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Abstract New approaches aiming at a detailed similarity/dissimilarity analysis of
DNA sequences are formulated. Several corrections that enrich the information which
may be derived from the alignment methods are proposed. The corrections take into
account the distributions along the sequences of the aligned bases (neglected in the
standard alignment methods). As a consequence, different aspects of similarity, as
for example asymmetry of the gene structure, may be studied either using new sim-
ilarity measures associated with four-component spectral representation of the DNA
sequences or using alignment methods with corrections introduced in this paper. The
corrections to the alignment methods and the statistical distribution moment-based
descriptors derived from the four-component spectral representation of the DNA
sequences are applied to similarity/dissimilarity studies of 8-globin gene across spe-
cies. The studies are supplemented by detailed similarity studies for histones HI and
H4 coding sequences. The data are described according to the latest version of the
EMBL database. The work is supplemented by a concise review of the state-of-art
graphical representations of DNA sequences.

Keywords Graphical representations of DNA sequences - Descriptors -
Similarity/dissimilarity analysis of DNA sequences

1 Introduction

In an article published by Fuchs in Nature in 2002 we read “Future generations may
be able to determine whether the sequencing of the human genome in 2001 indeed
led to a paradigm shift in biology and biomedicine as some predicted, or whether

D. Bieliriska-Waz ()
Instytut Fizyki, Uniwersytet Mikotaja Kopernika, Grudziadzka 5, 87-100 Torun, Poland
e-mail: dsnake @fizyka.umk.pl

@ Springer



2346 J Math Chem (2011) 49:2345-2407

the impact of this event was more gradual instead” [1]. The author observes that “so
far, the history of biology has been characterized by a continous shift from the whole
organism down to the molecular level, from the descriptive characterization of spe-
cies over macroscopic observations and morphological and physiological studies to
today’s molecular dissection of individual genes”.

Novel experimental techniques require new computational methods. In order to cre-
ate good models describing the experimental results, researchers from different areas
of science joined computational biology and medical sciences. As a consequence, a
new interdisciplinary field adapting methods from many different branches of math-
ematics, physics, chemistry, and computer science emerged.

A fundamental task coming from sequencing is to understand the code written in
the sequence of four letters. A lot has been done to reveal some global character-
istics of long DNA sequences. For example Herzel et al. [2] created a model that
describes thousands of nearly identical dispersed repetitive sequences present in DNA
sequences of higher organisms. The hypothetical model sequences consist of indepen-
dent equidistributed symbols with randomly interspersed repeats. The model that can
be analyzed analytically predicts that the entropy of DNA sequences measuring the
information content is much lower than suggested by earlier empirical studies.

A systematic analysis of statistical properties of coding and noncoding DNA
sequences has been performed by Mantegna et al. [3]. The authors compared the
statistical behavior of coding and noncoding regions in eukaryotic and viral DNA
sequences by adapting two tests developed for the analysis of natural languages and
symbolic sequences. The authors analyzed some similarities and dissimilarities of sta-
tistical properties of coding and noncoding regions. In particular they found that for
the three chromosomes they studied, the statistical properties of noncoding regions
appear to be closer to those observed in natural languages than those of the coding
regions.

Statistical studies aiming at characterization of correlation structures of DNA
sequences has been a subject of many studies (for review see [4,5]). In particular
Foss [6] using spectral density of individual base positions demonstrated long-range
fractal correlations as well as short-range periodicities. Arneodo et al. [7] used the
wavelet transform to demonstrate the existence of long-correlations in genes contain-
ing introns and noncoding regions. Buldyrev et al. [8] in order to answer the question in
computational molecular biology whether long-range correlations are present in both
coding and noncoding DNA sequences have used standard Fourier transform analysis
and detrended fluctuation analysis. For that purpose, the authors performed analysis of
the sequences available in GenBank in 1995. For noncoding sequences, they obtained
the presence of long-range correlations. Azbel in his work [9] demonstrated a univer-
sality in a DNA statistical structure using an autocorrelation function. However, no
long-range correlations have been found in any of the studied DNA sequences. Peng
et.al. [10] studied long-range correlations by constructing a map of the nucleotide
sequence onto a walk which they referred to as a DNA walk. Using such an approach
they found long-range correlations in intron-containing genes and in nontranscribed
regulatory DNA sequences, but not in complementary DNA sequence or intron-less
genes. Visualization technique proposed by Peng et al. is based on a one dimensional
DNA walk showing the relative occurrence of purines and pyrimidynes along the
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sequence. Silverman and Linsker introduced vectorial representation of the bases in
three dimensions [11]. They used the unit vectors of 3D space to construct a Fourier
transform. Such Fourier transform graphs representing the sequences were used as
measures of DNA periodicity. Another visualization technique based on DNA walk
plotted in three-dimensional Cartesian coordinate system has been introduced by Ber-
ger [5]. In his work Berger gave also a good review of visualization techniques based
on DNA walk and their applications for an analysis of DNA sequences i.e. a study
of correlation information, sequence periodicities, and other sequence characteristics.
More examples of studies focused on statistical properties of DNA sequences and also
on their biological interpretation may be found in [12,13].

Another class of studies is developing methods aiming at detailed sequence com-
parisons. Most commonly used in computational biology and medical sciences are
global and local alignment methods, for example Clustal W [14], Blast [15], Needle-
man-Wunsch algorithm [16], and T-Coffee [17] (for review see [18,19]).

An alternative to the alignment methods are alignment-free methods that can be
divided into two groups: numerical similarity/dissimilarity analysis of DNA sequences
and similarity/dissimilarity analysis based on graphical representations of DNA
sequences. There is a variety of numerical alignment-free methods (for a review up
to 2003 see [20]). Recently new numerical alternative methods have been developed,
as for example [21-31]. Another group within numerical alignment-free methods are
multidimensional graphical representations. Conceptually, they are analogous to the
graphical representations but their visualization is difficult (if possible at all). In partic-
ular 4D numerical representations [32-34], 5D representation [35], 6D representation
[36] have been introduced.

Due to interdisciplinary character of research on DNA, many groups of methods
have been developed independently and very often without any knowledge about
analogous results obtained in different groups of scientists. In particular, DNA walk
has been independently discovered by the scientists working on statistical proper-
ties of DNA sequences [5] and by scientists working on graphical representations.
Even among researchers working on graphical representations one can find analogous
visualization tools discovered independently (see subsequent chapters).

This work is focused on graphical representations of DNA sequences. Biological
sequences are often very long, and it is not obvious how to represent them graphi-
cally in an easy way that shows the main features of these objects. The size of the
plots is restricted by the human abilities of perception. How to restrict the graphs rep-
resenting the sequences to two-dimensional plots and how to avoid degeneracies has
been the subject of numerous studies which resulted in many graphical representations
(see subsequent chapters). Graphical representations offer both numerical and visu-
alization tool for similarity/dissimilarity analysis. These methods are still restricted
to small groups of users. Computing codes calculating optimal sequence alignment
are implemented using dynamic programming and are freely accessible in the internet
and that makes them attractive for potential users. However, they are computationally
expensive, and methodologically offer too simplistic similarity/dissimilarity analy-
sis. They restrict the multidimensional similarity space of complex objects and show
only one aspect of similarity. It becomes more and more popular to replace the align-
ment methods by alternative ones. In particular, Honl and Ragan consider numerical
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alignment-free methods that can replace multiple-sequence alignment to infer a phylo-
genetic tree that represents the history of a set of molecular sequences [37]. Graphical
representations have been also used for the construction of phylogenetic trees. Since
multiple alignment strategy does not work for all types of data, Liao et al. [38] pro-
posed to use the similarity matrix based on their 2D graphical representation of DNA
sequences [39] to construct phylogenetic tree. The authors consider mitochondrial
sequences belonging to different species. The same graphical representation has been
also used by the authors to obtain the phylogenetic relationships of HSN1 avian influ-
enza virus [40] and the phylogenetic relationships of coronaviruses [41]. Another 2D
graphical representation [42] has been used by Yu et al. to construct the phyloge-
netic tree of coronaviruses and lentiviruses [43]. 3D graphical representation has been
also used to construct a phylogenetic tree [44]. Wang and Zhang studied molecular
phylogeny of HSN1 avian influenza viruses in Asia using 2D and 3D graphical rep-
resentations of DNA sequences [45]. Graphical representations of DNA sequences
have been also generalized for the analysis of similarity/dissimilarity between RNA
secondary structures, as for example [46,47]. 2D graphical representation has been
used for the characterization of the neuraminidase RNA sequences of HSN1 [48,49]
and of HIN1 [50] strains. Also graphical representations of the proteins have been
created [51-54].

Graphical representations of the biological sequences (DNA, RNA, proteins) can be
applied to all problems that require similarity/dissimilarity analysis. Similarity anal-
ysis is not unique to sequences in biology. For instance, the problem of similarity
has been developed and applied in computational pharmacology and has resulted in
methods such as QSAR, QSPR [55-61] which aim at the prediction of molecular prop-
erties. The basic paradigm of quantitative structure-property relationship (QSAR) is
that compounds with similar structure have similar properties. This implies a smooth
transient behavior in the relation between structure and property/activity, i.e., for any
small change in the structure, the magnitude of the physico-chemical property or bio-
logical activity changes smoothly rather than in an abrupt, in all-or-none type, way.
The molecular similarity measures are based on a large number of descriptors, i.e.
of the numerical indices characterizing molecules. The basis for these studies is the
development of various kinds of mathematical descriptors [62,63]. In the theory of
molecular similarity it is commonly accepted that different descriptors and different
similarity measures reveal different aspects of similarity. A pair of complex objects
may be similar in one aspect and not similar in another aspect. Using different sim-
ilarity measures, usually one obtains contradictory results which may be relevant in
different contexts. The first QSAR studies on biological sequences using graphical
representations of sequences have been already performed [64].

The present work describes the development of fundamental studies related to
graphical representations of DNA sequences. First, the corrections to alignment meth-
ods are proposed in order to enrich the information related to different aspects of
similarity. New similarity measures are created for the alignment distributions. Sec-
ond, a critical review of graphical representations and their numerical characterization
is given.

In the last chapter, new aspects of four-component spectral representation, graph-
ical representation of DNA sequences, recently introduced by the author of this
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work [65], are described. It is shown in the last chapter of this work that by using
the four-component spectral representation one can recognize the difference in one
base between a pair of sequences so it can be used for single nucleotide polymorfism
(SNP) analyses which is subject of many investigation, as for example, in a recent work
by Bhasi et al. [66]. Another important problem is to identify protein coding regions of
genomic sequences [67,68]. First attempts of identifying protein coding genes using
graphical representations of DNA sequences based on Z curve [69] or based on tri-
nucleotides [70] have been already performed. It has been shown that the similarity
relations are different for exons, and sequences with introns using the four-component
spectral representation (see subsequent chapters). Such an observation suggests that
the four-component spectral representation that reveals detailed aspects of similarity,
as for example the comparisons of asymmetry of the gene structure, can be used to
study this problem [71].

2 Corrections to the alignment methods

In this section I introduce corrections that reveal some aspects of similarity which can-
not be identified in the standard alignment methods. The similarity space of complex
objects is multidimensional. Only simple 1D objects can be classified in a unique way
using a single similarity measure. Complex objects may be similar in one aspect and
very different in another one. For example, in the case of atoms, if a similarity mea-
sure based on their atomic numbers is considered then the periodic table of elements is
obtained. However, considering ionization energies as descriptors, the similarity rela-
tions between atoms change. A final, single similarity measure is a result of averaging
over different aspects of similarity or, a consequence of neglecting most of the aspects
of similarity.

The new similarity measures representing different aspects of similarity can be con-
sidered separately, or they can be combined in any way to search for their correlations
with different biological functions.

2.1 Inadequacy of the alignment methods

The information about similarity of the sequences derived from the alignment methods
is rather limited. For example, according to the standard alignment methods, in the
following two different cases:

1 A T A T
A G A G
’ A A T T
A A G G

the similarity value is the same (50%). The non-zero contributions to the final result
come from different positions in the sequences. In the first case, the A bases are spread
over the whole sequence (positions 1, 3 give non-zero contributions). In the second
case, the A bases are cumulated. In this sense, the alignment methods are degenerate:
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different structures give the same result. Then, in the alignment methods these struc-
tures are undistinguishable. This is certainly one of the weakest points of the alignment
methods. The degree of degeneracy may be very large and increases with the lengths
of the sequences. Obviously, the degree of degeneracy in the model example is larger
than 2. One can add more than two cases that give the same score as the two model
cases. For example, the bases that give non-zero contribution can be also C, T, or G and
the positions of the aligned bases can be different. Such details usually have biological
consequences but they are not taken into account in the alignment methods.

In order to describe different aspects of similarity in more detail, let us define a
discrete alignment distribution n, for a pair of DNA sequences:

1, if the p-th positions in the two sequences are occupied by
ny = two identical bases, (D
0, otherwise.

Let us introduce a variable x, running along the sequence

xp = pr, @

where p = 1,2, ... K is the position in the sequence and r is the resolution that can
be selected, depending on the length of the distribution, in a way convenient for the
calculations changing the units of lengths.

K is the length of the sequences or subsequences for which the alignment is calcu-
lated. Two bases belonging to different sequences, both located on the p-th positions
are represented by a pair of numbers, {x,,n,}.

Let us consider multiple alignments. Analogously, as for a pair of sequences accord-
ing to the standard alignment methods, in the following two cases

A T A T
. A G A G
A C A C
A A T T
2. A A G G
A A C C

the similarity value is the same (50%). Thus, the alignment method is highly degenerate
(different bases on different positions give non-zero contributions and these situations
are undistinguishable). As a consequence, additional similarity information should be
added for a proper description of the objects. This information is necessary to remove
the degeneracy, i.e. to distinguish between different cases. Analogously, as for a pair
of sequences, we can define a discrete alignment distribution 7, of several (M) DNA
sequences:

1, if the p-th positions in allM sequences are occupied by
n, = the identical bases, 3)
0, otherwise.
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M bases belonging to different sequences, located on the p-th positions are represented
by {xp,n,}, where x, is defined in Eq. 2.

2.2 Statistical properties of the discrete alignment distributions

As it is known from the statistics, distributions can be characterized in a convenient
way by their moments. Distribution moments are the basic quantities in statistical
spectroscopy. The aim of statistical spectroscopy [72—74], is to construct global char-
acteristics of a spectrum. The individual eigenvalues, the experimental energy levels
or the intensities of spectral lines are considered as statistical ensembles. Such an
approach may be used in many areas of physics to study different kinds of problems.
Let me just mention several applications of statistical spectroscopy.

Originally, methods of statistical spectroscopy were used in nuclear physics [75]
where the character of the interparticle interactions is not exactly known. Assuming
different forms of the Hamiltonian matrix and comparing distributions of the den-
sities of the energy levels derived from this matrix and from the experiment some
information about the Hamiltonian may be derived.

Statistical spectroscopy may also be used to study the locations of the individual
eigenvalues of the Hamiltonian. In a way this is an inverse problem to the one from
which the statistical spectroscopy originated: from global characteristics of the eigen-
values one tries to obtain some information about details of the spectrum. Examples
of generating individual energy levels using methods of statistical spectroscopy may
be found in the theory of nuclear, atomic, molecular, and solid-state spectra [76—78].
Approximating the eigenvalues by statistical quantities (spectral density distribution
moments) is not limited by dimensions of the matrices and that is an advantage com-
paring to the standard methods based on diagonalization of the Hamiltonian matrix.
In particular, we have studied statistical properties of spectra of the Heisenberg Ham-
iltonian [78]. The distribution of the eigenvalues have been found to be Gaussian-like,
well approximated by several-term Gram-Charlier expansions [79]. The exact spectra
(obtained by the diagonalizations of the Hamiltonian matrices) have been compared
with the ones derived from the moment-generated spectral density distributions. This
approximation gives a very good description of the spectrum in its central part how-
ever, as one should expect, deteriorates at the extremes. Relations between the exact
and the moment-generated spectra are analyzed for several kinds of the lattices as
a function of the number of moments. It has been observed that the quality of the
statistical description improves with an increase of the dimension of the problem and
with a lowering of the symmetry of the lattice.

Another attractive application of the statistical spectroscopy is a description of the
shapes of molecular electronic bands [80—83]. Initially, the method of generating of
envelopes of the intensities has been introduced for the transitions in crystals [84] and
in atoms [85]. Replacing the calculations line by line by the statistical approach with
much shorter computing time became also attractive in molecular physics. The shape
of amolecular band may be defined as an envelope of the rovibrational lines which con-
stitute the band. The method of determining the shapes of molecular electronic bands
consists of several steps. First the expressions for the intensity distribution moments
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for the considered system are derived. Then these expressions are used to calculate
the moments corresponding to the solution of the pertinent quantum chemical model.
Finally, a smooth function for which several lowest moments are equal to the exact
ones, is derived. This function is an approximation to the envelope of the electronic
band in a molecular spectrum. In particular, I have used this algorithm to derive the
intensity spectrum corresponding to the transitions in H> molecule using 3-moment
trial function [86]. In that paper I have also shown that the quality of the approxima-
tion depends on the choice of the trial function rather than on the number of moments
taken into account. Adding moments of the order higher than 4 does not improve the
results when the Gram—Charlier expansion is taken as the trial function. This process
may even be divergent. In some cases a 4-moment Gram—Charlier expansion may give
worse results than the 3-moment one. For example, this happens in a spectrum derived
from a model based on the harmonic oscillator potential. In the case of H, molecule a
non-standard 3-moment trial function has to be applied in order to get a high quality
approximation of the spectrum (treated as a statistical distribution).

Distributions are commonly, and very conveniently, characterized by their moments.
In the present work I describe DNA sequences as distributions and apply the distribu-
tion moments to study similarity between these sequences. A similarity measure Aq
based on the g-th moment of the discrete alignment distribution 7, is defined as

K
Aq =canqu, 4)
p=1

whereg =0,1,2,....

In this work » = 1. Therefore, the values of x, are equal to p (Eq. 2).

The normalization constant ¢ is defined so that the zeroth moment of the distribution
is equal to one (Ao = 1)

-1

K
c=(>np| - 5)
p=1

Comparing sequences, usually one is interested in the quantities that are independent
of the lengths of the sequences. For that purpose, moments for which the mean value
isequal to O (A| = 0) and the variance is equal to 1 (A> = 1) can be used as similarity
measures:

qucznp _&p - AD _ (6)

p=I1 VA2 — (A))?

Table 1 shows amodel example of the alignment distribution n, for a pair of sequences.
The choice of the query sequence has no influence on the results. The length of
sequence 1 is 12 and the length of sequence 2 is 15. If K = 15 is chosen then for
p > 12 the distribution is defined as zeros: n13 = nj4 = n15 = 0. Therefore, the
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Table 1 Model example of alignment distributions (r = 1)

Seq. 1 AT G A C T T T
Seq. 2 A T G G T G C A C ¢C T G A C T

K =15
Xp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
np 1 1 1 0 0 0 1 1 1 0 0 0
K =12
Xp 1 2 3 5 6 8 9 10 11 12
np 1 1 0 0 0 1 1 1

Table 2 Model example of multiple alignment distribution (K = 15, M =3,r = 1)

Se¢1 A T G G T G C A C T T G A C T
Seg2 A T G G T G C A C C T G
Se¢qg 3. A T G C€C T G A C T G C T
Xp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
np 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

contribution to moments for p > 12 is zero if K = 15. The moments are identical for
both values of K. Consequently, the value of K in Eqs. 4-6 may be equal to the length
of any of the sequences. Table 2 shows a model example of the multiple alignment
distribution for M = 3 (Eq. 3). Analogously, the value of K may be set equal to
the length of any of the three sequences. Thus, independently of the choice of K the
moments remain the same.

2.3 Discrete alignment distribution moments as similarity measures

In this work, Aq and A, are proposed as new similarity measures that can be treated
as corrections to the alignment methods. They describe such features of similarity
that cannot be identified in the alignment methods. In particular, the two model cases
defined at the beginning of this chapter can be distinguished using the new measures.

The new numerical characterization of DNA sequences is exemplified using the -
globin gene of different species. The species and the locations of the sequences in genes
as well as the lengths of the sequences, N1 and N,, are listed in Table 3. Tables 4, 5, 6,
7, 8,9, 10, 11 show similarity matrices based on the new measures for the sequences
listed in Table 3. Tables 4, 5, 6, 7 correspond to the coding sequences of the first exon,
Exon 1¢PS , and Tables 8, 9, 10, 11 correspond to the second exon, Exon 2CDS The
similarity matrices are based on different measures: Al (Tables 4, 8), A3 (Tables 5, 9),
A4 (Tables 6, 10), and As (Tables 7, 11). The first moment, Al, depends on the length
of the alignment distributions. In particular, if the compared sequences are identical
then A; = (N 41)/2 where N is the length of the sequence. This means that the mean
of the distribution is located in the middle of the sequence, as expected. For example,
if N = K = 3,r = 1, then the locations of particular bases along the sequence are
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Table 3 Locations of Exon 125 and of Exon 2625 in the B-globin gene and the corresponding lengths
of the sequences for different species from the EMBL database

No. Species ID/Accession Exon 1€DS Ni Exon 26DS Ny
1 Human u01317 62187-62278 92 62409-62631 223
2 Goat M15387 279-364 86 493-715 223
3 Opossum J03643 467-558 92 672-894 223
4 Gallus V00409 465-556 92 649-871 223
5 Lemur M15734 154-245 92 376-598 223
6 Mouse V00722 275-367 93 484-705 222
7 Rabbit V00882 277-368 92 495-717 223
8 Rat X06701 310-401 92 517-739 223
9 Gorilla X61109 4538-4630 93 4761-4982 222
10 Bovine X00376 278-363 86 492-714 223
11 Chimpanzee X02345 4189-4293 105 4412-4633 222

Table4 Aj[Exon 1€PS]

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat Gorilla Bovine Chimp.

Human 46.50 46.80 46.22 45.69 50.35 47.82 48.35 47.24 4650 46.55 46.50

Goat 43.50 4529 4639 48.88 4550 4548 46.28 46.80 4333 46.80
Oposs. 46.50 4297 50.39 4737 4831 47.40 46.22 44.14 46.22
Gallus 46.50 49.14 4575 47.94 46.22 4569 4736 45.69
Lemur 46.50 50.62 51.87 50.40 50.35 49.19 50.35
Mouse 47.00 48.69 46.27 4839 4530 48.39
Rabbit 46.50 48.49 48.35 4528 48.35
Rat 46.50 47.24 46.06 47.24
Gorilla 47.00 46.55 47.00
Bovine 43.50  46.55
Chimp. 53.00

described by x; = 1, xp = 2, and x3 = 3. In this case Al =4/2 =2and x, = 2is
the middle of the sequence.

One can normalize the similarity matrix based on A dividing all its elements by
K + 1. Then one can easily see whether the mean value is larger or smaller than 1/2.
If Ay is equal to 1/2 then the location of the mean value of the distribution is in the
middle. If it is greater than 1/2 it is shifted towards the end of the distribution. Since
A, are independent of the lengths of the sequences it is convenient to keep at least
one similarity measure (A;) that carries the information both about the lengths of
the sequences and about the distributions of the aligned bases. Therefore, A; is not
normalized in this work.

An example of the similarity measure independent of the lengths of the sequences
is Ajz that describes the asymmetry of the aligned distributions. For the symmet-
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Table 5 A3[Exon 1€P5]

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat  Gorilla Bovine Chimp.

Human 0.00 —-0.45 0.0l 0.02 -0.15 -0.09 —-0.10 —0.04 0.00 -0.43 0.00

Goat 0.00 —0.32 —-0.38 —-0.50 —-0.34 -0.37 —-0.35 —0.45 0.01 —-0.45
Oposs. 0.00 0.21 -0.15 -0.07 -0.11 -0.07 0.01 -0.23 0.01
Gallus 0.00 —0.05 0.03 —-0.12 0.01 0.02 -0.46 0.02
Lemur 0.00 -0.15 -0.23 -0.12 —0.15 -0.53 -0.15
Mouse 0.00 —0.11 0.01 —-0.10 -0.32 —0.10
Rabbit 0.00 -0.09 —0.10 —-0.35 -0.10
Rat 0.00 —0.04 —0.33 —0.04
Gorilla 0.00 —0.43 0.00
Bovine 0.00 —-0.43
Chimp. 0.00

Table 6 A4[Exon 1€PS]

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat Gorilla Bovine Chimp.

Human 1.80 1.94 1.62 1.77 1.84 1.71 1.85 1.78 1.80 1.98 1.80

Goat 1.80 1.85 1.94 228 1.98 1.84 1.85 1.94 1.78 1.94
Oposs. 1.80 1.75 1.75 1.61 1.70 1.61 1.62 1.89 1.62
Gallus 1.80 1.86 1.68 1.88 1.71 1.77 1.93 1.77
Lemur 1.80 1.80 2.00 1.83 1.84 2.26 1.84
Mouse 1.80 1.76 1.74 1.71 2.02 1.71
Rabbit 1.80 1.81 1.85 1.88 1.85
Rat 1.80 1.78 1.89 1.78
Gorilla 1.80 1.98 1.80
Bovine 1.80 1.98
Chimp. 1.80

ric distributions, in particular if identical sequences are compared, Az is equal to
zero. It is negative for the left-skewed distributions and positive for right-skewed
distributions. One can observe, that the asymmetry of the aligned distributions for
Exon 1€PS (Table 5) is different from the one for Exon 2¢P$ (Table 9). The number
of the negative values of A3 is 41 for Exon 1¢P5 and 21 for Exon 2¢PS For example,
in the case of human-mouse sequences, A3 is negative for Exon 1€P5 and it is positive
for Exon 2¢P5,

Another similarity measure independent of the lengths of the sequences is A4. This
is the kurtosis parameter, that is the measure of the peakedness of the distribution.
Analogously as for the lower order moments, A4 is different for different parts of
a gene (Tables 6, 10). For example, the similarity measure based on A4 for gallus-
lemur sequences is 1.86 for Exon 125 and 1.70 for Exon 2€P5. The similarity rela-
tions based on A4 between all the sequences are shown in Fig. 1. The horizontal axis
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Table 7 As[Exon 1€05]

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat  Gorilla Bovine Chimp.

Human 0.00 —1.66 0.05 0.14 —0.68 —-0.35 -047 —-0.18 0.00 —1.63 0.00

Goat 0.00 —1.12 —1.48 -2.38 —-132 -1.25 -—1.31 —1.66 0.04 —1.66
Oposs. 0.00 0.80 —0.64 —-0.23 —043 -0.24 0.05 -0.83 0.05
Gallus 0.00 —-0.32 0.12 —-046 0.04 0.14 -1.73 0.14
Lemur 0.00 —-0.70 -1.16 —-0.61 —0.68 —2.45 —0.68
Mouse 0.00 —-0.51 0.07 —-0.37 —-1.30 —0.37
Rabbit 0.00 —0.46 —047 —1.24 —-047
Rat 0.00 —0.18 —-1.29 —0.18
Gorilla 0.00 —1.63 0.00
Bovine 0.00 —1.63
Chimp. 0.00

Table 8 A|[Exon2¢PS]

Human Goat  Oposs. Gallus Lemur Mouse Rabbit Rat Gorilla Bovine Chimp.

Human 112.00 112.59 114.65 111.68 111.25 99.68 113.16 114.40 101.64 111.05 99.59

Goat 112.00 114.73 112.39 112.32 101.47 111.84 113.82 104.73 111.78 102.57
Oposs. 112.00 116.02 113.49 105.67 115.13 117.58 108.69 115.24 106.76
Gallus 112.00 109.45 104.92 112.63 113.92 107.34 110.51 105.56
Lemur 112.00 100.32 110.55 112.79 105.56 110.28 103.67
Mouse 111.50 102.44 105.71 114.20 102.15 114.78
Rabbit 112.00 115.10 105.16 110.46 103.12
Rat 112.00 107.21 113.96 105.34
Gorilla 111.50 101.55 111.00
Bovine 112.00 99.33
Chimp. 111.50

represents the values listed in Table 6, A4[Exon 1€DS ], and the vertical axis represents
the values listed in Table 10, A4[Exon 2€P5]. Each point in the figure corresponds to
a given pair of species. The points are spread in the whole figure so similarity relations
based on A4 for Exon 1€P5 and for Exon 2¢P5 are different from each other—they
are not correlated.

All higher-order odd moments are also equal to zero for symmetric distributions.
The behavior of As is similar to A3 for the same cases. The number of negative values
of As and the number of negative values of A3 corresponding to Exon 1¢°5 are the
same and equal 41 (Tables 5, 7). In case of Exon 2€DS the number of negative values
of A3z is 19 and the number of negative values of As is 21 (Tables 9, 11). This is
clearly seen in Figs. 2 and 3(panels b), where the values listed in Table 5 versus values
listed in Table 7 (Fig. 2, panel b) and the values listed in Table 9 versus values listed in
Table 11 (Fig. 3, panel b) are shown. Analogously as in Fig. 1, a point in Figs. 2 and 3
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Table 9 A3[Exon 2€05]

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat  Gorilla Bovine Chimp.

Human 0.00 0.00 —0.04 0.01 0.00 028 —-0.02 -0.06 0.30 0.04 0.30

Goat 0.00 —0.04 —-0.04 —0.03 0.22 0.01 —-0.07 0.23 0.00 0.21
Oposs. 0.00 -0.09 -0.04 0.11 -0.07 -0.14 0.13 —-0.05 0.13
Gallus 0.00  0.01 021 -0.02 —-0.04 0.23 0.03 0.23
Lemur 0.00 0.28 0.00 —0.05 0.21 0.03 0.19
Mouse 0.00 0.24  0.10 —0.09 0.21  —0.09
Rabbit 0.00 —0.09 0.26 0.05 0.26
Rat 0.00 0.16 —0.06 0.15
Gorilla 0.00 0.35 0.00
Bovine 0.00 0.34
Chimp. 0.00

Table 10 A4[Exon 2€PS)

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat  Gorilla Bovine Chimp.

Human 1.80 1.73  1.64 1.69 1.77  2.08 1.76 1.76 ~ 2.04 1.75 2.07

Goat 1.80 1.70 1.68 1.73 2.23 1.73 1.74  2.01 1.79 2.01
Oposs. 1.80 1.70 1.71 1.87 1.70 1.70  1.86 1.67 1.86
Gallus 1.80 1.70  2.04 1.66 1.69 1.94 1.67 1.95
Lemur 1.80  2.16 1.75 1.80  2.00 1.75 2.00
Mouse 1.80 2.13 2.14 1.74 2.18 1.74
Rabbit 1.80 1.76 ~ 2.05 1.74 2.07
Rat 1.80 1.92 1.77 1.93
Gorilla 1.80 2.19 1.80
Bovine 1.80 2.20
Chimp. 1.80

Table 11 As[Exon 2605

Human Goat Oposs. Gallus Lemur Mouse Rabbit Rat  Gorilla Bovine Chimp.

Human 0.00 —-0.05 —0.17 0.05 —0.02 1.50 —-0.08 —-0.25 1.56 0.11 1.62

Goat 0.00 —0.19 -0.11 -0.14 1.38 0.01 —-0.25 1.23 0.02 1.21
Oposs. 0.00 -0.32 -0.16 0.71 -0.28 -0.53 0.77 -0.23 0.76
Gallus 0.00  0.09 1.14 -0.05 -0.17 1.12 0.12 1.16
Lemur 0.00 1.53 0.03 -0.21 1.10 0.09 1.06
Mouse 0.00 1.41 0.81 —0.34 1.24  —-0.35
Rabbit 0.00 —-0.35 1.39 0.15 1.45
Rat 0.00 0.89 —-0.25 0.90
Gorilla 0.00 1.89 0.00
Bovine 0.00 1.90
Chimp. 0.00
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corresponds to a given pair of species. However, in Figs. 2 and 3 the same parts of a
gene are represented in both vertical and horizontal axes: Exon 1P in Fig. 2 and
Exon 2¢P5 in Fig. 3, while in Fig. 1 the vertical axis corresponds to Exon 2¢P5 and
the horizontal one to Exon 1¢P5_ The relations between A3 and As are approximately
linear both for Exon 1¢P5 (Fig. 2, panel b) and for Exon 2¢P5 (Fig. 3, panel b). This
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Table 12 Similarity measures -
of multiple alignment Al As A4 As
distributi M=11
istributions ( ) Exon 1€DS 50125 —0.744 2262 —2.859
Exon 2€P8 106.379 0.185 1.688 0.831

means that the information coming from As is similar to the one coming from As.
Therefore, the corrections As can be neglected. The information coming from Ay is
different than the one coming from A3 which is seen in Figs. 2 and 3, panels a, where
A3z — Ay4 diagrams are shown for the same parts of the gene: Exon 1€P5, Fig. 2 panel
a, and Exon 2605, Fig. 3 panel a. As we see, the corrections up to A4 are sufficient
to introduce the essential similarity information.

New similarity measures for multiple alignment are shown in Table 12 (M = 11,
the sequences listed in Table 3). The new measures are different for Exon 125 and
Exon 2€PS . For example As[ Exon 1€PS7is negative and Az[Exon 26DSY g positive.
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Table 13 Model example of four-component multiple alignment distribution (K = 15, M =3,r = 1)

Seq. 1 AT G G T G C A C T T G A C T
Se¢q2 A T G G T G C A C C T G

Se¢ 3. A T G € T G A C T G C T

Xp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ng 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ng 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
an, 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
ng 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Table 14 Model example of optimized multiple alignment distribution (K = 12, M =3,r = 1)

Seq. 1 A T G G T G C A C T T G
Seq. 2 A T G G T G C A C C T G
Seq. 3 A T G C T G A C T - - G
Xp 1 2 3 4 5 6 7 8 9 10 11 12
np 1 1 1 0 1 1 0 0 0 0 0 1

In order to further enrich the information that can be derived from the alignment
methods, one can introduce the four-component alignment distributions, separately
for A, C, T, and G bases. A specific y-component of this distribution, referred to as
y-distribution, is defined as

1, if the p-th positions in allM sequences are occupied by
nh = the base y, @)
0, otherwise,

where y = A, C, T, G denotes one of the bases. Now, for each of the y-distributions
one can calculate the corrections (the appropriate moments). Such kind of distributions
can be created for a pair of sequences (M = 2) and also for the multiple alignment
studies (M > 3). A model example of the four-component distribution with M = 3
is shown in Table 13.

The same definitions of the distributions (Egs. 1, 3, 7) can be also used after the
maximally scoring alignment of the sequences has been found. A model example of
the optimized multiple alignment distribution based on Eq. 3 for M = 3 is shown in
Table 14. The maximally scoring alignment is obtained if two gaps are introduced in
sequence 3.

Obviously, the information is more detailed if four-component optimized distribu-
tion is created. Table 15 shows such a distribution (Eq. 7) for the same sequences as
shown in Table 14. The application of the new similarity measures to all kinds of the
distributions is simple and straightforward. In this way, different aspects of similarity
can be revealed.
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Table 15 Model example of optimized four-component multiple alignment distribution (K = 15, M =
3, r=1)

Seq. 1 A T G G T G C A C T T G
Seq. 2 A T G G T G C A C C T G
Seq. 3 A T G c T G A C T - - G
Xp 1 2 3 4 5 6 7 8 9 10 11 12
na 1 0 0 0 0 0 0 0 0 0 0 0
n§ 0 0 0 0 0 0 0 0 0 0 0 0
n; 0 1 0 0 1 0 0 0 0 0 0 0
n§ 0 0 1 0 0 1 0 0 0 0 0 1

3 Graphical representations of DNA sequences

An attractive, alternative to the time consuming alignment methods, are graphical
representations. They reveal different aspects of similarity, offer both numerical char-
acterization of similarity and the visualization. Also the computing effort is in this
case very small. In this section graphical methods are discussed.

In the original approaches, DNA sequences were plotted as either three-dimensio-
nal [87] or two-dimensional [88—90] curves. The shapes of the curves were determined
by a walk in a space spanned by four vectors that represent the four bases. In the first
article on this subject, Hamori proposed a graphical representation method in which
the information about the DNA sequence has been mapped into a three-dimensional-
space curve. A unit vector of a characteristic direction has been assigned to each of the
four nucleotides: adenine A, cytosine C, thymine T, and guanine G. In this approach
the shape of the curve (called H-curve) representing the sequence of nucleotides is
obtained by joining the vectors in the order of the nucleotides in the sequence. Chang-
ing the resolution one can see short-range details or global trends of the distribution of
nucleotides. For example, H-curve is shifted in characteristic direction if the sequence
is rich in certain nucleotides. It is also easy to recognize the locations of the repeating
elements in the sequence. The first mathematical representation Hamori also pub-
lished in Nature in 1985 under the title “Novel DNA sequence representation” [91].
The same year another article about a new graphical representation titled “Simpler
DNA sequence representations” has been also published in Nature by Gates [88]. In
this approach, guanine is represented by a unit vector in the positive x-axis direction,
complementary cytosine is represented by a negative x-axis unit vector, and adenine
and thymine are represented by unit vectors in the positive and negative y-axis direc-
tions, respectively. Using such an approach all sequences can be represented in two
dimensions in a unique manner, while using the Hamori approach, DNA structure may
be viewed from any chosen perspective in two-dimensional plots. Obviously, a chosen
perspective of a 3D curve in 2D space gives only a part of the total information about
the sequence. However, also in the graphical representation proposed by Gates some
information may be lost, as it is shown in a subsequent part of this work.

About 10 years later, Nandy (independently of Gates) published an article “A new
graphical representation and analysis of DNA sequence structure: I. Methodology

@ Springer



2362 J Math Chem (2011) 49:2345-2407

and application to globin genes” [89]. The idea is very similar to the one presented
by Gates. In the scientific correspondence [92], the author explains that he has just
brought to his attention that a similar technique was presented by Gates and indicates
some advantages of his method: The nontrivial choice of the coordinate system A-G,
C-T (purine-pirymidine) instead of the axis system proposed by Gates (C-G, A-T)
may give more significant biological information.

One year later (independently of Nandy), Leong and Morgenthaler proposed two
new graphical representations of DNA sequences [90]. The first one is a slight modifi-
cation of the Gates method: they change the unit vectors corresponding to the particular
bases. The x-axis represents C and A and y-axis G and T. According to the authors such
a change allows to exhibit the distribution of purines (A and G) and pyrimidines (C
and T). The authors noticed that some information may be lost if a walk moves several
times over the same ground. However, the authors found a good solution to identify in
the plot the regions in which the parts of the sequences are hidden: the scale is visible
even for long sequences and the numbers that label the bases in the plot are pointed
every one hundred. The authors have not proposed any numerical characteristics and
a way of indication in the plot of the hidden parts (by labeling or coloring) seems to
be a good solution. Leong and Morgenthaler also proposed another, interesting graph-
ical representation: gap plots that give the information about the distances between
particular bases.

Independently of the graphical representations introduced by Gates [88], Nandy
[89], Leong and Morgenthaler [90], similar graphs, also based on vectorial repre-
sentations of the four bases and constructing 2D DNA walks, have been constructed
by Mizraji and Ninio [93] and by Lobry [94]. Lobry also used orthogonal directions
but his choice of the unit vectors representing the four bases was different than the
ones used in refs. [88—90]. Surprisingly, these two important contributions remained
rather unnoticed. The specific choice of the basis vectors done by Mizraji and Ni-
nio seems to solve many problems. The vectors have been chosen so that it is easy
to distinguish between coding and noncoding parts of the sequence and the graphs
are nondegenerate. Mizraji and Ninio also proposed a graphical representation which
shows purine/pirymidyne distributions along the sequence. However, the authors did
not propose any numerical representation associated with these graphs.

As a consequence, four similar 2D graphical representations have been created.
They differ from each other in the choice of the coordinate systems: x-axis: G-C
(Gates), A-G (Nandy), C-A (Leong and Morgenthaler), A-T (Lobry). The most pop-
ular became the graphical representation proposed by Nandy, called Nandy plots.

However, such a two-dimensional representation may lead to some parts of the
sequence being hidden if the walk is performed back and forth along the same trace
(so called repetitive walks). Labeling and coloring only approximately localizes the
regions in the sequences where the hidden parts are located. A 2D walk does not retain
the history of the graph. This is not a linear method: A particular part of the graph
may come from different parts of the sequences. The advantage is a small size of the
graph representing long sequences and very often the information coming from such
a plot may be sufficient. In order to eliminate, or to minimize, the degeneracy caused
by the repetitive walks, many different methods have been introduced. For example,
Guo et al. [95] introduced a new graphical representation, also based on a walk in 2D
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space changing the angles between the basis vectors: the four nucleic acid bases are
represented by the vectors: A by (—1, %); T by (%, —1); G by (1, %); and C by (%, 1),
where d is a positive integer. The authors have shown that the degree of degeneracy
of the new graphs is lower than for Nandy plots, but it is still present and depends on
the value of d.

A further modification of the graphical representation based on a walk in 2D space
has been introduced by changing the vectors in such a way that the basis vectors
corresponding to pyrimidines (T, C) are located in the first quadrant of the Cartesian
coordinate system and to purines (A, G) in the fourth one [38,39]. The unit vectors rep-
resenting four nucleotides are as follows: (m, —/n) for A; (/n, —m) for G; (\/n, m)
for C; and (m, 4/n) for T, where m is a real number, 7 is a positive real number and
m # /n. The authors have proved that their method is nondegenerate.

Other examples of modifications of the vectors representing the bases, are new
graphical representations proposed by Liu et al. in which the authors introduced polar
coordinate system [96] and also H-L curve representation proposed recently by Huang
et al. [97,98].

An interesting 2D ladder-like graphical representation has been also proposed by
Li and Wang [99]. Their graphs are based on the division of bases according to their
chemical properties. The four bases can be classified into groups: 1. purine R = A, G,
pirymidyne Y = C, T; 2. strong H bond S = C, G, weak H bond W = A, T; and 3.
amino M = A, C, keto K = G, T. The method is also based on a walk in 2D space with
basis vectors (0,1), (1,0) for characteristic sequences (M, K), (R, Y) and (W, S).

Recently, we have proposed another method aimed at some improvement of the
original 2D walk method (Nandy plots) [100]. We have called this representation
2D-dynamic graph because its numerical representation, i.e. the set of descriptors,
is analogous to the one used in the dynamics (see subsequent chapter). This method
is based on Nandy plots but it removes the degeneracy coming from the repetitive
walks. The DNA sequence is represented as a set of material points in 2D space. The
distribution of the points in the plane and the way of calculating their masses are
shown in the model examples (the left panels of Figs. 4, 5). The method of plotting the
graph representing the DNA sequence is based on the 2D walk with the basis vectors
identical to the ones of the Nandy plots. The new element is attaching a point mass to
the end of each vector. The mass of the point depends on the number of crossings of
the graph in this point. The graph still crosses itself but the numbers of crossings are
clearly revealed and taken into account in the numerical representation. We start the

a? b 2 c 4 d, | L
_ ° |
1 1 5 5 |
> 04 A > 0 Q>_< 2 O.>\' 2 -
-1 3 -1 4 14 14 ‘ -
-2 T -2 0 0 I
2 -1 0 -2 -2 2 -1 0 1 2
X y

Fig.4 2D-dynamic graph for a model DNA sequence CTC (panel a), the corresponding Nandy plot (panel
b), and mass-density distributions (px panel ¢, py panel d). Circles correspond to m = 2 and triangles to
m = 1. The projected masses are also denoted in panel a
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Fig. 5 2D-dynamic graph for a model DNA sequence CTCT (panel a), the corresponding Nandy plot
(panel b), and mass-density distributions (ox panel ¢, py panel d). Circles correspond to m = 2. The
projected masses are also denoted in panel a

graph at the point with the coordinates (0,0). Then the shifts are made by unit vectors
different for each base: A = (—1,0), G = (1,0), C = (0,1), T(0,—1). Figure 4, panel
a, shows the method of plotting the 2D-dynamic graph for a model sequence CTC
and Fig. 5, panel a, for CTCT one. The first base in the sequence is C and we make a
shift along the vertical axis in the positive direction. At the end of this vector (position
(0,1)) we locate the point with the mass equal to 1. The second base in the sequence
is T and we make the second shift along the vertical axis in the negative direction
starting from the end of the last vector. At the end of the second vector again we locate
the point with the mass also 1 (position (0,0)) and so on. If the ends of vectors meet
several times at the same point then the mass of this point increases (it is equal to the
sum of all masses located in this point). The total mass in the graph is equal to the total
number of bases in the sequence (3 in Fig. 4 and 4 in Fig. 5). Different masses are
represented by different symbols in the plots. Please note that both sequences CTC
and CTCT are represented by the identical Nandy plots (Figs. 4, 5, panels b) since
the last shift in Fig. 5 is made along the same trace as the previous one. 2D-dynamic
graph removes this degeneracy (the masses of the points (0,0) are different: 1 for CTC
and 2 for CTCT). The difference between the two sequences is also revealed in the
mass-density distributions which we create for x and y directions [101]. The masses
are projected onto two orthogonal directions and then summed for each x and y. In
the model examples the results of the projection and of the summation of the masses
are shown in Figs. 1 and 2 (panels a). For example, in the x direction, they are 3 and 4
in Figs. 4 and 5, respectively. The mass-density distributions are composed of single
lines located at the coordinates corresponding to the projected masses (x = 0 for p,
and y = 0,y = 1 for py). The intensities of the lines correspond to the projected
masses. The center panels in Figs. 4 and 5 correspond to mass-density distributions
for x direction (p,) and the right ones for y directions (py). These distributions create
another way of visualization of the 2D-dynamic graphs. However, the main reason
for the creation of the mass-density distributions is deriving new descriptors related
to 2D-dynamic graphs (see the subsequent chapter).

The modifications of the original 2D walk methods resulted also in graphs which
became linear-like representations (1D), extending along one direction in 2D space.
In such kind of methods only the horizontal axis is associated with the positions of the
bases. Therefore these methods are free of the effects of self-overlapping of the graphs.
The cost we have to pay for the reduction of the degeneracy, is worse visualization of
long sequences.
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A combination of a linear-like method with a DNA walk has recently been proposed
by Zhang [102]. The author has chosen basis vectors in such a way that the walk is per-
formed along a horizontal axis. One nucleotide is represented by a pair of basis vectors
instead of a single vector: (1, 1),(1, 1) corresponds to A, (1, 1), (1, —1) corresponds
to T, (1, —1), (1, 1) corresponds to C, and (1, —1), (1, —1) corresponds to G. Since
one base is represented by a double vector, the author calls his graphical representa-
tion of DNA sequences a DV-curve. A recently introduced graphical representation of
DNA sequences based on the neighboring dual niclueotides (dinucleotides) [103,104]
is another example of a linear representation. The authors plot a dinucleotide (DN)
curve representing the distributions of pairs of nucleotides along the sequence.

Several years ago a four-horizontal-line graphical representation has been proposed
by Randi¢ et al. [105,106]. Instead of considering the four directions along the Carte-
sian coordinate axes, they draw four horizontal lines separated by unit distances. Each
line is associated with one base: A, T, G, and C, from the top. The sequence is written
at the bottom of the lowest line, with unit distances between the neighboring bases.
The dots (or rectangles) are put on the lines if a particular base appears in the sequence.
This graphical representation resembles medieval musical scripts having staff of four
lines [107]. For a better visualization the adjacent points are connected by a line, and
zigzag-like curve is obtained. The idea proposed by Randi¢ of the visualization of DNA
sequence by zigzag curves has been extended by different combinations of labeling
the lines and by different number of graphs representing one sequence (characteristic
graphs). Usually, the horizontal lines are not plotted.

Another linear graphical representation has been proposed by Li and Wang [108].
The graphical representation is composed of three characteristic graphs, each of them
consisting of two horizontal lines. Each line in each graph is assigned to more than one
base. Then, the sequence is represented by more than one characteristic graph. The
lines in particular graphs are labeled by the following bases: graph 1: M (top line), K
(bottom line), graph 2: R (top line), Y (bottom line), graph 3: W (top line), S (bottom
line). This means that in graph 1, a dot is put in the top line if the base in the sequence
is M (i.e. A or C), and a dot is put in the bottom line for G and T bases. Analogously to
Randié, the adjacent dots are connected by a line and again a zigzag curve is obtained.

A similar graphical representation has been proposed by Song and Tang [109].
In this approach, the three classifications are applied to construct six characteristic
graphs representing one sequence. Two graphs correspond to one classification. For
example in two graphs corresponding to classification purine (R) - pirymidyne (Y),
the middle lines correspond to purines and pirymidynes in the first and in the second
graph respectively. The other two lines correspond to these bases that are not purines
or not pirymidynes, respectively, i.e.: A, Y, G label the lines in the first graph (top,
middle, and bottom respectively) and C, R, T label the lines in the second graph.

Another example of an analogous graphical representation has been proposed by
Liao and Wang [110]. The sequence is represented by three graphs, and each of them
is consisting of two horizontal lines. The lines are labeled as follows: Graph 1: AG
top line, CT bottom line; graph 2: AC top line, TG bottom line; graph 3: AT top line,
GC bottom line. This means that the dots are put in the top line in graph 1 if the base
is A or G, otherwise the dot is put in the bottom line. Three zigzag curves constitute
the graphical representation.
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In another analogous graphical representation, proposed by Wang and Zhang [111],
also consisting of three characteristic graphs, the lines are labeled by the following
bases: graph 1: non-A = G, C, T and A, graph 2: non-G = A, C, T and G, graph 3:
non-C=A, G, T and C.

A slight modification of this method has been proposed by Yao and Wang [112].
The authors proposed to use cells instead of horizontal lines. They considered differ-
ent shapes of cells, for example a rectangle. Each corner of the rectangle is assigned
to a particular base. The cells are placed next to each other. Particular bases in the
sequence are put in a proper corner (each base is located in its own cell). The adjacent
dots are connected by a line and a zigzag curve representing the sequence is obtained.

The methods described above, based on several horizontal lines, can be also consid-
ered as spectral-like representations (lines with some intensities appear in the positions
corresponding to the bases in the sequences). This point of view has been expressed
in a recent article by Randi¢ [113]. The author presents four-horizontal-line graphs
and chaos-game 2D maps [114,115] in the form of spectrum-like graphical represen-
tations.

Recently, I have introduced another spectral-like graphical representation called
four-component spectral representation [65]. The method is very sensitive. Within
this model, differences in only one base can be detected. By using linear graphical
representations of DNA sequences the problem of degeneracy can be overcome. How-
ever, in technical terms, the visualization of long sequences is rather inconvenient. A
good solution for this drawback is introducing a resolution parameter for linear repre-
sentations as it was done for the four-component spectral representations (for details
see Sect. 4).

Another solution is to combine the compact form of the plots characteristic for 2D
walks and zigzag curve method, as proposed by Randi¢ et al. [116,117]. In the last
approach, the sequence is represented by a zigzag spiral, known in the literature as
the worm curve. The worm curve represents a path of a robot [116]. It does not inter-
sect itself and uses a little space for the graphical representations of long sequences.
Another compact graphical representation, Four-color map, has also been proposed
by Randi¢ et al. [118]. The map is constructed as a spiral of square cells. The first base
is located at the central square of the spiral, and the last base finishes the spiral. Then
four different colors are assigned to particular squares representing different bases:
red for G, blue for T, green for C, and yellow for A.

The original 3D method proposed by Hamori has been also extended by various
authors. In particular, a modified Hamori curve representation of DNA sequences has
been recently introduced by Pesek and Zerovnik [119].

Moreover, methods based on a walk in 3D space with different vectors correspond-
ing to particular bases were introduced: vectors located along tetrahedral directions
A(,—-1,-1), G(—1,1,—1), C(—1,—1,1), T(1,1,1) [120] or AGC-T curve, where the
vectors are chosen as A(1,0,0), G(0,1,0), C(0,0,1), T(1,1,1) [121,122]. Examples of
other 3D graphs are representations of one sequence by a set of characteristic 3D curves
[123-128]. Another 3D graphical representation, called Z curve, combines the prop-
erties of several characteristic curves [129]. A single Z curve contains the information
about the distributions of purine/pirymidyne, amino/keto and strong H bond/weak H
bond.
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Recently, new 3D graphical representations based on the frequencies of occurring
of pairs of nucleotides (dual nucleotides or dinucleotides) or trinucleotides in DNA
sequences have been created. Four nucleotides form 16 dinucleotides and 64 trinu-
cleotides. By assigning different vectors to each pair or to each trinucleotide in 3D
space, 3D-curves are obtained. The curves contain the information about neighboring
bases and their distributions along the sequence. Dual nucleotides can be also divided
into groups according to their chemical properties, as for example purine dinucle-
otides (AG, GA), pirymidyne dinucleotides (CT, TC), amino ones (AC, CA), keto
ones (TG, GT), weak H-bond (AT, TA) and strong H-bond (CG, GC). 3D graphical
representation of one sequence by four characteristic curves based on dinucletides
has been proposed by Cao et al. [130]. Other 3D graphical representations based on
dinucleotides (PN-curves) [131], (DN-curves) [132], (D-curves) [133], or based on
trinucleotides (TN-curves) [134] have been also proposed.

4 Numerical representations of DNA sequences

Graphical representations constitute a tool allowing visual inspection of the sequences.
Moreover, each graph can be characterized by the quantities called in the theory
of molecular similarity, descriptors. The descriptors representing numerically some
properties of the sequences can be used for similarity/dissimilarity analysis of the
sequences. The computing time of the calculations of the descriptors is low and
the numerical comparison of long sequences becomes attractive. The algorithm of the
computation of the descriptors is independent of the visualization tool. Therefore, the
graphical representations can be recognized as both numerical and graphical tools sep-
arately. However, each descriptor represents some specific properties of the graphs and
it is not obvious how to characterize graphical objects by numerical values (for review
of methods related to the creation of mathematical descriptors of DNA sequences up
to 2006 see [135]).

One of the methods, most commonly used to describe graphs numerically, is trans-
forming the plots to matrices. The method has been initially introduced by Randié¢
et al. for 3D graphical representations [120]. The authors introduced distance matri-
ces, D/D. The numerator in the matrix element (i, j) stands for the Euclidean distance
between vertices i and j, and the denominator stands for the graph theoretical distance
(the number of arcs separating the two vertices). The authors proposed the leading
eigenvalues of the matrices as the descriptors. The normalized leading eigenvalue of
a D/D matrix offers a measure of the degree of folding of a chain-like structure or a
curve. The authors introduced also higher-order matrix ¥D/%D that is constructed by
taking matrix elements of D/D matrix to power k. In the limit k — oo, the result-
ing matrix reduces to a binary matrix *°D/*°D. As the descriptors the authors also
proposed the leading eigenvalues of these matrices. Such kind of descriptors can be
viewed as an index of flexibility (or stiffness) of the structure.

The methods of transforming graphs to matrices stimulated introducing new
kinds of matrices. Different kinds of matrices associated with the graphs have been
introduced by Song and Tang [109]. The authors introduced the Euclidean matrix E,
whose (i, j) element is defined as the Euclidean distance between vertices (dots) i and
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j of the curve. They also introduced M/M matrix whose elements are defined as a quo-
tient of the Euclidean distance between two vertices of the curve and the number of
arcs between the two vertices. The third kind of matrix introduced by these authors is
L/L matrix whose elements are defined as a quotient of the Euclidean distance between
two vertices of the curve and the sum of geometrical lengths of arcs between the two
vertices. As the descriptors the authors chose the leading eigenvalues of M/M and
L/L matrices. The authors considered characteristic linear curves and their descriptors
characterize the distribution of bases with different chemical structures. The authors
also considered higher-order L/L matrices. New kind of matrices has been also pro-
posed by Liao et al. [38]. The authors introduced covariance matrices associated with
the graphs.

Usually, the leading eigenvalues of the matrices are taken as descriptors. A dis-
cussion of the properties of such kind of descriptors may be found in a recent article
by Yuan et al. [136]. Some authors propose to consider more eigenvalues or matrix
elements as descriptors of the sequences. Wang and Zhang proposed to take as a
descriptor the sum of the maximal and minimal eigenvalues for the matrices associ-
ated with their graphical representation, called three non-base representation [111].
The authors suggested that the information reflected only by the leading eigenvalue
might not be comprehensive enough. Liao et al. [38] took all (two) eigenvalues
of the 2 x 2 covariance matrices. Li and Wang proposed as descriptors normal-
ized matrix norms instead of the eigenvalues [99]. Randi¢ et al. considered as the
descriptors average matrix elements of the matrices associated with the four-color
map representation of DNA sequences [118]. Liao and Wang proposed as descrip-
tors the average bandwidths [125]. They can be obtained by summing the distance
matrix elements along each of the lines parallel to the main diagonal if the matrix
is in the canonical form. Qi and Fan took all elements of the matrix as descriptors
of the sequences of equal lengths [131]. Pesek and Zerovnik proposed to take as
the numerical characterization of the modified Hamori curve a product of first ten
and last ten eigenvalues of the descending ordered eigenvalue list of the matrix L/L
[119].

Numerical representation of 2D or 3D graphical representations of DNA sequences
based on transforming the graphs into matrices and deriving the descriptors from
these matrices has been widely used by many authors. These descriptors characteriz-
ing a sequence can be used as components of similarity measures between a pair of
sequences. Examples of similarity analysis of DNA sequences using this method may
be found in [137,105,106,108,116,123,110,112,125,124,109,118,138,126,111].

Numerical representation of a graphical representation can be also performed
directly from the coordinates or from the properties of the graphs without transform-
ing the graphs to matrices. Gates plotted each sequence as a graph of the cumulative
Manhattan distance (from the origin) against the sequence position [139]. Manhattan
or city-block distance considered by Gates is calculated as the arc length between
points. For sequences of equal lengths it is convenient to plot the differences of the
graphs. As descriptors of the sequences he proposed the means of the Manhattan and
Euclidean “fractal” dimensions.

Raychaudhury and Nandy proposed mean x and y coordinate values, and the radius
of the graph as descriptors of DNA sequences [140]. Guo and Nandy introduced also
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improved mean X and y coordinate values, and the radius of the graph, reducing the
degeneracy of the previously defined descriptors of DNA sequences [141]. Yao et al.
extended these descriptors to three dimensions defining 3D radius and adding mean
z-coordinate as a descriptor [122].

We have extended the set of these 2D descriptors to higher-order moments of the
mass-density distributions. The mean x and y coordinate values are equal to the first-
order moments (My 1, M, 1) of the mass-density distribution, p, and p, respectively.
In particular, if in a 2D-dynamic graph we put all masses equal to 1, then the 2D-
dynamic graph becomes the Nandy plot and all the moments of the two graphs are
identical. Introducing the masses different than 1, the mean x and y coordinate val-
ues become the coordinates of the center of mass of the graph and are different than
for the Nandy plot. As the new descriptors we proposed moments of the mass-den-
sity distributions o, and py up to the sixth order [101] and up to the eighth order
[142]. Higher-order moments give more specific information about the distribution of
masses. For example, second-order moments (M )’6’2, M ! 2) give the information about
the width of p, and p,. We have shown that the third (M 3), fourth- (M, i ), fifth-
M ;”5), and sixth-order (M ) x-moments of the mass-den51ty distributions represent-
ing histone H4 coding sequences have different values for plants than for vertebrates
[101]. In the present work, 2D-plots My , — M ”q, are proposed instead of 1D-plots
(descriptors versus labels of the sequences) that were shown in [101]. 2D-plots are
shown in Fig. 6. A point in the figure corresponds to a single sequence while a point
in Figs. 1, 2, 3 represents a similarity measure between a pair of sequences. The figure
consists of 4 plots: parta M , — M 5, parttb M s — M ;, partc M , — M ¢, and
d one M 5 — M ;. In all the plots we observe clusterization of evolutionary similar
organisms: plants are located in different parts of the plots than the vertebrates.

The differences between histone H4 coding sequences across the species are not
big and it is rather difficult to find the descriptors that reveal the clusterization. Please
note that y-moments and also x-moments for the order smaller than 4 do not lead
to clusterization in this case. In particular, this means that using the Nandy plots for
which the descriptors are taken as the mean values (first-order moments) of x and y
we cannot get the clusterization. I have also found another set of descriptors (related
to the four-component spectral representation) that reveal clusterization for histone
H4 and H1 coding sequences (for details see the subsequent chapter).

Analogous (2D visualization) is introduced in the present work for the recently
proposed molecular descriptors. Figure 7 shows moment-based classification of the
molecules: M| — M, (top), My — M} (middle), and M{ — M (bottom). We have
shown that the new molecular descriptors (moments of the intensity distributions) have
different values for two kinds of molecules: nitriles and amides. In our recent paper, 1D
plots have been presented (descriptors versus labels of the molecules) [143]. Figure 7
shows 2D plots. We observe that the descriptors representing nitriles are located in
different parts of the plots than those representing amides. Figures 6 and 7 represent
different objects: DNA sequences and molecules, respectively. However, the idea is
the same. The clusterization of the descriptors indicates that these descriptors can be
a good tool for similarity/dissimilarity analysis. The descriptors cluster (have similar
values) for similar objects so they exhibit some properties of the considered objects.
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Fig.6 M}/ q—M )’(’ 7 classification of histone H4 coding sequences. Dots correspond to plants and triangles
to vertebrates

Moreover, some of the plots reveal similar shapes, as for example, middle and bottom
parts of Fig. 7. This may suggest correlations between some of the descriptors. How-
ever, the shape is similar but not identical. The problem of correlation and extracting
the minimal set of moments we studied in ref. [144]. We concluded that a universal
set of independent moments does not exist. Usually 4 lowest moments are sufficient
to describe the object but also the information coming from higher-order moments
cannot be neglected in some cases.

As the new descriptors of DNA sequences we also proposed the angles between the
x axis and the principal axis of inertia of the 2D-dynamic graph (axes for which the ten-
sor of moment of inertia is diagonal) [100]. We also introduced the principal moments
of inertia as the descriptors of DNA sequences associated with the 2D-dynamic graph
[100]. They are associated with the rotations about the principal axes. The moment of
inertia of an object about a given axis describes how difficult is to induce an angular
rotation of the object about this axis. If the mass is concentrated close to the axis of
rotation, it is easier to accelerate into spinning fast and the moment of inertia is smaller.
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Fig. 7 Moment-based 12— T T T T
classification of the molecules.
Dots correspond to nitriles and
triangles to amides
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As a consequence, these descriptors give the information about the concentrations of
masses around the axes.

Another kind of new descriptors has been recently proposed by Huang et al. [98].
The authors proposed to take as the descriptors the set of characteristic vectors rep-
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resenting all bases in the sequence. Guo and Wang obtained smooth curves from the
zigzag curves and took curvatures of the smooth curves as descriptors of the sequences
[145]. Yu et al. proposed two kinds of descriptors: a set of coordinates of TN curves,
and the probabilities of occurring of particular trinucleotides among all 64 trinucleo-
tides in the sequence [134]. Yu et al. composed 6D vector associated with the D-curve
as a descriptor of DNA sequences [133].

Another kind of non-standard descriptors has also been introduced for four-com-
ponent spectral representation (for the details see the next chapter). The descriptors
are the numerical characteristics of the sequences. The next step would be the creation
of similarity measures between sequences. In most of the similarity studies the set of
descriptors characterizing a sequence is treated as components of a vector. Usually, as
the similarity measure the Euclidean distance between the components of the vectors
corresponding to a pair of sequences is taken. In particular, for identical sequences,
this similarity measure is equal to zero.

Recently, non-standard measures have been introduced. For example Huang et al.
defined a measure that changes from 0 to 1 and is equal to 1 for identical sequences
[98]. Chen et al. constructed cosine value that is a similarity measure of the mean x, y, z
coordinates of their graphs [127]. We have used the Manhattan distance normalized by
the mean value of the descriptors for the similarity studies of the sequences represented
by the 2D-dynamic graphs [101, 146]. For identical sequences this measure is equal to
zero, as it is assumed for most of similarity studies. Another non-standard similarity
measure, also normalized to zero for identical sequences, is introduced in this work
for four-component spectral representation (for details see subsequent chapter).

However, in the alignment studies the similarity measure changes from 0 to 100
for identical sequences. Such a measure is also defined for four-component spectral
representation ([147], see next chapter).

Another similarity measure, also normalized to 100 for identical sequences, we
have used for comparisons of 2D-graphs. This similarity measure introduces non-
conventional treatment of graphs and their similarity analysis. We have not calculated
the descriptors but the similarity measure has been directly obtained from the graphs.

In our studies we treated the graphs as rigid bodies, as in the classical dynamics. As
a similarity measure for a pair of sequences represented by the graphs we took mass
overlaps [146]. Using the genetic methods, very efficient in problems of optimization,
we found the locations of a pair of graphs for which their mass overlap reaches max-
imum. In this position the similarity measure is defined as a mass overlap of a pair of
graphs. In the process of maximization of the mass overlap we considered shifts and
rotations of the graphs.

5 Four-component spectral representation

Recently, I have introduced another graphical representation [65]. In this section, the
details and new aspects of this representation are described. Graphically, this repre-
sentation resembles the molecular spectrum so I call it spectral representation. The
DNA sequence is represented by a four-component function (or, graphically, by a
four-component spectrum). A single DNA sequence is represented by four abstract
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spectra: one for bases A, one for C, one for T and one for G. This means that I decom-
pose each sequence to four components. Each y-component I call-y spectrum where
y = A, C, T, G denotes one of the bases. Each y-component is given by a function
that is a superposition of the Gaussian functions:

N
17 (x) = > npexpl—(x — €,)°], ®)

p=1
where N is the length of the sequence, and

WY — 1 if yoccupies the p-th position,
P 710 if a base different theny occupies thep — th position

is the occupation number of the base y in the p-th position of the sequence. The
deletions, inversions and insertions can easily be described by appropriate changes of
the occupation numbers and by insertions of properly constructed subdistributions. In
Eq. 8, x is a variable measured along the sequence.

The abstract spectrum /7 (x) represents the density of particular bases along the
sequence. The p-th base is represented by a single Gaussian function exp[—(x — € p)z]
with the maximum located at

x=¢,=(p—Dr, r>0. ©)

The parameter r is the resolution of I” (x). For the visualization of long sequences it
is convenient to take small r. The resolution parameter r determines the differences
between the maxima of the Gaussians. The details of spectra are better visible when
r is large, i.e. when the neighboring maxima are well separated. With an increasing
r the resolution becomes larger. If r = 1 then the maximum corresponding to the
first base (p = 1) is located at x = €; = 0 and the maximum corresponding to the
last base is located at x = ey = N — 1. Generally, the locations of the consecutive
bases in one of the fourth y-spectra correspond to x = 0, r, 2r, ..., (N — Dr, i.e.
each single Gaussian function makes the contribution to one of the fourth y-spectra.
If the neighboring y bases are closely packed then the intensities (/) increase. If
the sequence does not contain one of y bases then the contribution to y-component
may be zero and all the contributions are located in one of the three other y-spectra.
Generally, the distributions of particular bases along the sequences are asymmetric
and this information is reflected in the form of 17 (x).

In principle, x may change from —oo to +00. However, in practical terms, 77 (x) =
0if x < —r or x > Nr. Therefore one can assume that the graphs extend for

x € (—r,Nr).
In this way the first and the last bases are considered in the same way as the other ones.

However, for the numerical characterization related to this graphical representation
the range from —oo to +00 is considered.
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As the numerical characterization of the four-component spectral representation I
propose the properly scaled distribution moments.

Analogously to the definitions of the moments of a discrete distribution (Egs. 4-6),
the g-th moment of the continues distribution 7” (x) reads

M] =c" / IV (x)x9dx, (10)
R(x)
where
—1
¢’ = / I7 (x)dx (11)
R(x)

is the normalization constant and R(x) is the range of x for which the integrand does
not vanish. The normalization has been introduced for the numerical characteristics of
the sequences. Visualization is independent of the numerical calculations and it is more
clear to consider unnormalized plots defined as y-spectra in Eq. 8. Good descriptors
of the distributions are also the centered moments Mg '

MY = / 17 (x)(x — M} )1dx, (12)
R(x)

for which the first moment is equal to 0, and also M;’ "

q

— M7
Ml = / I () | 221 dx (13)

[agV 14
R(x) M2 - (M] )2

for which the first moment is equal to 0 and the second one is equal to 1.

Considering several lowest moments it is convenient to perform integrations over
the whole range of x (from —oo to +00). The integration can be performed analytically
and

N
M) =c' T > nhe, 0 (14)
p=1

where
-1

N
o =[vadnp| = (mN) T, (15)

p=1
oY =1, (16)
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1
2 _— _
0y =€t 5 (17)
3
0 =(ep)*+ 3, (18)
3
0% = (ep)’ + 3¢, + o (19)
€p

In the graphical representation defined in Eq. 8, the summations are performed from
p = 1to p = N for each y. However the contributions of many terms are zero.
Only the terms for which the occupation number is different than zero give non-zero
contribution to the y-spectrum and their number is NV which is the number of y bases
in the sequence and

N = Z NY. (20)

y=A.C,T,G

Let us take an example of a model sequence ATAT. The nonvanishing terms that make
the contribution to A-spectrum are for p = 1, 3. In case of T-spectrum p = 2, 4 and for
G and C-spectra all the contributions are zeros. As a consequence, the four-component
spectrum is

1¢ =0,
1€ =0,
1" = exp[—(x — e + exp[—(x — e3)]%,
1" = exp[—(x — )1* + exp[—(x — ).

The descriptors associated with the four-component spectral representation (Dg ) have
been defined as properly scaled distribution moments [65]. In particular

Dl = — 21)

D} = Af—gy (22)
and

D) =m])" (23)

for ¢ > 3. As it has been shown in the article [65], due to the division by r, Di’ and
D;’ become independent of the resolution.

A convenient tool for visualization are diagrams D;’ versus D, [147]. In particular,
these diagrams can be used for an identification of genes. In thiscidnd of visualization,
different types of classified objects are clustered in different areas of the plots.
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As a similarity measure between a pair of sequences labeled by i and j

_ Min{|Dj ()1 |Dg ()1}
Max{|Dg (), 1Dy (j)1}

dy (i, j) (24)
is proposed, where ¢ = 1,2, 3,4 [147]. Though ¢ may be easily increased up to
higher-orders, as we shall see, the information about similarity sequences is specific
enough up to the fourth order. Let us note that d;/ is consistent with standard measures
used in biology: For the identical sequences the similarity value equals 100% and it
decreases (approaching 0) if the difference between the two DZ; increases.

The average information about the similarity of a pair of sequences is contained in
the measure

dys NG, = D WG, ), (25)
y=A,C.T,G

where

_ N+ NY())

w” = . . (26)
N(@@) + N(j)

are referred to as the weights, NV (i) is the number of y bases in the i-th sequence,
and

N(@i) = Z NY (i)

y=A,C,T,G

is the length of the i-th sequence.

In order to study the problem of convergence of the method with respect to the
higher-order moments I consider, for a pair of sequences labeled by i and j, the
similarity measure

1 n
TN MEAN :
d"(i, j) = = > dy* NG ), 27)
g=1
where 7 is the maximum order of moments taken into account.

All definitions may be easily generalized for multiple similarity studies. If J
sequences labeled by i = {i1, i, . .. i} are matched then the measures are defined as

Min{| D} (i)], D} (i2)l, ... |Dy G )I}

dy (i) = . . = 100% (28)
! Max{|Dg (i1)l. |Dg (@2)]. - .. |Dg ()]}
and
NG = D> W) (29)
y=A,C,T,G
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The weights
y=Ny(i})+N”(.iz)+---+N’f(iJ) 30)
N(@i1)+ N(@2) +---+ N(iy)
are equal to the relative numbers of y bases in all the considered sequences and
D :
d" (i) = - > dYEANG), 31

q=1

The measures defined in Egs. 28,29 and 31 may change from 0% to 100%, analogously
to the ones defined, respectively, in Eqs. 24, 25 and 27.
An alternative similarity measure is defined in this work as

$. ) =1=exp[= (D))= Dy ()] (32)

s;' is equal to O if the descriptors of the i-th and the j-th sequences are the same

(D,}; (i) = D,’; (7)) and approaches 1 if the difference between the two descriptors
increases. This similarity measure is analogous to the one that we have introduced in
the molecular similarity studies [56].

I also introduce a similarity measure between the sequences labeled by i and j that
carries the information about several (n) properties

T A 1 )2 C )2 )2

Sitizdn, j) = \/; [(wilsx G, 1)) + (wisty@ D)+ + (wi sl D) ]

(33)
where ij < iy < --- < i, and w;, ... w;, denote the weights. Sf,"iz’”‘i” (i, j) is also
normalized to the values belonging to the range from O (identical properties) to 1. For
example, if we consider similarity of three properties: the width, the asymmetry and
the curtosis of the y-spectrum that are described by s%’ , s%' and sf{ respectively, then
n =3,i; = 2,ip = 3, i3 = 4 and the similarity measure is

1
SANCRE \/ 3 [(was] G ) + (was] G.))” + (was} G )] G4

In this work all the weights in Eqs. 33 and 34 are equal to 1.

The units of descriptors D;, (Eq. 23) are normalized for iy > 3. As a consequence,
for example S;A is a convenient measure for comparison of sequences of different
lengths, if we are interested in the similarity information that is not related to the
lengths of the sequences. If the information about the mean value D; or about the
width D, of y-spectra needs to be compared then S,">"", where iy are 1 or 2 may
be considered.
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Fig. 8 Spectral representation of a model sequence AAAAA...AA (N = 50)

Figure 8 shows the spectral representation defined in Eq. 8 for a model sequence
that consists of only A basesi.e. N¢ = N7 = N¢ = 0. The number of A basesis N =
N4 = 50.Inthiscase C, T, G-spectra are equal to zeros. ICx)=1Tx)=1x)=0
for all x. The four-component spectrum representing this sequence is reduced only to
one-component abstract spectrum /4 (x) = z;ozl exp[—(x — € ,,)2]. All the panels
(a—d) in the figure represent the same model sequence. The difference is the resolu-
tion:r = 1,r =2,r = 3,r = 4 in panels a, b, ¢, d respectively. The particular bases
are represented by Gaussians centered at €, = (p — 1)r, where p = 1,2,...50.
The first base is represented by a Gaussian with the maximum located at €; = 0
for all the cases and the last one at €50 = 49, €590 = 98, €50 = 147, €59 = 196 for
r=1,r =2,r =3,r = 4 respectively. For smaller r the bases are located close to
each other and as a consequence the neighboring Gaussian functions overlap and we
observe the envelope of the spectrum. In particular, if all the bases are the same, the
spectrum becomes rectangular (Fig. 8, panel a). Increasing the resolution, the range
for which the spectrum is different than zero becomes larger and we have a chance to

@ Springer



J Math Chem (2011) 49:2345-2407 2379

Fig. 9 Spectral representation of a model sequence AAAAA...AA (N = 50)

look into details of the spectra. The details are the locations of particular bases along
the sequence. For long sequences, the balance between the details of spectra and the
range of the plot determined by the location of the last Gaussian ey = (N — 1)r has
to be found. Theoretically, the resolution may change from a small positive value to
infinity. However changing the resolution not always results in a change of the infor-
mation coming from the spectrum. For example, if in the model example the resolution
is taken as smaller than 1 then also rectangular representation is obtained. Figure 9
shows I4 spectrum for this model example where r = 0.5. The difference between
r = 1 (Fig. 8, panel a) is the range (€59 = 24.5 for r = 0.5) and the maximum values
of I4. For smaller resolution the range of the spectrum is smaller and the neighboring
maxima are located close to each other. As a consequence of closely located Gaussian
functions exp[—(x — € p)z], the resulting maxima of spectrum /4 are larger (around 3
in Fig. 9 and around 2 in Fig. 8, panel a). However the qualitative information is the
same in Fig. 8, panel a, and in Fig. 9.

In case of real sequences, there is a natural separation between the neighboring
bases. Usually the resolution » = 1 and even smaller is sufficient for a good visualiza-
tion. In Fig. 10, spectral representation of histone H1 coding sequence of Arabidopsis
thaliana is shown (i = 19, Table 16). The length of the sequenceis N = 822. The reso-
lution has been taken as r = 1. The numbers of particular bases are N A =259 NC =
167, NT = 188, and N® = 208. The largest number of A bases can be easily seen
(large number of lines with large intensities as an effect of overlapping closely located
Gaussians representing A bases). The same sequence but with the resolution ten times
smaller is shown in Fig. 11. The resolution » = 0.1 seems to be sufficient to distin-
guish between those ranges of x for which the density of bases is larger comparing to
ranges that are poor in the considered bases.

A very convenient way of a direct comparison of the difference between a pair of
sequences labeled by i and j is plotting the difference / 17; Clearly, for both sequences
17 (x) must be represented with the same resolution in order to compare the distribu-
tion of y bases along the sequence. Figures 12 and 13 show the differences between a
pair of sequences. In Fig. 12 the differences with resolution r = 1 between the spectra
representing histone H4 coding sequence of human (i = 9, Table 17) and histone
H4 coding sequence of maize (j = 1, Table 17) are shown. Positive values of Ii);
indicate the regions of x for which the base y is present in I? for the ith sequence
and is not present in the jth one. The negative values of Il.’j/. indicate analogous regions
but the y bases are present in the sequence labeled by j. Such a simple visualization
of overlapping of pairs sequences gives a direct information about the differences of
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Fig. 10 Spectral representation of histone H1 coding sequence of Arabidopsis thaliana AY040059
(r =1.0, N =822,i = 19 in Table 16).

the distributions of particular bases along the sequences. In particular, the number
of lines in IIA, IlT., IlG is smaller than for I C . This means that the difference of the
distributions of C bases along the sequences is the largest comparing to the differences
of the distributions of other bases. Moreover comparing the number of lines that are
positive to the ones that are negative, for a particular plot, one can easily estimate the
differences between the numbers of the particular bases. For example, N¢ = 79 for
the sequence of human and N¢ = 96 for the sequence of maize so the number of

negative lines for 15 is larger then the number of the positive ones. Analogously, the
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Fig. 11 Spectral representation of histone H1 coding sequence of Arabidopsis thaliana AY040059 (r =
0.1, N = 822i = 19 in Table 16)

number of negative lines for /; ; can be seen: N = 100 for the sequence of human

and N¢ = 111 for the sequence of maize. Since the number of A and T bases are
larger for the sequence of human then for the sequence of maize, one can observe in
I+ and I, plots more positive lines than the negative ones.

In Fig. 13 the differences with the resolution » = 1 between the spectra represent-
ing histone H4 coding sequence of human (i = 9, Table 17) and histone H4 coding
sequence of mouse (j = 7, Table 17) are shown. As a result of the difference between
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Table 16 Histone H1 coding sequences from the EMBL database

No.  Species ID/Accession N4 NC NT NG N

1 Homo sapiens (Human) M60747 214 177 90 185 666
2 Homo sapiens (Human) M60748 195 199 61 205 660
3 Macaca fascicularis (Crab-eating macaque) AB179307 49 30 33 65 177
4 Gallus gallus (Chicken) X01752 165 228 44 223 660
5 Gallus gallus (Chicken) M17018 170 230 43 220 663
6 Gallus gallus (Chicken) M17019 179 220 56 223 678
7 Gallus gallus (Chicken) M17020 175 219 52 214 660
8 Gallus gallus (Chicken) M17021 178 221 58 218 675
9 Mus musculus (Mouse) L26164 188 170 91 193 642
10 Mus musculus (Mouse) 746227 191 184 96 201 672
11 Mus musculus (Mouse) 738128 176~ 200 74 216 666
12 Mus musculus (Mouse) X13171 187 177 68 153 585
13 Mus musculus (Mouse) X72805 172 170 99 186 627
14 Mus musculus (Mouse) J03482 168 195 65 211 639
15 Mus musculus (Mouse) M25365 168 196 65 210 639
16 Rattus norvegicus (Rat) BC061842 187 180 64 154 585
17 Rattus norvegicus (Rat) X72624 187 180 64 154 585
18 Arabidopsis thaliana (Thale cress) AY079414 193 99 96 116 504
19 Arabidopsis thaliana (Thale cress) AY 040059 259 167 188 208 822
20  Arabidopsis thaliana (Thale cress) AY045797 193 99 96 116 504
21 Arabidopsis thaliana (Thale cress) AF360211 259 167 188 208 822
22 Triticum aestivum (Wheat) X59872 167 269 49 229 714
23 Triticum aestivum (Wheat) AF107022 167 267 49 228 711
24 Triticum aestivum (Wheat) AF107023 168 257 58 231 714
25 Triticum aestivum (Wheat) AF107024 194 319 52 263 828
26 Triticum aestivum (Wheat) AF107027 169 269 54 225 717
27 Solanum lycopersicum (Tomato) AJ224933 284 183 144 205 816
28  Zea mays (Maize) X57077 187 267 62 225 741
29 Zea mays (Maize) EU952324 139 214 64 174 591
30  Zeamays (Maize) EU953635 154 223 60 271 708
31 Zea mays (Maize) EU954558 168 251 70 252 741
32 Zeamays (Maize) EU957928 185 271 69 243 768
33 Zea mays (Maize) EU959342 192 276 69 249 786
34 Zea mays (Maize) EU960344 125 167 54 218 564
35 Zea mays (Maize) EU961871 147 211 60 260 678
36  Zea mays (Maize) EU963944 147 211 63 260 681
37  Zeamays (Maize) EU964093 194 315 58 255 822

the numbers of A bases one can observe in Il/} more positive lines than the negative

ones: N4 = 73 for the sequence of human and N4 = 65 for the sequence of mouse.
The difference in C bases is also clearly seen. There are more negative than positive
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Fig. 12 Differences between the spectra for histone H4 coding sequence of human M60749 and histone
H4 coding sequence of maize M13377 (i =9, j = 1, Table 17)

lines in 15 plot: N¢ = 79 for the sequence of human and N¢ = 96 for the sequence
of mouse. Generally, comparing Fig. 12 and Fig. 13 one can see that the differences
human-maize spectra are larger then the differences human-mouse spectra (the number
of lines in Fig. 12 is larger then the number of lines in Fig. 13).
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Fig. 13 Differences between the spectra for histone H4 coding sequence of human M60749 and histone
H4 coding sequence of mouse V00753 (i =9, j = 7, Table 17)

As the descriptors of the four-component spectral representation, I have proposed
D,’; .Figure 14 shows D? — D40 diagram for ten sequences listed in Table 17 and for one
additional sequence (one point in the figure represents descriptors of one sequence).
The additional sequence is histone H4 coding sequence of human (M16707). In many
articles the ten sequences were treated as a model set to introduce new graphical and
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Table 17 Histone H4 coding sequences from the EMBL database
No. Species ID/Accession NA N€ NT NG N
1 Zea mays (Maize) M13377 62 96 43 111 312
2 Zea mays (Maize) M13370 60 101 41 110 312
3 Zea mays (Maize) M36659 63 96 42 111 312
4 Gallus gallus (Chicken) M74533 62 104 38 108 312
5 Gallus gallus (Chicken) M74534 62 105 37 108 312
6 Triticum aestivum (Wheat) M12277 62 111 37 102 312
7 Mus musculus (Mouse) V00753 65 96 51 100 312
8 Rattus norvegicus (Rat) M27433 68 93 51 100 312
9 Homo sapiens (Human) M60749 73 79 60 100 312
. G G
Fllg. 1; l?l (;D4 orth 1.86 . | T T T T T T
classt catlovn 1agram or the OldEMBL v
sequences listed in Table 17. New EMBL 4
Dots correspond to plants and
triangles to vertebrates 1.84e 7]
[ J
1.82+ —
A
@)
N
A sk -
A
1.78 - A
v
176 ‘]
| | | | | | |
138 140 142 144 146 148 150 152
G
Dl

numerical representations. However, there was a mistake in the old version of the
EMBL database. Obviously, the length of this coding sequence should be 312 and
not 311 as it was in the old version of the EMBL database. The additional base is
G, located at the last position of the sequence. The descriptors Dg of spectral repre-
sentation are very sensitive. The difference by only one base can be detected using
these descriptors. Moreover, the approximate location of this base can be indicated.
The descriptors characterizing the same sequence calculated using the old and new
version of the EMBL database have been denoted using different symbols in Fig. 14.
Their locations are different in the diagram. It is remarkable that the difference by this

very base may be recognized in the plots.
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Fig. 15 DqG - Dg, diagrams for the sequences listed in Table 17

Figures 15, 16, 17, 18 show the diagrams also for the sequences listed in
Table 17. In particular, Fig. 15 shows diagrams for G-descriptors, Fig. 16 for A-
descriptors, Fig. 17 for C-descriptors, and Fig. 18 for T-descriptors. Panels a in
the figures correspond to Di’ - D; diagrams, panels b to Dg - DZ diagrams,
and panels ¢ to D; - D%’ ones. Since the difference between the old and new
version of the EMBL database is only one base G, the A, C, T descriptors are
exactly the same for the new and old sequences. The difference in G-descriptors
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Fig. 16 D? - D;‘/ diagrams for the sequences listed in Table 17

indicates the location in the sequence of the base that is different for a pair of
sequences. The additional G base in the new sequence causes the shift to larger
values of the mean of the distribution (Df becomes larger, Fig. 14, Fig. 15,
panel a). The width of the distribution also increases (Dg for the new sequence
is larger than for the old one, Fig. 15 panels b and c). Higher order descrip-
tors representing asymmetry and kurtosis (Df and D4G) also change. The differ-
ences between the G-descriptors using the new and old data for histone H4 cod-
ing sequence of human (M16707), Dg(no) = Dg(new) — Dg(old) are as fol-
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Fig. 17 ch — D;C diagrams for the sequences listed in Table 17

lows: D¢ (no) = 1.5605, DY (no) = 165.3269, DY (no) = —0.0024, DY (no) =
—0.0022.

Considering the properties of G and A-spectra (G and A-descriptors shown
in Figs. 15, 16, respectively) one can observe clusterization of evolutionary sim-
ilar organisms: plants and vertebrates that are represented by different symbols
in the plots (plants-circles, vertebrates-triangles). Considering the properties of C-
spectra (Fig. 17) one can find the properties that are specific for plants and dif-
ferent than for vertebrates and also one can find the properties that are com-

@ Springer



J Math Chem (2011) 49:2345-2407 2389

a 005 T T T T
ok _

-0.05 - A _

-0.1 — —

s 015 —
02 —
-0.25 —
03 e 94

2035 1 1 1 1
155 160 165 170 175 180

22 e} OOA 1
2.1

T
D,

1.9 - A -

1.8
1.7 A

60 65 70 75 80 85 90 95 100

¢ 100 T T T T T T T

95 — —
90 -
85 A —
80 A A _
75— —
0F  © —

65 — A
60 | | | | | | |
035 -03 -025 -02 -0.15 -0.1 -005 0 005

D"

D, /10

Fig. 18 DqT — DqT, diagrams for the sequences listed in Table 17

mon for plants and vertebrates. For example in panels a and ¢ where D{ - DY,
D% - D; are shown one can observe clusterization. However in panel b, where
D; — DZ is shown the properties mix for plants and vertebrates. For
T-descriptors (Fig. 18) in all the diagrams plants and vertebrates are mixed, they
even overlap.

It is interesting to note that most of the similarity measures (both the standard ones
and many alternative ones) indicate larger or equal similarity values between histone
HI coding sequences of chicken (labeled by i = 4, 5 in Table 17) and plants (labeled in
this Table by j = 1, 2, 3, 6) than between these of chicken and of vertebrates (labeled
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Table 18 Similarity measures between a pair of sequences labeled by i and j Sim(i, j), where i and j are
defined in the first column of Table 17

Sim Sim (s, 6) Sim(5,7)
CL 88 88
dy 43 70
dj! 30 46
d§ 25 48
df 100 19

by j =7, 8,9). However, using new similarity approach it is possible to extract such
components of the similarity measures that cluster the sequence of chicken with the
ones of vertebrates rather than with the ones of plants [147]. Table 18 shows similarity
values obtained using different similarity measures “Sim”. Using alignment method
(Sim=CL) the similarity value “chicken-plant” CL(5,6) is the same as the similarity
value “chicken-vertebrate” CL(5,7). Considering different aspects of similarity, using
d;’ , one can see that the clusterization of the sequence of chicken with vertebrates is
obtained for y = G, A, C. However the asymmetry of the gene structure for T bases is
identical for the sequence of chicken and of plants (d3T (5, 6) = 100) and the similarity
value is small in case “chicken-vertebrate” (d3T 5,7 =19).

Figures 19 and 20 show the diagrams for the sequences listed in Table 16 (histone
H1 coding sequences of different species). In particular, Fig. 19 shows D;/ — DZ
diagrams, and Fig. 20 Di’ - Dg ones. Panels a in the figures correspond to A-
descriptors, panels b to C-descriptors, panels c¢ to T-descriptors, and panels d to T-
descriptors. The lengths of the considered sequences are different. Usually, biolo-
gists are interested in comparisons of sequences using measures that are indepen-
dent of the length of the sequences. For that purpose the normalized descriptors
of order 3 and higher (D;’ , with ¢ = 3,4,...) can be used, as for example in
Fig. 19. However, if the properties dependent on the lengths are of interests then
D’{ — D; diagram gives a good characteristic of the objects. As it is well known,
the lengths of the sequences are not related to the complexity of the organisms. The
diagrams D]l/ — D%’ confirm this observation: plants and vertebrates (circles and tri-
angles in the figures) mix for all y. Approximately, the dependence between Di’
and D%’ is linear. The most regular linear dependence is for G-descriptors (Fig. 20,
panel d). However, using the diagrams for the descriptors independent of the lengths of
sequences (Fig. 19), for A and G-descriptors (panels a, d respectively) the clusteriza-
tion of plants and vertebrates is observed. For C-descriptors, the effect of clusterization
is smaller. The effect of clusterization is not observed for T-descriptors. T-descriptors
representing sequences of plants and vertebrates even overlap. These observations are
the same as in the case of histone H4 coding sequences.

Figures 21, 22, 23, 24, 25 show the relations between the standard calculations
Clustal W (CL) and the new measures (Eqgs. 24, 25, 27) for the sequences listed in
Table 17 (histone H4 coding sequences).
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Fig. 19 D;/ - DX diagrams for the sequences listed in Table 16

Figures 21, 22, 23, 24, 25, 26, 27, 28, 29 are plotted in the same way as it has
been done in chapter 2 (Figs. 1, 2, 3). Each point in the plot corresponds to one case:
comparison of sequence of species No. i with sequence of species No. j using differ-
ent methods. For example, the horizontal axis in Fig. 21 corresponds to the similarity
matrix between sequences of different species using Clustal W method (C L) and the
vertical axes correspond to the similarity matrix between the same sequences using
different components of alternative similarity measures d,}/ . As a consequence each
plot represents two similarity matrices, which gives a better visualization of the rela-
tions between two different similarity measures. In the figures, the functions x =y,
where x and y represent, respectively, the horizontal and vertical axes, are plotted
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Fig. 20 Dll/ — D%’ diagrams for the sequences listed in Table 16

D,

(dashed lines). Comparing the distributions of the points around the dashed lines it is
easy to recognize these aspects of similarity for which the relations are the same. If
the points are concentrated close to the lines then the similarity relations represented
by x and y axes are also close to each other.

Figure 21 shows CL — d(;‘ diagram, Fig. 22 CL — dqc diagram, Fig. 23 CL — qu
diagram, and Fig. 24 CL — d(f one. The panels a, b, ¢, d in the figures correspond to
q=1,49=2,q=23,and g = 4, respectively.

The similarity matrix C L based on Clustal W approach for the considered sequences
is given in [146]. Small range of similarity measures indicates small differences
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Fig.21 CL — dt’;‘ diagrams for the sequences listed in Table 17

between the sequences of different species. The range of values of CL is from 78%
to 100%. The ranges of values of dg forqg = 1,q = 2, and ¢ = 4 are smaller than
forg = 3 forall y. dg changes from about 15% to 100% for all y. The differences
between sequences across species using d}( are smaller than using 4? , but different
for all y. The ranges of d}( are the largest for T bases (d4T changes from about 75 to
100%) and they are very small for C and G (from about 95 to 100%). For ¢ = 1 and
q = 2 the ranges are the largest for T bases.

The dashed lines in the figures correspond to C L = d. The relations of each y-com-
ponent of the measure (dg ) with standard measure is different. For the G-components
one can observe the cumulating of all the points far from the dashed lines. This means
that the information coming from G-measures gives most different results compar-
ing to the standard measure. The points come closer to the dashed lines for A and C
measures. For T-measures the points even cross the lines.

Since each y-component is related in a different way to the standard measure, one
may expect that it carries independent similarity information. Averaging the measures
over y, and then averaging over ¢, d)' **N (Eq. 25) and d" (i, j) (Eq. 27) are obtained.
In particular d'(i, j) = d{"’ EAN (i, j). Figure 25 shows the relations of " with the
standard measure. The convergence of d"” measures to the standard measure CL we
have discussed in [147]. In the present paper this effect is shown in detail adding d'
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Fig.22 CL — qu diagrams for the sequences listed in Table 17

term. d' is very different from CL (the points are located far away from the dashed
line, panel a, Fig. 25). Adding higher-order terms, the points are pushed towards the
dashed lines (panels b, c, d Fig. 25).

Figures 26, 27, 28, 29, 30 show similarity relations for S-globin gene across spe-
cies using similarity measures defined in Eqs. 32 and 33. These data are the standard
ones for alternative methods. Since the sequences in the database are not complete for
some species, they are unified in this work and the appropriate locations in the gene
are listed in the tables. In particular, the sequences of mouse and of chicken belong to
the standard set of data used by many authors. However, several bases are ambiguous
for the third exons for the sequences of the two species. As it was already mentioned,
the method used in this work is so sensitive that even a difference in a single base
can influence the results. Therefore the sequences of mouse and of chicken are omit-
ted from this consideration. Moreover, in gorilla and chimpanzee sequences the stop
codons are not available in the database. Therefore for all the species the stop codons
are excluded from the calculations. This means that the length of the coding sequence
Ncps is three times larger than the corresponding length of the protein sequence for all
the species. In this way (excluding the stop codons) all the data used in the calculations
are consistent.
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Fig.23 CL — qu diagrams for the sequences listed in Table 17

The locations in the gene, the numbers of y bases, N Z , for each k-th exon according
to the latest version of the EMBL database are specified in Tables 19, 20, 21, 22, 23.
The lengths of the k-th exon, where k = 1,2, 3

Ne= > N (35)

y=A,C.T,G

are also given.

Many authors of alternative methods consider in their studies only the first exon,
in fact only the coding part of this exon. In this work, different parts of the gene are
considered. The calculations have been performed for several sets of data for different
species:

1. Sequences with introns with the length Npy,s1, denoted Plusl,

Parts of the first exons starting with the start codon (coding sequences of the first

exons) with the length N1, denoted Exon 16DS,

The second exons with the length N;, denoted Exon

4. Parts of the third exons excluding the stop codons (coding sequences of the third
exons) with the length N3, denoted Exon 36Ds,

(O8]

2CDS
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Fig.24 CL — qu diagrams for the sequences listed in Table 17.

5. The whole first exons which are given in the EMBL database only for three species
with the length Ny, denoted Exon 1,
6. The coding sequences with the lengths Ncps = 213(=1 Nk, denoted CDS.

Figure 26 shows s%' - sf{ diagrams for the B-globin coding sequences (CDS) across
the species. Panels a, b, ¢, and d correspond, respectively, to A, C, T, and G bases.
The horizontal axes represent the similarity measure based on asymmetry, s;’ , and the
vertical ones represent the similarity measure based on the kurtosis of the distributions
of y bases along the sequence, sf{. The largest differences between s%’ and sf{ are for
y = C.For G distributions most of the points are concentrated very close to the dashed
line (similarity relations across species are nearly the same using s3G and sf for the
coding sequences). Moreover we observe small values of s4C , s4T , and sf (panels b,
¢, d) i.e. large similarities between the kurtosis of C, T, and G spectra for different
species. The similarity relations between the species based on the comparison of both
the asymmetry and the kurtosis Sf’,’4 are shown in Fig. 27. Panel a shows 52’4 — Si’4

diagram, panel b—S%4 - SZ’4 diagram, panel C—S?;‘4 — 53’4 diagram, and panel
d—Sé’4 — Sé’4 diagram. All the panels correspond to CDS. In all the cases points are
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Fig. 25 CL — d" diagrams for the sequences listed in Table 17
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Fig. 27 53’4 - 53}4 diagrams for B-globin coding sequences across species

distributed far from the dashed lines and this indicates that there are no correlations
between these measures for different y. Each S;"‘ carries independent information.

S}3,'4 are also shown in Fig. 28. In this figure the measures are compared for dif-
ferent parts of the B-globin gene. The horizontal axes correspond to the sequences
with introns, Plusl. The vertical axes correspond to the coding sequences of particular
exons: column 1 to Exon 125 column 2 to Exon 2625 and column 3 to Exon 3¢25.
The first row of subfigures correspond to A bases, the second row to C bases, the third
row to T bases and the fourth row to G bases.

We observe that the points are concentrated around the dashed lines in the middle
column (Exon 2¢P5) comparing to the first and to the third columns. Small deviations
from the dashed lines mean that the second exon is most representative in the whole
sequence, Plusl (the similarity relations across species fulfilled by Plusl and and by
Exon 2605 are closer to each other than the relations fulfilled by Plusl and by the
other exons). We have also shown that the similarity relations across species fulfilled
by CDS and and by Exon 2¢P5 are closer to each other than the relations fulfilled by
CDS and by the other exons [71].

If we compare the distributions of the points between different bases (rows) one can
extract some properties common for particular bases and for some parts of the genes.
By a common property we understand close to zero Sf,*4 (small values correspond to
large similarities). In particular small differences between sequences across species
are revealed for G bases for the first and for the second exons (panels j, k) and also
for C and for T bases for the second exon (panels e, h). Generally, larger differences
are seen for longer sequences. However also for Plusl one can extract properties more
common for the species (small ranges of 51‘4[Plusl] and S;A[Plusl]—ﬁrst and third
IOWS).
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Fig. 28 513,’4 — S;A diagrams for the sequences listed in Tables 19, 20, 21, 22

Figure 29 shows similarity relations for different exons using standard alignment
method Clustal W version 2.0 [148]. As it was mentioned before, the alignment
methods do not take into account which bases are aligned. The alignment of all the
bases gives the contribution to the final result and, as a consequence, the similarity is
large for all the parts. It is not possible to extract detailed properties of similarities.
The information coming from these calculations is averaged. Finally, the similarity
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Fig. 30 DJI/ [Exon 1] —D)l/ [Exon 1€DS] diagrams for the sequences of 3 species listed in Table 23

values for different exons are the same for all the species since most of the points are
concentrated close to the dashed lines.

Complete sequences for the first exons are given only for three species (Table 23).

The whole sequences of the first exons for human and gorilla differ by only one base.
As we see in Fig. 30 this is G base. The descriptors D#, DE, DIT are exactly the
same for human and gorilla sequences. The difference caused by this single base is
recognized by DlG (panel d).
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Table 19 Locations of sequences with introns (Plusl) in 8-globin gene from the EMBL database

No. Species ID/Accession Location in gene NpjusI Ncps
1 Homo sapiens (Human) u01317 62187-63607 1421 441
2 Pan troglodytes (Chimpanzee) X02345 4189-5531 1343 375
3 Gorilla gorilla (Gorilla) X61109 4538-5880 1343 363
4 Eulemur macaco (Lemur) M15734 154-1592 1439 441
5 Rattus norvegicus (Rat) X06701 310-1502 1193 441
6 Capra hircus (Goat) M15387 279-1746 1468 435
7 Bos taurus (Bovine) X00376 278-1738 1461 435
8 Oryctolagus cuniculus (Rabbit) V00882 277-1416 1140 441
9 Didelphis virginiana (Opossum) J03643 467-2485 2019 441

Table 20 Locations of the coding sequences of the first exon (Exon 1€DSy in B-globin gene from the
EMBL database

No. Species Location in gene Ny N lA N IC N 1T N IG
1 Human 62187-62278 92 17 19 20 36
2 Chimpanzee 4189-4293 105 20 20 24 41
3 Gorilla 4538-4630 93 17 19 20 37
4 Lemur 154-245 92 19 15 23 35
5 Rat 310-401 92 20 18 21 33
6 Goat 279-364 86 17 17 17 35
7 Bovine 278-363 86 17 16 18 35
8 Rabbit 277-368 92 18 16 20 38
9 Opossum 467-558 92 21 20 22 29

6 Conclusions

Summarizing, four-component spectral representation has been used for similarity/dis-
similarity analysis of histone H4 coding sequences across species (Figs. 12, 13, 14,
15, 16, 17, 18, 21, 22, 23, 24, 25), of histone H1 coding sequences across species
(Figs. 19, 20), and of different parts of S-globin gene across species (Figs. 26, 27, 28,
29, 30). Since many authors use slightly different data for §-globin gene, the locations
of different subsequences in this gene and their full description listed in the tables may
be helpful for some alternative similarity studies. The numbers of particular bases in
all the sequences are also given.

It has been shown that the four-component spectral representation can be used for
the classification studies (clusterization of the descriptors representing histones H4
and HI1 coding sequences of plants and of vertebrates). Analogous clusterization is
also obtained using some descriptors related to 2D-dynamic graphs (Sect. 4). The
sensitivity of the four-component spectral representation has also been shown. In par-
ticular, a difference between a pair of sequences by only one base can be recognized.
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Table 21 Locations of sequences of the second exon (Exon 2CDSy in B-globin gene from the EMBL
database

No. Species Location in gene Ny Nf‘ N2C NZT NZG
1 Human 62409-62631 223 44 58 56 65
2 Chimpanzee 4412-4633 222 44 58 56 64
3 Gorilla 4761-4982 222 45 58 56 63
4 Lemur 376-598 223 45 60 57 61
5 Rat 517-739 223 52 57 58 56
6 Goat 493-715 223 50 52 59 62
7 Bovine 492-714 223 49 51 61 62
8 Rabbit 495-717 223 50 55 55 63
9 Opossum 672-894 223 47 54 63 59

Table 22 Locations of the coding sequences of the third exon (Exon 3€DSy in B-globin gene from the
EMBL database

No. Species Location in gene N3 N? N3C N3T N3G
1 Human 63482-63607 126 25 37 29 35
2 Chimpanzee 5484-5531 48 7 14 13 14
3 Gorilla 5833-5880 48 7 13 14 14
4 Lemur 1467-1592 126 20 33 31 42
5 Rat 1377-1502 126 25 36 29 36
6 Goat 1621-1746 126 20 36 30 40
7 Bovine 1613-1738 126 22 32 32 40
8 Rabbit 1291-1416 126 25 33 34 34
9 Opossum 2360-2485 126 25 31 34 36

Table 23 Locations of sequences of the whole first exon (Exon 1) in B-globin gene from the EMBL
database

Species Location in gene Nw1 N IA N 1C N IT N 1G
Human 62137-62278 142 33 35 32 42
Gorilla 4488-4630 143 33 35 32 43
Rabbit 224-368 145 35 31 34 45

Also the approximate location of the difference and the base which is different in the
compared sequences can be also determined.

It has been shown that if higher-order terms of similarity measure based on the
descriptors of the four-component spectral representation are added and normalized
in the same way as in the alignment methods then a convergence to Clustal W results
may be obtained. This means that the results obtained with the alignment method may
be interpreted as an average of the considered components of the alternative similarity

@ Springer



J Math Chem (2011) 49:2345-2407 2403

measures. Calculating an average is always related to some loss of information, i.e.
large degree of degeneracy may appear. As we know, this is an inconvenient feature of
similarity/dissimilarity analysis. For example, using the alignment methods the two
situations

1. AAAA
AAAA

2. TTTT
TTTT

cannot be distinguished. Therefore, using the four-component spectral representations
one has a chance to decompose the similarity information and remove the degeneracy.
Reducing the degeneracy can also be obtained by adding the corrections to the align-
ment methods related to different aspects of similarity, as it is proposed in Sect. 2 of
this work.

It has been shown that each part of 8-globin gene demonstrates different similarity
relations across species. The relations also change when different aspects of similar-
ity are compared (asymmetry of the gene structure or kurtosis of the distributions).
Therefore using different descriptors or different graphical representations the results
may be or very often should be contradictory. Different alternative methods describe
different aspects of similarity. In particular, most of alternative studies that have been
performed for Exon 1¢PS of B-globin gene often give contradictory results. For exam-
ple the similarity value of Exon 1°PS human—goat is larger than human—mouse if the
methods described in the works [106,112,126,137,149] are used. The reverse situation
i.e. similarity value between the sequences of Exon 1°PS human—goat is smaller than
human-mouse if methods taken from [32,33,36,108,110,122,150-152] are applied.

Many authors introducing new graphical representations for beta-globin gene try
to avoid considering chimpanzee and gorilla sequences not only because the data are
not complete but also because the results are often different than our expectations.
We expect the largest similarity for human—chimpanzee sequences. However detailed
similarity/dissimilarity analysis of beta-globin gene using four-component spectral
representation indicates that this is not true for all parts of the beta-globin gene and for
all y-components of similarity measures. According to the definition of the new mea-
sures, 53’4 becomes smaller if the sequences are more similar. Considering the second
exon, I obtain the largest similarity in the case of human—chimpanzee sequences. This
means that 513,’4 is the smallest for the two sequences for all y, and in particular 53’4:0
fory = A, C, T. The difference between the two sequences is only in the distribution
of G bases. It is interesting to note that S?/4 = 0 for the second exon, both for C and
for T bases, in three cases: human-chimpanzee, human-gorilla and gorilla—chimpan-
zee sequences. However for other exons, 55'4 is not always the smallest in the case
of human—chimpanzee sequences comparing to human—other species sequences. If
the sequence with introns, Plusl, is considered then 52’4 is the smallest for human—
chimpanzee sequences and fory = A, T, G, Sf,’4 are the smallest for human—gorilla
sequences.

Each descriptor may be related to different biological function. Since we are at the
beginning of the way of understanding in which contexts particular descriptors may
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play the key role, the creation of new alternative methods aiming at similarity/dissim-
ilarity analysis of biological sequences is of particular importance.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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