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Abstract The complex dynamics of HIV transmission and subsequent progression to AIDS
make the mathematical analysis untraceable and problematic. In this paper, we develop an
extended CA simulation model to study the dynamical behaviors of HIV/AIDS transmission.
The model incorporates heterogeneity into agents’ behaviors. Agents have various attributes
such as infectivity and susceptibility, varying degrees of influence on their neighbors and
different mobilities. Additional, we divide the post-infection process of AIDS disease into
several sub-stages in order to facilitate the study of the dynamics in different development
stages of epidemics. These features make the dynamics more complicated. We find that the
epidemic in our model can generally end up in one of the two states: extinction and persis-
tence, which is consistent with other researchers’ work. Higher population density, higher
mobility, higher number of infection source, and greater neighborhood are more likely to
result in high levels of infections and in persistence. Finally, we show in four-class agent
scenario, variation in susceptibility (or infectivity) and various fractions of four classes also
complicates the dynamics, and some of the results are contradictory and needed for further
research.

Keywords HIV/AIDS transmission · Epidemic dynamics · Heterogeneity · Cellular
automata

1 Introduction

Since the first case was reported in 1981, AIDS has been considered as the most devastating
epidemic disease. For effective control and prevention of this epidemic, many researchers
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focus on HIV/AIDS transmission among human groups in order to better understand its
dynamical behavior.

In epidemic modeling (see, e.g., Bailey 1975; Anderson and May 1991; Murray 2005),
there are two frequently used methodologies: mathematical and simulation methods. For
mathematical approaches, a cohort of people is often classified into susceptibles, infectives,
and recovereds with (without) immunity (see, e.g., Kermack and McKendrick 1927). Sys-
tems of differential equations are used to describe the linear (nonlinear) dynamics of epi-
demics. Macroscopically, mathematical models can reveal the relationship among primary
factors and describe their effects to epidemic spreading under certain assumptions. As to
HIV/AIDS epidemic, many models have been proposed (May and Anderson 1987; May et
al. 1988; Hyman et al. 1999; Brauer and Driessche 2001; Wu and Tan 2000, etc.). However,
mathematical approaches have some serious drawbacks due to its intractability and the com-
plexity of epidemics. Moreover, the complicated nature of HIV/AIDS transmission makes
it even harder to obtain analytical solutions and difficult to study them. In the early 1990s,
some researchers started to apply simulation approaches to this field. There is a large lit-
erature that addresses the computer simulation of epidemic dynamics (see, e.g., Leslie and
Brunham 1990; Atkinson 1996; Rhodes and Anderson 1996; Rhodes and Anderson 1997;
Ahmed and Agiza 1998; Benyoussef et al. 2003; Tarwater and Martin 2001). Particularly,
cellular automata (CA) method (some literature refers to this as a lattice-based method) has
been widely used in modeling complex adaptive systems. Despite of its simple structure, CA
is well suited to describing the propagation phenomena, such as rumor spreading, particle
percolation, innovation propagation, and disease spreading. For instance, in epidemic mod-
eling, Fuentes and Kuperman (1999) propose two CA models corresponding to the classical
mathematical SIS model and SIS model respectively. Ahmed and Agiza (1998) develop a
CA model that takes into consideration the latency and incubation period of epidemics and
allow each individual (agent) to have distinctive susceptibility. Gao et al. (2006) put forward
a CA model for SARS spreading which takes account of social influence. More Recently,
other methods such as agent-based modeling and system dynamics are introduced to this
field (see, e.g., Gordan 2003; Bagni et al. 2002). Our paper contributes to this filed by de-
veloping an extended CA simulation model. We then use the new CA model to investigate
some issues in HIV/AIDS epidemics.

Most models, including the foregoing CA models, have some limitations that fail to con-
sider the peculiarities of HIV/AIDS epidemics and are thereby incapable of describing the
epidemic accurately and completely (see Frauenthal 1980 for more discussion). First, most
of the models assume that there is no latent (or incubation) period. However, for some epi-
demics, especially AIDS, there are variously lasting periods of latency and incubation as
well as behavior-varying infectivity (or susceptibility) during these periods. In fact, the de-
velopment of AIDS involves a few stages in which an infected individual can exhibit dif-
ferent behaviors. Those diversified behaviors, in turn, have some ignorable effects on the
dynamics of HIV/AIDS. In light of this, we extend the conventional division of epidemic
process (i.e., susceptible, infection, and removed) by dividing the infection period into three
sub-stages, each corresponding to the clinical stage occurring in the course of AIDS devel-
opment. Due to the inability of classical CA approaches to accommodate those newly added
state transitions events, we also borrow some ideas from discrete-event simulation tech-
niques and make one agent’s stage transitions being time-triggered instead of using some
state-based transition rules.

Secondly, it is commonly assumed that individuals in the population are homogenous in
the sense that they have equal infectivity and susceptibility, or they can exert the same influ-
ence on each other, etc. This assumption may be satisfied in commonly observed epidemics
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but not consistent with the HIV/AIDS epidemic. As we know, susceptibility and infectivity
heavily depends on individuals’ behavior. For examples, safe sex practices such as the use
of condom could dramatically reduce the chance of infection. Also, the way of HIV/AIDS
transmission for one to another is various, depending on the interactions between people, and
thus the probability of getting infected is determined in part by transmission routes and can
be quite different between infected-male/susceptible-female and susceptible-male/infected-
female interactions. Under this assumption, the models that are confined to a single high-risk
human group are not suitable in overall population cases. New models are needed to explic-
itly consider the complexity. Therefore, we make an extension to the traditional CA model
by introducing the extended definition of neighborhood and attaching some attributes to
each agent such as infectivity and resistibility. We also define four types of agents that are
characterized by different infectivity (and susceptibility) and various forms of neighborhood
to represent four types of people in real life. In doing so, we will be able to investigate the
dynamics of HIV/AIDS with heterogeneous groups in a realistic way.

Thirdly, classical CA models assume that agents in the grid are spatially fixed, that is,
once an agent is placed in a cell, it does not move into another cell. This assumption is prob-
lematical because people in the real world are migratory. For instance, in China, millions of
rural people leave their hometowns and seek jobs in the cities. The migration of population
is a driving force for the spread of HIV/AIDS. Ignoring the mobility of agents in epidemic
models would jeopardize the creditability of the results obtained. Considering this point,
we incorporate agents’ mobility into their behaviors. In our model, each agent is allowed to
move randomly into one of its adjoined and unoccupied cells at random time intervals.

Recently, Agent-based modeling is used in various fields to solve plenty of problems
(see, e.g. Zhang and Bhattacharyya 2007; Luo et al. 2007). Some reader might notice that
our improved CA model have features that usually found in Agent-based methodology. As
a matter of fact, our method borrows much from agent-based simulation modeling. To make
things simple, we prefer to view this model as being a CA models.

This paper is organized as follows. In the next section, we present our extended CA
simulation model. Section 3 gives a detailed description of simulation results and analyzes
some influential factors that affect the dynamical behavior of the model. Section 4 concludes
and points out some possible extensions and directions for future research.

2 CA model for HIV/AIDS transmission

2.1 Cellular automata

Cellular automata have been extensively used as tools for modeling complex adaptive sys-
tems such as traffic flow, financial markets, chemical systems, biological groups, and other
social systems (see e.g. Gerhard and Schuster 1989; Gerhardt et al. 1990; Weimar et al.
1992; Karafyllidis and Thanailakis 1997; Karafyllidis 1998). Usually, a typical CA model
consists of a regular two-dimension grid with a certain boundary condition and a swarm
of agents living in the grid.1 The neighborhood of an agent is defined to some (or all) of
the immediately adjacent cells and the agents who inhabit in the neighborhood are called
neighbors. Agents are restricted to local neighborhood interaction and hence are unable to
communicate globally. There are several states agents can be in at each time and an agent’s

1Note that in the conventional view, the cells in the grid and the agents who occupy them are equivalent. Here
we take another view and see them as being different to facilitate the modeling.
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state at time t + 1 is determined based on its neighbors’ states at time t . The rules used in
the determination of next-time states can be written as a mapping:

f : (S, t) → S, (1)

where S is the set of states and t denotes simulation time. The mathematical properties of
cellular automata have been studied in Martin et al. (1984).

In our Model, we consider a population of size N(t) at time t randomly distributed in a
two-dimension w × w lattice. Population growth rate r is fixed throughout the simulation.
At each time, new agents are added to the model, and the dead removed. Simulation time
advances in a discrete way. The time interval (t, t + 1) is specified to represent one week
in real life. This assumption makes the simulations run reasonably fast (with respect to the
whole progress of epidemics) without losing any time-specific clinical properties associated
with HIV/AIDS.

2.2 Epidemic stages and state transitions

Explicitly modeling the post-infection progression to AIDS is one feature of our model com-
pared with conventional CA models. Classical epidemic models divide the closed population
into three subgroups: susceptible, infective, and recovered (removed). This simplified clas-
sification is not consistent with the epidemics in real life. Particularly, it is well established
that an individual, once infected with HIV, undergoes roughly three clinical phrases towards
the full-blown AIDS: (1) infected, not yet infectious, (2) infectious, not yet asymptomatical,
and, (3) symptomatical (May and Anderson 1987; May et al. 1988). The lifetime of an in-
dividual should cover not only the process from health to infection, but also the sub-stages
after infection. Thus, we assume that each agent can go through the following states:

• S1: Healthy state,
• S2: Dangerous (or critical) state,
• S3: Infected state,
• S4: Infectious state,
• S5: Symptomatic state,
• S6: Deceased state.

Figure 1 shows the possible state transitions throughout the lifetime of an agent.
Initially, each agent is set to be in S1 state. Healthy agents have no risk of being infected.

When a healthy agent moves into the neighborhood of an infectious one or an infectious
agent approaches him, the healthy agent’s state will change from S1 to S2 because contacts
with infectives incur the danger of infection.

As for an agent in S2 state, it can transit in two directions: One direction is to change
from S2 back to S1, after all its infectious neighbors move away (or its dead neighbors
are removed from the grid) or he leaves the neighborhoods of its infectious neighbors; the
other direction is to change from S2 to S3 if he unluckily get infected. Note that we assume
infection is instantaneous, i.e., instantaneous transmission from an infected individual to a
susceptible.

A newly infected agent is unable to transmit HIV virus until seroconversion. The S3 state
corresponds to the early stages of HIV infection. Let T1 denote the duration of this period.
Empirical works have been done to estimate the parameter. Anderson et al. (1988), Anderson
and Medley (1988) report T1 to lie between 40 and 60 days in transfusion-induced AIDS
cases. In our model we assume that T1 is a random variable following a normal distribution
with the mean μ1 and the variance σ 2

1 .
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After T1, the infected agent enters S4 state: infectious state. Medically, the duration dur-
ing which an infected is infectious but not yet symptomatic is called incubation period. We
let T2 donate the period. Empirical work suggests an average incubation period of around 4
to around 15 years (Medley et al. 1987, 1988). A Weibull distribution are commonly used to
describe this incubation period (see, e.g., Anderson 1988; Anderson and Medley 1988). Fur-
thermore, Anderson et al. (1988), Anderson and Medley (1988) estimated T2 with a Weibull
distribution (with a mean of 7.7 years and a median of 7.4 year) based on 545 transfusion-
induced AIDS cases. For simplicity, we take T2 as a real number drawn from a normal distri-
bution with the mean μ2 and the variance σ 2

2 rather than a Weibull distribution. It should be
pointed out that the simulation results generated with the normal distribution here are proved
to have little, if any, difference compared with those generated when a Weibull distribution
is employed.

During the T2 period, HIV viruses in the victim’s body are constantly cloning themselves
and eventually the immunity system collapses. At this point, the victim starts to show some
symptoms and thus transit to S5 state: symptomatic stage. As usually, let T3 denote the
duration of this period. Rothenberg et al. (1987) report 5–7 year survival rates among 1660
IDUs (Intravenous Drug User) in New York City and find a median time of survival of
282 days. Chang et al. (1993) report a median survival time of 10.5 months. Empirical
work shows that almost all HIV infectives, excluding those who die from other causes, will
inevitably develop AIDS and die of it (May and Anderson 1987). Similarly, we assume T3

follows a normal distribution with the mean μ3 and the variance σ 2
3 .

Eventually, the ill agent enters S6 state after T3 passes by Agents in S6 state will be
removed from the population at the beginning of the next time and all of their uninfected
neighbors will be released from S2 state, back to S1 state.

Generally, these state transitions take place in the order of S1, S2, S3, S4, S5, and S6. It
is impossible for an agent to return from S3 state to S1 or S2 state. This backward transition
S2 to S1, demonstrated by a dashed line in Fig. 1, is due to the disappearance of threats
posed by infectious agents. Moreover, although the transitions among S3, S4, and S5 state
are not relevant to the propagation process, this process is closely related to HIV/AIDS
transmission. Taking account of this procession is essential for a better understanding of
HIV/AIDS transmission.

In the model, all the events triggering transitions could be divided into two categories.
One category is a rule-based, such as healthy-to-dangerous, dangerous-to-infected, and
dangerous-to-healthy state-transition events. These events occur according to the CA tran-
sition rules: An agent’s state at time t + 1 is based not only on its own state but also on
the states of its neighbors at time t . The other category is time-based, meaning that these
events are scheduled at pre-specified times. For instance, an agent entering S3 state will be
assigned a time indicating when to change to S4 state. After that amount of time elapse, the
transition occurs spontaneously. Despite the distinction between these two categories, the
subtlety of implementing the two event-triggering mechanisms is very trivial and leaves no
further elaboration necessary.

Fig. 1 Transitions among six states
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Actually, these six states can be divided into three “super” classes in terms of the taxon-
omy used in the classical mathematical models: S1 and S2 states correspond to the suscep-
tible state; S3, S4, and S5 states belongs to the infection state, and S6 state is the removed
state. Obviously, S1 and S2 state could be treated as one single state without changing any
results. The reason why we divide this into two sub-states is that this makes our model easily
implemented and our logic decent and legible.

2.3 Heterogeneity in agents’ behavior

HIV/AIDS epidemic differs from other epidemics in that its dynamics is heavily affected
by individual’s behavioral patterns and the interactions between them. For example, care-
ful sex practices and sanitization measures in drug taking will make individuals less likely
to be infected. Behavioral patterns and interactions are mostly determined by individual’s
life styles, personalities, social networks, etc. However, the majority of models fail to take
account of the heterogeneity in agents’ behaviors. To capture this, we extend classical CA
models by allowing each agent to have its own attributes such as mobility, infectivity, re-
sistibility (susceptibility)2 and different extent of neighborhood.

2.3.1 Mobility

Assume that each cell in the grid can be occupied by at most one agent at a time. At time t ,
agent i can move from one cell into one of its adjacent cells with probability pm

i . Here, pm
i

is a measurement of agent i’s activity level. It is a fixed real number, drawn from a uniform
distribution (pm

min,p
m
max) (0 ≤ pm

min ≤ pm
max ≤ 1). When pm

min = pm
max, the activity level across

agents is equal and therefore agents have the same inclination to move around. One extreme
case is pm

min = pm
max = 0, which corresponds to the situation in which agents stay in their

initial places during simulation, whilst pm
min = pm

max = 1 means that each agent will move
into one empty neighboring cell at almost each time (he could get stocked and not move
anywhere if it’s neighborhood is occupied). It is easy to induce that the average time per
move is calculated as 1/pm

i . Intuitively, high level of activity leads to speedy spreading. Our
simulation results verify this.

2.3.2 Various infectivity and susceptibility

Besides the heterogeneity in agents’ activity, another kind of heterogeneity is introduced
when we assign various levels of infectivity and susceptibility to agents. Let fi denote the
infectivity level of agent i. fi is a real number drawn uniformly from the interval (0,1).
It measures the possibility that agent i transmits HIV viruses to others when they meets.
Evidently, greater values of fi indicate higher infectiousness of agent i.

Suppose also that each agent has resistance to being infected. We denote this resistibility
as Ri for agent i. Similarly, Ri is also a real number drawn uniformly from the interval
(0,1) and has the property that the greater the resistibility, the less is the chance of getting
infected.

Note that the infectivity of an agent need not be a constant. An agent can have different
level of infectivity, depending both on its state as well as on its behavior. It is widely believed
that infectives experience two periods of high infectivity (see e.g. May and Anderson 1987;

2Notice in our model that resistibility and resistibility have the following relationship: resistibility = 1 −
susceptibility.
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May et al. 1988), one shortly after being infected and the other at the late stage of his illness.
Another example is that a patient might have high infectivity during the incubation period
and low infectivity owing to good health care during the symptomatic period. Although our
model allow for various infectivity at different stages for a single agent, we adopt the fixed
infectivity for each agent. In doing so, we can focus our attention on some significant issues.
We leave various infectivity scenarios for future work.

2.3.3 Extended neighborhood

Conventional CA models define two types of neighborhoods: Moore neighborhood and von
Neumann neighborhood. In this paper, we extend the concept of CA neighborhood in order
to better describe various situations encountered in agent-based modeling. Figure 2 illus-
trates the definition.

As we can see in Fig. 2b shows the classical Moore neighborhood, and Fig. 2d classical
von Neumann neighborhood. Figure 2c represents an extended Moore neighborhood with
the order of 2 × 2, and Fig. 2e an extended 2 × 2 von Neumann neighborhood. Specially,
Fig. 2a can be simply viewed as an extended 0 × 0 Moore (or von Neumann) neighborhood.
Note that Fig. 2b, f–i have the neighborhoods with one direction. This directional structure
is able to capture the biases or preferences embedded in individuals’ behavioral patterns and
we can use different directions to represent variable ways of interactions. It is easy to see that
the greater is the neighborhood, the larger extent to which an agent can exert its influence to
its neighbors.

Given the above neighborhood definition, a concept of distance is naturally induced. Let
a pair of integer numbers (x, y) represent an agent’s coordinates in the grid. The distance
between agent i and j is thus given as

di,j =
√

(xi − xj )2 + (yi − yj )2. (2)

Next, we specify that the influence indicator Mi,j of agent i and j satisfies the following
condition:

Mi,j =
{

1
d2
i,j

j in the neighborhood of i

0 j not in the neighborhood of i.
(3)

Fig. 2 The definition of neighborhood
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That is to say, the influence intensity is inversely proportional to the distance between them
if the influence can be exerted, and zero otherwise. Therefore, the infective impact Ii,j of
agent i on agent j can be expressed as

Ii,j = Mi,jfi . (4)

And the probability of an agent infected by one of its neighbors is defined as:

pi,j = p(Ii,j ,Ri), (5)

where p(·) is a function satisfying the conditions: (1) p(·) is a real-valued function with the
value between zero and one; (2) p(·) is increased in Ii,j and decreased in Ri . In this model,
we assume p(·) takes the form of the following equation:

p(Ii,j ,Ri) = √
Ii,j (1 − Ri). (6)

Here, p(Ii,j ,Ri) is interpreted as the probability of agent i being infected by its neighbor j .
Denoted by Bi the set of all its neighbors, agent i’s overall probability of infection is thus
given by

pi = max
j∈Bi

{pi,j } (7)

It indicates that this overall probability is determined by the most influential neighbor. Such
specification makes sense in most cases.

3 Simulation and results

The model developed in Sect. 2 is implemented using Java programming language with
the REPAST software package.3 Detailedly commented source code is available from the
authors upon request. Next, we begin our analysis by considering first a typical simulation
run as a benchmark case.

3.1 Benchmark case

Table 1 lists the input parameters chosen for the benchmark case. In this case, the grid con-
sists of 100 × 100 sites (w = 100). The population size n is set to 2000 with the initial
infected ratio α = 0.005. All agents are homogeneous in terms of having the same infec-
tivity fi = 0.2, resistibility Ri = 0.5, and 1 × 1 Moore neighborhood. They are uniformly
distributed in the grid. The total simulation time T for each run is set to 2000. Figure 3 shows
a snapshot of the spatial distribution of the population at some time in a typical simulation.

It is commonly believed that as the epidemic develops, its spread ends up with two typical
situations: extinction or prevalence. Figure 4 depicts these two situations. In Fig. 4a, the
number of infections4 climbs early in the process. After about time t = 470, the infection
level starts to drop slowly until it reaches zero at time t = 2000, while in Fig. 4b, the number
of infections increases slowly and reaches an equilibrium level after t = 1600. The intuition

3See North et al. (2006) for more details.
4In our model, we only count the agent in S4 state as infectives due to its extraordinarily long incubation
period.
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Table 1 Parameters for the
benchmark case Parameters Symbol Value

Grid size w 100

Initial infected ratio α 0.005

Initial total number of agent N0 2000

Min activity level pm
min 0.0

Max activity level pm
max 0.05

Infectivity fi 0.2

Resistibility Ri 0.5

Population growth rate r 0.0001

Mean of S3 stage (T1) μ1 10

Variance of S3 stage (T1) σ 2
i

1

Mean of S4 stage (T2) μ2 500

Variance of S4 stage (T2) σ 2
2 100

Mean of S5 stage (T3) μ3 400

Variance of S5 stage (T3) σ 2
3 50

Total simulation time T 2000

Fig. 3 The spatial distribution of
the population at time t = 1275

behind is that in the first case, newly infected continuously enter the pool of infectives at a
fairly low rate in early stages. After the lengthy incubation period, these infectives begin to
develop AIDS and eventually die. The total number of them drops when the infection rate
is very low with regard to the rate at which infectives leave the pool for some reason (dead
in the model). While in the second case, healthy agents get infected at a relatively high rate
in early stages. The infection level continues to increases because the number of removed
agents is relatively small in later stages. Thus high infection rate often leads to prevalence as
demonstrated in Fig. 4b. These two results can be found in real-world situations. Notice that
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Fig. 4 The infections vs. time
result in two simulations

in the parameters setting, the growth rate r is almost zero (r = 0.0001). In next subsection,
we will explore the effects of various factors, such as population density, initial infection
ratio, and infectivity, on the epidemic.

3.2 Effect of population density β

Now we keep other parameters constant as before and let the population density β vary
to see how β (β = n/w2) affects the dynamics of HIV/AIDS transmission. Tarwater and
Martin (2001) investigate this issue when studying the outbreaks of measles or measles-like
infectious diseases. As one would expect, many common infectious diseases spread more
rapidly at a high population density than at a low population density. Figure 5 illustrates
the time series of the mean numbers5 of infectives for different population sizes n = 1500,
2000, 2500, 3000, and 3500. We can see that when population density is relatively low
(n = 1500, 2000), the infection levels are relatively low during the entire simulation and
decline slowly in the later stages. This suggests that the epidemic died out eventually. In the

5The mean number of infection is obtained by average the results of 50 simulation runs for each parameters
combination. This is also applied to the subsequent simulation experiments, unless otherwise stated.
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Fig. 5 Mean number of infections vs. time for various population sizes

Fig. 6 Mean fractions of infections in total population vs. time for various population sizes

case of n = 2500, the infection level goes up at first and fluctuates in the range between 300
and 400 at last. For n = 3000 and 3500, the infection numbers reach to a very high level
and then drop rapidly. The collapse is because that so many infectives are removed from the
model that the pool of infectives shrinks. For clarity, we also plot the fractions of infectives
in the population vs. time in Fig. 6. Clearly, in late stages of the epidemic, the fractions are
greater when β is great than when β is small.

In summary, HIV/AIDS infection is more likely to persist at higher population densities.
This is due to that with the population density increasing, the population contact rate rise,
leading to increases in the probability of infection. Early work (see, e.g., Rhodes and An-
derson 1996) suggests that there is a threshold below which the epidemic would eventually
dies out and above which it would persist. Due to the limitation of CA methods, it is diffi-
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Fig. 7 Mean number of infections vs. time for different initial infected ratios

cult to pin down its exact value. However, with many simulation runs, we still can give an
approximate interval in which the threshold lies.

3.3 Effect of initial infected ratio α

An interesting question one may ask is how epidemic spreading is affected by initial config-
urations of susceptibles and infectives, or whether the multiple infection sources will make
the disease more likely to become endemic. With other parameters fixed as before, we run
the simulations with α = 0.002, 0.004, 0.006, and 0.008, respectively. Figure 7 presents the
result.

Clearly, as α increase, the infection level shifts upwards. In the case of α = 0.004, the
infection level reach 300 at time t = 2000, higher than 200 in the case of α = 0.002. By
contrast, the level in the case of α = 0.006 climb to around 380 at time t = 1000 and drops
slightly to 340 at time t = 2000. The maximum infection is reached in the case of α = 0.008
at time t = 1000, which is more than 440. Spatially, more sources of infection imply greater
chance of being infected within a certain area, letting HIV/AIDS epidemics to be more likely
to spread out and persist. Statistically speaking, an individual’s probability of infection is
generally proportional to the number of infectious sources.

3.4 Effect of mobility

Intuitively, the more migratory the population, the more likely that an epidemic is to spread.
Suppose an agents’ activity can be measured by the number of contacts it makes with others
within a unit of period of time. As a result, our model assumes that individuals’ activity is
measured by mobility.

Figure 8 shows that the time evolutions of infection under the conditions of pm
min = 0

and pm
max = 0.001, 0.003, 0.005, 0.007, and 0.009. As we can see in the figure, when

pm
max = 0.001 and 0.003, the infections increase and then decline afterwards. The infec-

tion level in former case is greater than in latter case at most of time. While in the cases
of pm

max = 0.005 and 0.007, the two infection levels stay at two different equilibriums in
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Fig. 8 Mean number of infections vs. time for various mobilities

later stages. This is, in the case of pm
max = 0.005, the level is above 120 and in the case

pm
max = 0.007, the level is in the range (180,210). In the last case of pm

max = 0.009, the in-
fection level fluctuates above 300, higher than those of other cases. So we conclude that
mobility plays a significant role in the dynamics. It could explain why Chinese government
took rather strong measures to control the migratory people and quarantine the infectives
or the suspects during the outbreak of SARS in the spring of 2003. As to our model, if
agents are configured with higher mobilities, it is more likely that the HIV/AIDS infection
can persist in the population, whilst if configured with lower mobilities, the infection would
gradually diminish and eventually die out.

3.5 Effect of forms of neighborhood

Next, we are to examine how neighborhood forms affect HIV/AIDS epidemic dynamics. The
parameter sets are kept the same as in benchmark case, except for the adoption of different
neighborhood forms. Figure 9 illustrates the simulation results generated in two cases: one
with 1 × 1 von Neumann neighborhood and the other with 1 × 1 Moore neighborhood. In
the case where the von Neumann neighborhood is used, the level of infection goes up to
about 140. It is clearly greater than that of the case with 1 × 1 Moore neighborhood in
which the level only reach about 100. Such result suggests that with wider neighborhood,
an agent is more likely to get influenced by its neighbors and therefore the likelihood of
getting infected increases accordingly. It is easy to induce that the infection level rises with
the order of neighborhood. This result also suggests that HIV/AIDS epidemic dynamics is
significantly affected by strong interactions between agents.

3.6 Four-class agents scenario

We now turn to examine heterogeneous mixing, i.e., different at-risk groups coexist. Usually,
heterogeneous mixing will make the dynamics more complicated and unpredictable. In the
following, we assume the whole population is divided into four different groups as shown
in Table 2.
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Fig. 9 Mean number of infections vs. time for two neighborhood forms

Table 2 Four classes of agents

Classes Number Infectivity1 Susceptibility Neighborhood form

P0 A few Very low Low 1 × 1 von Neumann

PL Many Low Low 1 × 1 Moore

PH A few High High 0 × 1 (or 1×0) von Neumann

PH+ Very few Very high Very high 2 × 2 Moore

As shown in Table 2, Class P0 has very low infectivity, low susceptibility, and 1 × 1 von
Neumann neighborhood. It can represents children and (or) elders in the population who
hardly infect others and are easy to be infected. Class PL refers to ordinary people who have
relatively low infectivity and high resistibility (therefore low susceptibility). In our model,
this class amounts to a large fraction of the whole population. Class PH and Class PH+
can represent the two high-risk groups observed in real life. Agents of Class PH have high
infectivity and low resistibility duo to their high-risk behaviors like incautious sex without
protection, needle sharing, unhygienic blood transfusion and so on. The biased 0 × 1 (or
1×0) von Neumann neighborhood captures their potential oriented or biased behaviors. In
contrast, Agents of Class PH+ with both higher infectivity and higher susceptibility rep-
resent those who are, although being in the minority, the most dangerous and malevolent
group. Such group does exist in real life. For instance, some crimes were reported in China
in recent years that a few AIDS infectives intentionally have sex with innocent people or
shot people with contaminated syringes in public places. They blame their infection on the
society and the government for not being able to provide necessary health service and com-
pensating too little. The 2 × 2 Moore neighborhood indicates their intensive influence on
others. We distinguish Class PH+ from Class PH in order to see whether such malevolent
behaviors have significant impacts on the spread of HIV/AIDS and to what extent. While
such rough classification may be incorrect or even erroneous, it surely is reasonable and
well supported by our extended CA model. Table 3 gives the values of fi and Ri used in the
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Table 3 The resistibility and
infectivity assigned to four
classes

Classes Infectivity Resistibility

P0 fP0 = 0.05 RP0 = 0.95

PL fPL = 0.2 RPL = 0.50

PH fPH = 0.7 RPH = 0.25

PH+ fPH+ = 0.9 RPH+ = 0.15

Fig. 10 Infection vs. time under
four-class agent scenario

following simulations. As we will see later, the results generated with this classification are
fairly consistent with those obtained through empirical work.

Figure 10 gives a typical simulation result in the four-class scenario. The fractions of
four classes here are: nP0 = 0.1, nPL = 0.7, nPH = 0.1, and nPH+ = 0.1. The infection curve
in Fig. 10 is quite similar to that obtained in the single-class scenarios except that its level is
fairly higher.

3.6.1 Effect of susceptibility (or resistibility)

In this section, we will investigate the effect of agents’ susceptibility on the dynamics of
HIV/AIDS. Given nP0 = 0.05, nPL = 0.8, nPH = 0.1, nPH+ = 0.05 and others as before, Let
RPH+ vary. Figure 11 gives the infection levels when RPH+ is set to be 0.6, 0.7, 0.8, and 0.9,
respectively. As we can see, these equilibrium infections are almost at the same level, which
is inconsistent with our expectation. The differences are so small that we cannot assure with
confidence whether changes in susceptibility have impact on the epidemic dynamics. The
possible reasons, we believe, are twofold: First, the role played by susceptibility may be not
as decisive as the above factors. Second, we may describe susceptibility in the wrong way
and make it an inessential factor in our model. Future work will reconsider this issue and
find the better way to describe susceptibility.

3.6.2 Effect of changes in the fractions of four classes

At last, we will examine whether changes in the fractions of some classes can affect epi-
demic behaviors. Given nP0 = 0.1, nPL = 0.7 and other parameters as before, we take
nPH = 0.12 (nPH+ = 0.08), 0.14 (0.06), 0.16 (0.04), 0.18 (0.02), 0.20 (0.0), respectively.
Figure 12 shows the infection levels in these five combinations.
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Fig. 11 Mean number of infection with different individual susceptibility

Fig. 12 Mean number of infection vs. time for various fraction of Class PH+

As observed from Fig. 12, we obtained very similar results, compared with those in the
foregoing analysis. With nPH+ decreasing, infection level declines. Recall that PH+ has
more influence on its neighbors than PH, thus leading to greater transmission to others and
larger infection rate. This finding suggests the government should pay more attention to
those who have high-risk life styles and revengeful behaviors. This makes it the essential
issue of how highly infectious and malevolent individuals are restricted and controlled.

4 Conclusions

The focus of the paper is on the modeling of the entire course of HIV/ACID epidemics
and heterogeneity in agents’ behaviors. Even though classical CA models are capable of
describing the spread of common epidemics but fail to represent the complicated epidemics
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like HIV/AIDS disease. The ignorance of heterogeneity gives rise to unacceptable errors
in the prediction of the development trends. In addition, components of a conventional CA
system such as topological forms of grid, the definition of neighborhood, and state transi-
tion rules are simple and unchanged over time. This makes the modeling of complicated
dynamics such as HIV/AIDS transmission difficult and uncontrollable. In this paper, we
have developed an extended CA model to capture key epidemiological and clinical features
of HIV/AIDS epidemic. First, We explicitly models and simulates the whole progression
of HIV/AIDS disease (i.e., infected but not infectious, infectious but asymptomatic, symp-
tomatic, and deceased). Such improvement can give us a better understanding of the dynam-
ics during the entire HIV/AIDS epidemics. In order to examine various degrees of influence
between agents, we have introduced an extended definition of neighborhood to represent the
intensity and bias of influence. This lets us gain insight into how various degrees of inter-
actions affects the HIV/AIDS epidemics. Another type of heterogeneity in disease-related
attributes such as susceptibility, infectivity and durations of epidemic phrases is also taken
into consideration. Moreover, we also consider the effect of agents’ mobility on epidemics
dynamics.

Given all the improvements, we have obtained richer simulation results similar to those
usually found in the mathematical models or other classical simulation models. We have
identified some influential factors that greatly affect the HIV/AIDS epidemic dynamics. The
main findings are that 1) HIV/AIDS epidemic can end up in the two regimes: extinction
and persistence; 2) with these factors such as agents’ mobility, population density, initial
infection ratio, and the extent of neighborhood increasing, the infection level get higher.
After crossing some critical point, the regime generated could change from dying-out to
persistence at some point. This result is robust across many of the tested parameter combi-
nations; 3) in four-class scenarios, the great fraction of ‘super’ infectives (the PH+ class in
our model) can also produce higher level of infection.

However, our simulation study above is still preliminary. There are some issues needed to
be addressed. First, as said before, we should redefine susceptibility in a better way to check
its role in the dynamics of HIV/AIDS epidemic. Second, most models posit that a virus
carrier’s infectivity is constant during the progress of a disease. However, this is not the
case for HIV/AIDS epidemic. Various infectivity at different stages could have substantial
impact on the dynamics of HIV/AIDS transmission. This problem needs special attention.
Additional, Further developments of our model, e.g. by adding age-related structure (Grif-
fiths et al. 2000), different subgroup classification, and other heterogeneity, would greatly
add to the appeal of this model. With these additions, a better understanding of HIV/AIDS
and thorough empirical work are required. Finally, a natural extension of the model is to
include the assessment of various control policies and managerial strategies, and this will be
a firm support for the decision-making in prevention programs against HIV/AIDS.
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