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Abstract: Arboviruses are often maintained in complex cycles involving vertebrates such as mammals or birds

and blood-feeding mosquitoes. However, the role of wildlife hosts in their emergence or re-emergence in

human populations has received little attention. The recent emergence of Zika virus in America, and previous

occurrences of chikungunya and dengue, forces us to confront a potential new disease-emergence phe-

nomenon. Using a spatial data mining framework to identify potential biotic interactions, based on the degree

of co-occurrence between different species, we identified those mammal species with the highest potential for

establishing mammal–vector interactions, considering as principal vector Aedes aegypti. Seven of the top ten

identified mammal species with highest potential were bats, with two of them having previously been con-

firmed as positive hosts for dengue in Mexico. We hope that this will raise interest of Mexican public health

authorities and academic institutions to assess the role of wild hosts in the maintenance and spread of

arboviruses.
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The current outbreak of Zika virus (ZIKV) is the most

recent disease threatening human health worldwide (Lucey

and Gostin 2016; WHO 2016). ZIKV is a mosquito-borne

virus (arbovirus) belonging to the family Flaviviridae,

which was first isolated from a rhesus monkey in the Zika

forest of Uganda in 1952 (Dick et al. 1952). Until 2007,

sporadic human disease cases had been reported from

countries in Africa and Asia (Musso et al. 2014). However,

last year the virus was detected in America (Zanluca et al.

2015), where it has been spreading explosively (ECDC

2015; Petersen et al. 2016). A great number of cases with

neurological and autoimmune complications have been

reported from 20 countries in the Americas, mainly in

South America (Ventura et al. 2016; WHO 2016), though a

substantial number of human cases have recently been

identified in North America (Chen and Hamer 2016;

McCarthy 2016).

Arboviruses are often maintained in complex cycles

involving vertebrates and blood-feeding vectors (Blum

et al. 2016) and are transmitted by the bite of infected

female mosquitoes (Lefèvre et al. 2009). Consequently,

humans could be at high risk of infections from pathogens

circulating within the blood system of other wildlife ver-

tebrate species (Kaddumukasa et al. 2015). Due to theirPublished online: February 8, 2017
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Table 1. Rank list of Potentials Mammal Blood Sources to Aedes aegypti in Mexico.

Rank Mammal Epsilon Rank Mammal Epsilon

1 Glossophaga soricina+ 12.78 55 Caluromys derbianus 5.78

2 Molossus rufus 11.99 56 Molossus molossus 5.76

3 Artibeus jamaicensis*,+ 11.68 57 Oryzomys rostratus 5.76

4 Liomys pictus 11.06 58 Osgoodomys banderanus 5.76

5 Oryzomys couesi 11.04 59 Myotis carteri 5.66

6 Carollia subrufa+ 10.49 60 Micronycteris microtis 5.52

7 Sturnira lilium+ 10.28 61 Sylvilagus brasiliensis 5.47

8 Artibeus lituratus*,+ 9.91 62 Sylvilagus floridanus 5.37

9 Choeroniscus godmani 9.42 63 Spermophilus annulatus 5.36

10 Liomys salvini 9.33 64 Peromyscus leucopus 5.3

11 Oligoryzomys fulvescens 9.15 65 Conepatus leuconotus 5.3

12 Dermanura phaeotis+ 9.12 66 Chaetodipus pernix 5.27

13 Rhogeessa tumida 9.06 67 Sciurus yucatanensis 5.23

14 Pteronotus personatus 9.05 68 Sigmodon mascotensis 5.13

15 Baiomys musculus 8.97 69 Eira barbara 5.12

16 Glossophaga commissarisi+ 8.8 70 Ateles geoffroyi 5.11

17 Didelphis virginiana+ 8.58 71 Neotoma phenax 5.07

18 Pteronotus parnellii* 8.58 72 Noctilio leporinus 5.06

19 Orthogeomys hispidus 8.53 73 Reithrodontomys fulvescens 4.95

20 Sciurus aureogaster+ 8.52 74 Megasorex gigas 4.92

21 Molossus sinaloae 8.51 75 Heteromys gaumeri+ 4.9

22 Desmodus rotundus+ 8.23 76 Eumops bonariensis 4.85

23 Saccopteryx bilineata 8.22 77 Thyroptera tricolor 4.85

24 Lasiurus intermedius 8.15 78 Baiomys taylori 4.84

25 Phyllostomus discolour 8.12 79 Orthogeomys grandis 4.79

26 Philander opossum+ 8.1 80 Nyctinomops laticaudatus 4.76

27 Peromyscus gymnotis 7.9 81 Peromyscus mexicanus+ 4.69

28 Balantiopteryx plicata 7.81 82 Glossophaga leachii 4.65

29 Eptesicus furinalis 7.69 83 Cratogeomys gymnurus 4.56

30 Pteronotus davyi 7.55 84 Cuniculus paca 4.55

31 Dermanura tolteca 7.48 85 Xenomys nelsoni 4.54

32 Sciurus variegatoides 7.48 86 Ototylomys phyllotis 4.52

33 Mormoops megalophylla 7.45 87 Sciurus alleni 4.43

34 Oryzomys melanotis 7.42 88 Chiroderma villosum 4.41

35 Artibeus intermedius+ 7.4 89 Spermophilus adocetus 4.32

36 Chaetodipus artus 7.2 90 Cryptotis mayensis 4.32

37 Nasua narica+ 7.18 91 Cryptotis obscura 4.32

38 Dasypus novemcinctus 7.11 92 Geomys tropicalis 4.32

39 Sigmodon hispidus+ 7.02 93 Molossus nigricans 4.32

40 Uroderma bilobatum 6.82 94 Leptonycteris curasoae 6.75

41 Carollia perspicillata+ 6.71 95 Heteromys desmarestianus 4.23

42 Centurio senex 6.61 96 Leptonycteris nivalis 4.19

43 Sciurus colliaei 6.59 97 Musonycteris harrisoni 4.17

44 Lontra longicaudis 6.49 98 Lasiurus blossevil 4.14

45 Didelphis marsupialis+ 6.49 99 Lasiurus ega 4.10

46 Cratogeomys bulleri 6.35 100 Cratogeomys fumosus 4.08

172 C. González-Salazar et al.



current relevance to public health, the identification of

mosquitoes’ wildlife blood-meal sources and their relative

importance is important in order to determine the linkages

between potential hosts and vectors.

The arboviruses ZIKV, dengue (DENV) and chikun-

gunya (CHIKV) have been isolated from several Aedes

mosquito species (Klimpel and Mehlhorn 2014), most

notably Aedes aegypti and Aedes albopictus, which are

widespread worldwide (Grard et al. 2014; Kraemer et al.

2015). Although other mosquito species have been identi-

fied as having links with these viruses, A. aegypti has gen-

erally been considered to be the most relevant in Mexico.

However, the role of potential wildlife hosts in maintenance

of these arboviruses has received relatively little attention,

even though there are results that indicate that they are not

necessarily restricted to epizootic cycles in the New World.

For instance, although DENV is widely believed to be ab-

sent from New World wildlife, all four serotypes of DENV

have been found in a wide variety of South American

mammals in French Guiana (de Thoisy et al. 2009),

including bats, rodents and marsupials. Notably, identified

hosts were encountered in both DENV endemic areas as

well as areas where the disease was nearly absent. Genetic

evidence was provided that was consistent with the

hypotheses that (1) there exist spillover infections from

humans to mammals and (2) there exists an enzootic cycle.

In Mexico, six bat species have been identified as positives

for DENV (Artibeus jamaicensis, Artibeus lituratus, Carollia

brevicauda, Myotis nigricans, Pteronotus parnellii and Na-

talus stramineus) (Aguilar-Setién et al. 2008; Machain-

Williams et al. 2013; Sotomayor-Bonilla et al. 2014).

In contrast, there are no identified hosts of CHIKV or

ZIKV in the New World, although both have multiple

mammal hosts in Africa and Asia. In particular, for bats,

CHIKV has been isolated in three Chinese bats (Rousettus

aegyptiacus, Hipposideros caffer, Chaerephon pumilus) and

one from Senegal (Scotophilus sp.). For ZIKV, no natural

infections of bats have been documented; however, the bat

Myotis lucifugus was infected successfully in laboratory

conditions (Reagan et al. 1955).

Although the question remains as to whether wildlife

and/or domestic hosts can maintain DENV, CHIKV and

ZIKV in enzootic cycles and, therefore, play a role in its re-

emergence in human populations, or that infections in

human populations can spillover into wildlife hosts, these

preliminary results highlight the need to conduct studies

focused on identifying and understanding the role of

wildlife species in the spread and maintenance of these

arboviruses. Thus, we urgently need research on these

viruses and the ecologic, entomologic and host determi-

nants of viral maintenance and emergence (Blum et al.

2016). A further complication comes from the complex

evolution of arboviruses (Weaver and Barrett 2004; Turner

et al. 2010) which, as RNA viruses, are highly mutable, thus

allowing for potentially rapid adaptive changes to new

hosts and changes in host range.

Additionally, the steady increase in contact between

human and wildlife by the invasion and destruction of

natural forest, as well as climate and environmental chan-

ges, is allowing mosquitoes to be exposed to potentially

new wildlife species hosts and pathogens, thus being able to

potentially create new disease patterns (Kaddumukasa et al.

2015). Therefore, a major short-term goal should be to

conduct specific, directed studies of potential wildlife hosts

involved in arbovirus maintenance. Although host selection

by mosquitoes depends on a great number of factors, a first

Table 1. continued

Rank Mammal Epsilon Rank Mammal Epsilon

47 Carollia sowelli*,+ 6.27 101 Tapirus bairdii 4.08

48 Myotis elegans 6.12 102 Vampyrum spectrum 4.08

49 Myotis nigricans* 6.06 103 Conepatus semistriatus 4.05

50 Sigmodon arizonae 6.00 104 Marmosa mexicana 4.05

51 Rhynchonycteris naso 5.95 105 Rhogeessa parvula 4.05

52 Tlacuatzin canescens 5.87 106 Mustela frenata 4.01

53 Leopardus pardalis 5.84 107 Procyon lotor+ 4.01

54 Pteronotus rubiginosus 4.32 108 Peromyscus perfulvus 3.99

* Mammal species confirmed positives to dengue virus.
+ Synanthropic mammal species.
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step should be to determine which wildlife species have a

high risk of being in contact with the disease vectors in

order to optimize resource allocation for these studies.

The increased availability of spatial data and recent

methodological developments in species distribution

modelling (Stephens et al. 2009; González-Salazar et al.

2013) allow us to implement spatial analysis that can be

used to build predictive models for the presence of

emerging diseases. In particular, they allow for the direct

incorporation of biotic factors, which are not explicitly

accounted for in most niche modelling studies, including

inter-specific interactions, as well as abiotic factors. Biotic

factors, such as host range, are obviously of crucial

importance in the dynamics of zoonoses. The method uses

point collection data for potential/known vectors and

potential/known hosts and constructs a diagnostic, epsilon

(Stephens et al. 2009), that measures the statistical signifi-

cance of the degree of co-occurrence of a pair of species

(e.g. a potential vector and a potential host) relative to the

null hypothesis that they are uncorrelated. In the present

case, the mammal data set used contains 37,297 unique

point collections from geo-referenced localities for 427

Figure 1. a Potential distribution of Aedes aegypti based on mammal ranges by States in Mexico. b Average score (i.e. probability of A. aegypti

presence) by these states and number of human cases confirmed of Zika virus at present.
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terrestrial mammals occurring in Mexico (GBIF; www.gbif.

org, and CONABIO; www.conabio.gob.mx). For A. aegypti,

there were 302 collection points taken from the Sistema

Nacional de Información sobre la Biodiversidad of the

Comisión Nacional para Uso y Conservación de la Biodi-

versidad (www.conabio.gob.mx). Co-occurrences were de-

fined on a uniform grid covering Mexico of 3337

rectangular cells of size 25 km 9 25 km. With these data, a

predictive model for the potential distribution of A. aegypti

in Mexico was created based only on biotic factors. This

approach gives us two principal results: (1) a ranked list of

mammals that can potentially be blood-meal sources for

the mosquito and therefore potential hosts and (2) a map

of potential presence of A. aegypti linked to the presence of

potential mammal hosts (Stephens et al. 2009).

Of 427 potential vector–host pair interactions, we

show in Table 1 the top 25% (108) of most statistically

significant positive associations based on our co-occurrence

index, epsilon. This ranked mammal list is a first-pass

predictive model for the most important potential blood-

meal sources for A. aegypti; consequently, they are, at this

level of description, the main candidates to be positive for

DENV, ZIKV or CHIKV. Of course, such a statistical

association does not necessarily prove that there is a direct

‘‘causal’’ interaction between these taxa. Neither does it

allow for a more detailed description of the potential host

role, i.e., as a competent host, dead-end host, alternative

host. However, previous studies using and validating this

method led to the prediction and subsequent discovery of

22 previously unknown mammals hosts for Leishmaniasis

(Stephens et al. 2016). Additionally, evaluating our mam-

mal list against the known results for DENV in Mexico, five

of the six bat species positive to DENV (Aguilar-Setién

et al. 2008) are in the top 50 highest ranked species

(P < 10-4). It is notable that 7 of the top 10 species are

bats, with two being previously identified as positive for the

presence of dengue, and, interestingly, four of them

(Glossophaga soricina, A. jamaicensis, A. lituratus and

Sturnira lilium) are identified hosts of Leishmania (L.)

mexicana and Trypanosoma cruzi (Villegas-Garcı́a and

Santillán-Alarcón 2001; Berzunza-Cruz et al. 2015; López-

Cancino et al. 2015). Within the highest ranked species are

all major groups of mammals, with many of them being

synanthropic species (Table 1) (Estrada et al. 1994; Me-

dellı́n et al. 2000; Ruiz-Piña and Cruz-Reyes 2002; Martı́-

nez-Hernández et al. 2014; Hennessy et al. 2015; López-

Cancino et al. 2015; Cruz-Salazar et al. 2016). Additionally,

the genus Artibeus, Sturnira and Carollia have all been

identified as hosts for other pathogens in fragmented

landscapes, including coronavirus, pegivirus, hepacivirus,

rabies and leptospira (Anthony et al. 2013; Quan et al.

2013; Chávez et al. 2015).

To identify those Mexican states with a high probability

of significant mosquito–mammal interaction, we modelled

the potential distribution of A. aegypti based on mammal

point collection data using a score function (see Stephens

et al. 2009) (Fig. 1a). This map shows areas where vector and

potential mammal hosts are most likely to both be present

and, therefore, potentially interact. As stated, an important

potential use of this information is to target further investi-

gation by concentrating field studies and/or surveillance in

those areas. Note that, our list is not restricted to bat species,

including several other groups of mammals, for instance

rodents, marsupials, carnivores, etc., indicating that field

studies should have the capacity to collect a wide, represen-

tative set of potential mammal hosts.

To test model accuracy as a function of score, we

grouped Mexican states by score quartiles. The 4th quartile

corresponds to the 25% of states with the highest score

values, the 3rd quartile to the next 25% of states with

highest score values, etc. This allows us to establish pre-

dictability profiles across the different score quartiles for

our biotic model. We randomly selected 30% of mosquito

records (92 points) to calculate for each score quartile the

percentage of associated A. aegypti records. Forty percent-

ages of points were observed in the top quartile, and this

percentage significantly decreased towards the lower

quartiles (X2 = 38.64, P < 0.00001). Taking as a null

hypothesis that A. aegypti are distributed randomly in

Mexico, the outcomes showed that biotic model predicted

accurately the most important potential areas for A. aegypti

presence.

Considering the correlation between current human

cases of ZIKV in Mexico with the predicted distribution by

state of A. aegypti using our biotic model we see that the

vast majority of autochthonous cases have occurred in

states with high values of scores (i.e. high probability to

find significant mosquito–mammal interactions). For in-

stance, Chiapas and Guerrero reported 500 and 558 cases,

respectively, corresponding to 56% of the 1884 cases con-

firmed at present (http://www.epidemiologia.salud.gob.mx/).

We believe there is a significant risk that synanthropic

mammals, such as bats, rodents or marsupials, could be

infected thus favouring virus maintenance. We have re-

stricted our analysis, conservatively, to A. aegypti, as vector

as it has been identified positively for all three viruses—
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DENV, CHIKV and ZIKV. However, our methodology can

be applied to consider the relation between potential

mammal hosts and any other potential vector or combi-

nation thereof.

In distinction to important zoonosis like Leishmaniasis

and Chagas, for which the role of wild hosts is better

understood (De Almeida Curi et al. 2006; Herrera 2010),

for DENV, CHIKV and ZIKV and other arbovirus, our

understanding of the role of non-human hosts, either as a

spillover from an epizootic cycle or via the potential exis-

tence of enzootic cycles, is very poor. However, given the

potentially important epidemiological consequences of ei-

ther of these scenarios, it is important to explore these

possibilities. Our results are a first step in identifying eco-

logical characteristics of those regions with the highest risk

of a potentially significant role for non-human hosts. We

hope that this will raise the interest of Mexican public

health authorities and academic institutions in considering

the risk arising from potential non-human hosts of ZIKV.

Obviously our methodology is also applicable to prediction

of potential non-human hosts for ZIKV in other countries,

the only requirement being the relevant collection data

analogous to that used in the present study. Finally, we

emphasise again that the scope of the model of the present

paper is to serve as a focus for future studies and show that

potentially useful information can be gleaned from the

method, which, at this level, is not capable of predicting

detailed elements such as potential host competency.
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Zambrana-Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang
E, Sanchez-Leon M, Sotomayor-Bonilla J, Aguirre AA, Ávila-
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