older, while the most predominant subtype,
IIaA20G1R1, was identified in all ages. Furthermore, all sub-
types were found to be not clustered but individually distrib-
uted in different dairy herds (Supplementary Table 4).

Discussion

Cryptosporidium parvum infection in calves is widespread
(Brook et al. 2008; Trotz-Williams et al. 2008; Al Mawly
et al. 2015; Qi et al. 2015), and also in the present study,
C. parvum was, in agreement with previous reports in
Argentina, the only species identified in calves (Tomazic
et al. 2013; Del Coco et al. 2014). However, in contrast to
previous studies done in Argentina, a considerably higher
overall prevalence was found (Del Coco et al. 2008; Tiranti
et al. 2011; Garro et al. 2016), probably due to an additional
oocysts concentration step prior to microscopic examination
significantly increasing the sensitivity of oocyst detection. In
the present study, the sampling fraction of calves ≤ 30 days of
age was 83% (888/1073), which is the age range were
C. parvum is most frequently found (Santín et al. 2008; Xiao
2010; Ryan et al. 2014). Delafosse et al. (2015) found that a
high infection intensity (scores 3 or 4) predicted an increased
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Fig. 3 Cryptosporidium parvum
prevalence by dairy herd (n = 54)
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mortality rate of calves 90 days of age. Based on this finding,
it is anticipated that 23.7% of oocyst-excreting calves (or
6.1% of the studied calves) in the present study may be sub-
jected to an increased mortality.

At least one C. parvum-positive calf was detected in 89%
of the herds studied. Highly variable herd prevalence ranging
from 50.5 to 96% have been reported (Hamnes et al. 2006;
Brook et al. 2008; Trotz-Williams et al. 2008; Silverlås et al.
2009; Tiranti et al. 2011; Smith et al. 2014; Al Mawly et al.
2015; Delafosse et al. 2015; Garro et al. 2016; Avendaño et al.
2018). Similar to the considerable differences of overall prev-
alence that have been reported, corresponding dissimilarities
in herd prevalence may likewise be attributed to the different
sensitivities of applied diagnostic test. Accordingly, Garro
et al. (2016) estimated a herd prevalence of 67% (overall
prevalence 16.3%) compared with 89% (overall prevalence
26.3%) in the present study. Other factors that may bias to-
wards lower herd prevalence values, maybe the sampling of a
smaller age range or a higher number of older animals (30–
60 days). In addition, also, a lower number of calves sampled
in each herd may significantly reduce the probability of find-
ing positive calves particularly in herds with very low preva-
lence. Since only one fecal sample from each calf was exam-
ined, the true prevalence value may have been underestimated
in the present study.

Diarrhea was not observed in 6 herds, 3 of which tested
negative for all animals. Interestingly, the 3 remaining
herds presented 1 or 2 C. parvum positive calves with
low infection intensity score (score 1). A highly significant
association was found between the presence of diarrhea
and C. parvum infection, reinforcing the notion that this
enteropathogen is most relevant for diarrhea development
in neonatal dairy calves (Izzo et al. 2011; Al Mawly et al.
2015; Meganck et al . 2015; Garro et al . 2017) .
Nevertheless, the association of C. parvum with diarrhea
may be overestimated since possible co-infections with
other microorganisms were not evaluated.

Noteworthy, a novel subtype IIaA24G1R1 could be
identified in two different calves of the same herd. Both
animals showed profuse diarrhea, high-level of dehydra-
tion and, though treated, eventually died. Further laborato-
ry testing excluded Salmonella spp., enteropathogenic
E. coli (EPEC), enterotoxigenic E. coli (ETEC),
Rotavirus, and Coronavirus as primary cause of death (da-
ta not shown).

Besides the novel IIaA24G1R1 subtype, the remaining 4
subtypes reported in this study have been previously detected
in Argentina. High genetic variability has been found in dairy
calves in Argentina. Tomazic et al. (2013) reported the six
subtypes IIaA17G1R1, IIaA18G1R1, IIaA20G1R1,

Table 1 Cryptosporidium parvum GP60 subtypes in dairy calves

Subtype Samples by age groups a Total Geographic region b Reference

1 week 2 weeks 3 weeks 4 weeks

IIaA18G1R1 0 5 6 1 12 Argentina (1 of 46; 13 of 75) (Tomazic et al. 2013, Del Coco et al. 2014)

England (2 of 51) (Brook et al. 2009)

The Netherlands (2 of 129) (Wielinga et al. 2008)

Sweden (3 of 171) (Silverlås et al. 2013)

Czech Republic (3 of 137) (Kváč et al. 2011)

Hungary (1 of 21) (Plutzer and Karanis 2007)

Serbia and Montenegro (2 of 18) (Misic and Abe 2007)

Brazil (1 of 28) (do Couto et al. 2013)

IIaA20G1R1 1 16 7 1 25 Argentina (8 of 46; 27 of 75) (Tomazic et al. 2013, Del Coco et al. 2014)

Sweden (5 of 171) (Silverlås et al. 2013)

Serbia and Montenegro (2 of 18) (Misic and Abe 2007)

IIaA21G1R1 0 2 0 0 2 Argentina (15 of 46; 10 of 75) (Tomazic et al. 2013, Del Coco et al. 2014)

Sweden (11 of 171) (Silverlås et al. 2013)

IIaA22G1R1 1 5 0 0 6 Argentina (5 of 46; 16 of 75) (Tomazic et al. 2013, Del Coco et al. 2014)

Sweden (7 of 171) (Silverlås et al. 2013)

Czech Republic (12 of 137) (Kváč et al. 2011)

IIaA24G1R1 0 2 0 0 2 None None

Total 2 30 13 2 47

a Frequency of samples by age groups and C. parvum subtypes
b Country in which the respective subtype has been reported in calves. Number of positive samples and the examined study group is given
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IIaA21G1R1, IIaA22G1R1, and IIaA23G1R1 from 45 dairy
calves. Del Coco et al. (2014) described the seven subtypes
IIaA16G1R1, IIaA18G1R1, IIaA19G1R1, IIaA20G1R1,
IIaA21G1R1, IIaA22G1R1, and IIaA23G1R1 from 73 dairy
calves. The predominant subtype IIaA20G1R1 detected in this
study, was also found with relatively high frequency in dairy
calves studied in other areas of Argentina (Tomazic et al.
2013; Del Coco et al. 2014), apart from Sweden (Silverlås
et al. 2013), Serbia, and Montenegro (Misic and Abe 2007).
The second most frequent IIaA18G1R1 subtype, seems to be
more widely distributed, being reported in England (Brook
et al. 2009), The Netherlands (Wielinga et al. 2008), Sweden
(Silverlås et al. 2013), Czech Republic (Kváč et al. 2011),
Hungary (Plutzer and Karanis 2007), Serbia and
Montenegro (Misic and Abe 2007), Brazil (do Couto et al.
2013), and Argentina (Tomazic et al. 2013; Del Coco et al.
2014). In England, this subtype has been also identified in
humans (Chalmers et al. 2011), strongly suggesting a zoonotic
transmission risk. In contrast, a recent study carried out in
Argentinean and Brazilian persons,C. hominiswas frequently
detected (Peralta et al. 2016) and none of C. parvum subtypes
reported in this study were found.

Further research is required to understand the real clinical
significance of each C. parvum subtype, as well as their inter-
action when co-infections occur. The presence of at least one
C. parvum zoonotic subtype in dairy calves implies transmis-
sion to humans. Consequently, molecular epidemiology stud-
ies in humans, especially in farm workers that are in close
contact with C. parvum-infected animals, may further sub-
stantiate the existence of zoonotic transmission of the parasite.

Conclusions

The current study revealed that Cryptosporidium parvum is
widely distributed in dairy calf operations. The five
C. parvum GP60 subtypes IIaA18G1R1, IIaA20G1R1,
IIaA21G1R1, IIaA22G1R1, and a novel IIaA24G1R1 variant
were identified. The most commonly detected subtypes in
calves with diarrhea and high infection intensity score were
IIaA20G1R1 and IIaA18G1R1. Subtype IIaA18G1R1 was fre-
quently found in this study and is strongly implicated in zoo-
notic transmission suggesting that calves might be an important
source of human cryptosporidiosis in Argentina. However, to
confirm this hypothesis, studies in humans are required.
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