Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;8(3):459–473. doi: 10.1007/s10530-005-6410-4

Biological Invasions Across Spatial Scales: Intercontinental, Regional, and Local Dispersal of Cladoceran Zooplankton

John E Havel 1,, Kim A Medley 1
PMCID: PMC7088012  PMID: 32214882

Abstract

The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.

Keywords: connectivity, Daphnia lumholtzi, exotic species, GIS, hydrologic connections, passive dispersal, reservoir, scale of invasions

References

  1. Amoros C, Bornette G. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology. 2002;47:761–776. doi: 10.1046/j.1365-2427.2002.00905.x. [DOI] [Google Scholar]
  2. Barnhisel DR, Harvey HA. Size-specific fish avoidance of the spined crustacean Bythotrephes: field support for laboratory predictions. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:768–775. [Google Scholar]
  3. Benzie JAH. The systematics of Australian Daphnia (Cladocera: Daphniidae): Species descriptions and keys. Hydrobiologia. 1988;166:95–161 pp. [Google Scholar]
  4. Benzie JAH, Hodges AMA. Daphnia obtusa Kurz, 1874 emend Scourfield, 1942 from Australia. Hydrobiologia. 1996;333:195–199. [Google Scholar]
  5. Berg DJ, Garton DW. Genetic differentiation in North American and European populations of the cladoceran Bythotrephes. Limnology and Oceanography. 1994;39:1503–1516. [Google Scholar]
  6. Bohonak AJ, Jenkins DG. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters. 2003;6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x. [DOI] [Google Scholar]
  7. Boileau MG, Hebert PDN, Schwartz SS. Non-equilibrium gene frequency divergence: persistent founder effects in natural populations. Journal of Evolutionary Biology. 1992;5:25–39. doi: 10.1046/j.1420-9101.1992.5010025.x. [DOI] [Google Scholar]
  8. Brendonck L, Riddoch BJ. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda) Biological Journal of the Linnean Society. 1999;67:87–95. doi: 10.1006/bijl.1998.0293. [DOI] [Google Scholar]
  9. Brown JH, Lomolino MV. Biogeography. Sunderland, Massachusetts: Sinauer; 1998. p. 691. [Google Scholar]
  10. Buchan LAJ, Padilla DK. Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecological Applications. 1999;9:254–265. [Google Scholar]
  11. Bur DM, Klarer MT, Krieger KA. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron. Journal of Great Lakes Research. 1986;12:144–146. [Google Scholar]
  12. Cáceres CE. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology. 1998;79:1699–1710. [Google Scholar]
  13. Cáceres CE, Soluk DA. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia. 2002;131:402–408. doi: 10.1007/s00442-002-0897-5. [DOI] [PubMed] [Google Scholar]
  14. Clark JS. Why trees migrate so fast: confronting theory with disperal biology and the paleorecord. The American Naturalist. 1998;152:204–224. doi: 10.1086/286162. [DOI] [PubMed] [Google Scholar]
  15. Cohen GM, Shurin JB. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos. 2003;103:603–617. doi: 10.1034/j.1600-0706.2003.12660.x. [DOI] [Google Scholar]
  16. Cottenie K, De Meester L. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology. 2004;85:114–119. [Google Scholar]
  17. Cottenie K, Michels E, Nuytten N, De Meester L. Zooplankton metacommunity structure: regional versus local processes in highly interconnected ponds. Ecology. 2003;84:991–1000. [Google Scholar]
  18. Cristescu MEA, Hebert PDN, Witt JDS, MacIsaac HJ, Grigorovich IA. An invasion history for Cercopagis pengoi based on mitochondrial gene sequences. Limnology and Oceanography. 2001;46:224–229. [Google Scholar]
  19. Davis JP, Grime MA, Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology. 2000;88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x. [DOI] [Google Scholar]
  20. DeMeester B, Gomez L, Okamura A, Schwenk K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica. 2002;23:121–135. [Google Scholar]
  21. DeMelo R, Hebert PDN. Allozymic variation and species diversity in North American Bosminidae. Canadian Journal of Fisheries and Aquatic Sciences. 1994a;51:873–880. [Google Scholar]
  22. DeMelo R, Hebert PDN. Founder effects and geographic variation in the invading cladoceran Bosmina (Eubosmina) coregoni Baird 1857 in North America. Heredity. 1994b;73:490–499. [Google Scholar]
  23. DeMelo R, Hebert PDN. A taxonomic reevaluation of North American Bosminidae. Canadian Journal of Zoology. 1994c;72:1808–1825. [Google Scholar]
  24. Dodson SI. Predicting crustacean zooplankton species richness. Limnology and Oceanography. 1992;37:848–856. [Google Scholar]
  25. Dodson SI, Frey DG. Cladocera and other Branchiopoda. In: Thorp JH, Covich AP, editors. Ecology and Classification of North American Freshwater Invertebrates. San Diego: Academic Press; 2001. pp. 850–914. [Google Scholar]
  26. Duffy MA, Perry LJ, Kearns CA, Weider LJ, Hairston NG., Jr. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. Limnology and Oceanography. 2000;45:1409–1414. [Google Scholar]
  27. Dumont HJ, Cocquyt C, Fontugne M, Arnold M, Reyss JL, Bloemendal J, Oldfield F, Steenbergen CLM, Korthals HJ, Zeeb BA. The end of moai quarrying and its effect on Lake Rano Raraku, Easter Island. Journal of Paleolimnology. 1998;20:409–422. doi: 10.1023/A:1008012720960. [DOI] [Google Scholar]
  28. Dzialowski AR, O’Brien WJ, Swaffar SM. Range expansion and potential dispersal mechanisms of the exotic cladoceran Daphnia lumholtzi. Journal of Plankton Research. 2000;22:2205–2223. doi: 10.1093/plankt/22.12.2205. [DOI] [Google Scholar]
  29. Elton CS. The Ecology of Invasions by Animals and Plants. Chicago: University of Chicago Press; 1958. p. 181 pp. [Google Scholar]
  30. Figuerola J, Green AJ, Santamaria L. Passive internal transport of aquatic organisms by waterfowl in Donana, south-west Spain. Global Ecology and Biogeography. 2003;12:427–436. doi: 10.1046/j.1466-822X.2003.00043.x. [DOI] [Google Scholar]
  31. Flossner D, Kraus K. Zwei fur mitteleuropa neue cladoceran-arten (Daphnia ambigua Scourfield, 1946, und Daphnia parvula Fordyce, 1901) aus suddeutschland. Crustaceana. 1976;30:301–309. [Google Scholar]
  32. Forbes SA. The lake as a microcosm. Bulletin of the Illinois Natural History Survey. 1925;15:537–550. [Google Scholar]
  33. Frey DG. Questions concerning cosmopolitanism in Cladocera. Archiv für Hydrobiologie. 1982;93:484–502. [Google Scholar]
  34. Galat DL, Fredrickson LH, Humberg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McColpin AC, Renken RB, Semlitsch RD. Flooding to restore connectivity of regulated, large-river wetlands. BioScience. 1998;48:721–733. [Google Scholar]
  35. Havel JE, Hebert PDN. Daphnia lumholtzi in North America: another exotic zooplankter. Limnology and Oceanography. 1993;38:1823–1827. [Google Scholar]
  36. Havel JE, Shurin JB. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography. 2004;49:1229–1238. [Google Scholar]
  37. Havel JE, Stelzleni-Schwent J. Zooplankton community structure: the role of dispersal. Internationale Vereinigung für theoretische und angewandte Limnologie. 2000;27:3264–3268. [Google Scholar]
  38. Havel JE, Mabee WR, Jones JR. Invasion of the exotic cladoceran Daphnia lumholtzi into North American reservoirs. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:151–160. [Google Scholar]
  39. Havel JE, Colbourne JK, Hebert PDN. Reconstructing the history of intercontinental dispersal in Daphnia lumholtzi by use of genetic markers. Limnology and Oceanography. 2000a;45:1414–1419. [Google Scholar]
  40. Havel JE, Eisenbacher EM, Black AA. Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquatic Ecology. 2000b;34:63–76. doi: 10.1023/A:1009918703131. [DOI] [Google Scholar]
  41. Havel JE, Shurin JB, Jones JR. Estimating dispersal from patterns of spread: spatial and local control of invasion by Daphnia lumholtzi in Missouri lakes. Ecology. 2002;83:3306–3318. [Google Scholar]
  42. Hebert PDN (1995) The Daphnia of North America: an illustrated fauna. CD-ROM. Distributed by the author. Department of Zoology, University of Guelph, Guelph, Ontario, Canada
  43. Hebert PDN, Hann BJ. Patterns in the composition of Arctic tundra pond microcrustacean communities. Canadian Journal of Fisheries and Aquatic Sciences. 1986;43:1416–1425. [Google Scholar]
  44. Hutchinson GE. A Treatise on Limnology. Volume I: Geography, Physics, and Chemistry. London: John Wiley & Sons; 1957. [Google Scholar]
  45. Jenkins DG, Buikema ALJ. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs. 1998;68:421–443. [Google Scholar]
  46. Johnson LE, Carlton JT. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology. 1996;77:1686–1690. [Google Scholar]
  47. Johnson LE, Padilla DK. Geographic spread of exotic species: ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biological Conservation. 1996;78:23–33. doi: 10.1016/0006-3207(96)00015-8. [DOI] [Google Scholar]
  48. Johnston LM, Coffey RT, Howard-Williams C. The role of recreational boat traffic in interlake dispersal of macrophytes: A New Zealand case study. Journal of Environmental Management. 1985;20:263–279. [Google Scholar]
  49. Kerfoot WC. Perspectives on cyclomorphosis: separation of phenotypes and genotypes. In: Kerfoot WC, editor. Evolution and Ecology of Zooplankton Communities. Hanover, New Hampshire, USA: The University Press of New England; 1980. pp. 470–496. [Google Scholar]
  50. Lennon JT, Smith VH, Williams K. Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. Journal of Plankton Research. 2001;23:425–434. doi: 10.1093/plankt/23.4.425. [DOI] [Google Scholar]
  51. Lieder U. The Bosmina kessleri-like morphotype of Eubosmina in Lake Muskoka, Ontario, Canada, as putative interspecific hybrids. Hydrobiologia. 1991;225:71–80. doi: 10.1007/BF00028386. [DOI] [Google Scholar]
  52. Lonsdale WM. Global patterns of plant invasions and the concept of invasibility. Ecology. 1999;80:1522–1536. [Google Scholar]
  53. Louette G, De Meester L. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology. 2005;86:253–359. [Google Scholar]
  54. LTER (2004) North Temperate Lakes Long Term Ecological Research. Retrieved from http://limnosun.limnology.wisc.edu/
  55. MacIsaac HJ, Grigorovich IA, Hoyle JA, Yan ND, Panov VE. Invasion of Lake Ontario by the Ponto-Caspian predatory cladoceran Cercopagis pengoi. Canadian Journal of Fisheries and Aquatic Sciences. 1999;56:1–5. doi: 10.1139/cjfas-56-1-1. [DOI] [Google Scholar]
  56. MacIsaac HJ, Ketelaars HAM, Grigorovich IA, Ramcharan CW, Yan ND. Modeling Bythotrephes longimanus invasions in the Great Lakes basin based on its European distribution. Archiv für Hydrobiologie. 2000;149:1–22. [Google Scholar]
  57. Magnuson JJ, Tonn WM, Banerjee A, Toivonen J, Sanchez O, Rask M. Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology. 1998;79:2941–2956. [Google Scholar]
  58. Mellors WK. Selective predation of ephippial Daphnia and the resistance of ephippial eggs to digestion. Ecology. 1975;56:974–980. [Google Scholar]
  59. Michels E, Cottenie K, Neys L, De Meester L. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia. 2001;442:117–126. doi: 10.1023/A:1017549416362. [DOI] [Google Scholar]
  60. Mills EL and Forney JL (1988) Trophic dynamics and development of freshwater pelagic food webs. In: Carpenter SR (ed) Complex Interactions in Lake Communities, pp 11–30. Springer-Verlag
  61. Mills EL, Leach JH, Carlton JT, Secor CL. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research. 1993;19:1–54. [Google Scholar]
  62. Moyle PB, Light T. Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation. 1996;78:149–161. doi: 10.1016/0006-3207(96)00024-9. [DOI] [Google Scholar]
  63. NCID (2004) National Center for Infectious Diseases. Retrieved from http://www.cdc.gov/ncidod/index.htm
  64. Pattinson KR, Havel JE, Rhodes RG. Invasibility of a reservoir to exotic Daphnia lumholtzi: experimental assessment of diet selection and life history responses to cyanobacteria. Freshwater Biology. 2003;48:233–246. doi: 10.1046/j.1365-2427.2003.00987.x. [DOI] [Google Scholar]
  65. Petkovski ST. On the presence of Daphnia pulicaria Forbes Emend. Hrbácek and Daphnia parvula Fordyce in Yugoslavia. Mitteilungen aus dem Hamburgischen Zoologischen Museum and Institut. 1990;87:261–272. [Google Scholar]
  66. Proctor VW, Malone CR. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology. 1965;46:728–729. [Google Scholar]
  67. Rahel FJ. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics. 2002;33:291–315. doi: 10.1146/annurev.ecolsys.33.010802.150429. [DOI] [Google Scholar]
  68. Ramcharan CW, Padilla DK, Dodson SI. Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences. 1992;49:2611–2620. [Google Scholar]
  69. Reid JW. How ‘cosmopolitan’ are the continental cyclopoid copepods? Comparison of the North American and Eurasian faunas, with description of Acanthocyclops parasensitivus sp.n. (Copepoda: Cyclopoida) from the USA. Zoologisher Anzeiger. 1998;236:109–118. [Google Scholar]
  70. Reid JW, Pinto-Coelho RM. An Afro-Asian continental Copepod, Mesocyclops ogunnus, found in Brazil, with a new key to the species of Mesocyclops in South America and a review of international introductions of copepods. Limnologica. 1994;24:359–368. [Google Scholar]
  71. Schulz KL, Yurista PM. Implications of an invertebrate predator’s (Bythotrepes cederstroemi) atypical effects on a pelagic zooplankton community. Hydrobiologia. 1999;380:179–193. [Google Scholar]
  72. Scourfield DJ. A short-spined Daphnia presumably belonging to the “longispina” group – D. ambigua n.sp. Journal of the Quekett Microscope Club. 1947;11:127–131. [Google Scholar]
  73. Shigesada N and Kawasaki K (1997) Biological Invasions: Theory and Practice. Oxford University Press.
  74. Shurin JB. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology. 2000;81:3074–3086. [Google Scholar]
  75. Shurin JB, Havel JE. Hydrologic connections and overland dispersal in an exotic freshwater crustacean. Biological Invasions. 2002;4:431–439. doi: 10.1023/A:1023692730400. [DOI] [Google Scholar]
  76. Shurin JB, Havel JE, Liebold MA, Pinel-Alloul B. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology. 2000;81:3062–3073. [Google Scholar]
  77. Simberloff D. What makes a good island colonist? In: Denno RF, Dingle H, editors. Insect Life History Patterns: Habitat and Geographic Variation. New York, NY, USA: Springer-Verlag; 1981. pp. 195–205. [Google Scholar]
  78. Sorensen KH, Sterner RW. Extreme cyclomorphosis in Daphnia lumholtzi. Freshwater Biology. 1992;28:257–262. [Google Scholar]
  79. Spencer CN, McClelland BR, Stanford JA. Shrimp stocking, salmon collapse, and eagle displacement. BioScience. 1991;41:14–21. [Google Scholar]
  80. Stemberger RS. Pleistocene refuge areas and postglacial dispersal of copepods of northeastern United States. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:2197–2210. [Google Scholar]
  81. Stoeckel JA, Camlin L, Blodgett KD, Sparks RE. Establishment of Daphnia lumholtzi (an exotic zooplankter) in the Illinois River. Journal of Freshwater Ecology. 1996;11:377–380. [Google Scholar]
  82. Taylor DJ, Hebert PDN. A reappraisal of phenotypic variation in Daphnia galeatamendotae: the role of interspecific hybridization. Canadian Journal of Fisheries and Aquatic Sciences. 1993;50:2137–2146. [Google Scholar]
  83. Taylor DJ, Hebert PDN. Cryptic intercontinental hybridization in Daphnia (Crustacea): the ghost of introductions past. Proceedings of the Royal Society of London. 2000;254:163–168. [Google Scholar]
  84. Thornton KW, Kimmel BL, Payne FE. Reservoir Limnology: Ecological Perspectives. New York: Wiley-Interscience; 1990. [Google Scholar]
  85. Thorp JH, Black AR, Haag KH, Wehr JD. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences. 1994;51:1634–1643. [Google Scholar]
  86. Weider LJ, Hebert PDN. Ecological and physiological differences among low-Arctic clones of Daphnia pulex. Ecology. 1987;68:188–198. [Google Scholar]
  87. Wetzel RG, editor. Limnology: Lake and River Ecosystems. San Diego, California: Academic Press; 2001. p. 1006. [Google Scholar]
  88. Wiens JA. Spatial scaling in ecology. Functional Ecology. 1989;3:385–397. [Google Scholar]
  89. Williamson C. Copepoda. In: Thorp JH, Covich AP, editors. Ecology and Classification of North American Freshwater Invertebrates. San Diego: Academic Press Inc.; 2001. pp. 915–954. [Google Scholar]
  90. Yan ND, Girard R, Boudreau S. An introduced invertebrate predator (Bythotrephes) reduces zooplankton species richness. Ecology Letters. 2002;5:481–485. doi: 10.1046/j.1461-0248.2002.00348.x. [DOI] [Google Scholar]
  91. Zanata LH, Espíndola ELG, Rocha O, Pereira R. First record of Daphnia lumholtzi (Sars, 1885), exotic cladoceran, in São Paulo state (Brazil) Brazilian Journal of Biology. 2003;63:717–720. doi: 10.1590/S1519-69842003000400019. [DOI] [PubMed] [Google Scholar]

Articles from Biological Invasions are provided here courtesy of Nature Publishing Group

RESOURCES