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Abstract

The presence of missing data at the time of prediction limits the application of risk models in 

clinical and research settings. Common ways of handling missing data at the time of prediction 

include measuring the missing value and employing statistical methods. Measuring missing value 

incurs additional cost, whereas previously reported statistical methods results in reduced 

performance compared to when all variables are measured. To tackle these challenges, we 

introduce a new strategy, the MMTOP algorithm (Multiple models for Missing values at Time Of 

Prediction), which does not require measuring additional data elements or data imputation. 

Specifically, at model construction time, the MMTOP constructs multiple predictively equivalent 

risk models utilizing different risk factor sets. The collection of models are stored and to be 

queried at prediction time. To predict an individual’s risk in the presence of incomplete data, the 

MMTOP selects the risk model based on measurement availability for that individual from the 

collection of predictively equivalent models and makes the risk prediction with the selected model. 
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We illustrate the MMTOP with severe hypoglycemia (SH) risk prediction based on data from the 

Action to Control Cardiovascular Risk in Diabetes (ACCORD) study. We identified 77 

predictively equivalent models for SH with cross-validated c-index of 0.77±0.03. These models 

are based on 77 distinct risk factor sets containing 12-17 risk factors. In terms of handling missing 

data at the time of prediction, the MMTOP outperforms all four tested competitor methods and 

maintains consistent performance as the number of missing variables increase.

Graphical Abstract:

Consider a scenario where we want to predict SH risk for a patient with SBP and A1C missing. 

When we only have one (hypothetical) risk model based on age, SBP and A1C, we could handle 

the missing SBP and AIC by (1) measuring the missing variables, or (2) imputing the missing 

variables. (3) When we employ the reduced model technique, a reduced model (only containing 

age as a predictor) of the original model with be used. When we have multiple predictively 

equivalent risk models available (e.g. model 1-4), we could handle the missing data by (4) find the 

risk model that matches the data availability of the patient.
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1. Introduction

In recent years, many risk prediction models has been developed for various diseases and 

disorders. High quality risk models hold great promise in improving quality of care and 

clinical research. In the clinical setting, deploying high quality risk models at the point of 

care as decision support tools could enhance the effectiveness and efficiency of care. In 

research based on electronic health record (EHR) data, these risk prediction models could be 

useful for risk adjustment and stratification. Many factors influence the effectiveness of the 

risk models in the situations described above (1). One of them is the missing data problem. 

Simply put, if a patient has a missing variable in the risk model, the outcome risk cannot be 

computed without addressing the missing data first. Missing data is omnipresent in the 

clinical setting and in the EHR, due to issues such as limited data sharing among different 

health services, under-documentation, and insufficient data extraction from unstructured data 

fields (e.g. clinical notes) (2-5). A survey of common risk factors for severe hypoglycemia 

(SH, the outcome of interest for our demonstration study described in section 4) in the 

Fairview EHR reveals large proportions (13% to 75% depending on the measurement) of 

missing data (supplemental table 1).

Several strategies exist for handling missing data at the time of prediction. One obvious 

strategy is to collect the missing variables. This can certainly be done if the risk prediction is 

needed during a clinical encounter; however, logistics, costs and time may present 

significant barriers. Moreover, in the case of retrospective analysis of the EHR data, 

measuring the missing data is impossible.
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Another strategy for handling missing data is to apply statistical methods. Typically, missing 

data at time of prediction is handled by imputation methods (3,5,6), where missing data are 

“filled in” with different statistical techniques. The performance of imputation methods, 

however, depends on whether the assumptions (e.g., most methods assume data are missing 

at random) of these methods are satisfied, which could be difficult to determine in practice 

(3,6,7). Also, some imputation methods, such as the multiple imputation by chained 

equations (MICE), is computationally expensive to apply at the time of prediction. More 

recently, attention is called to the often overlooked reduced models method (8,9). The 

reduced models methods uses a collection of reduced models to handle missing data at the 

time of prediction. Specifically, an original model is first derived, this is model contains the 

full set of predictors and is used when there is no missing data. To make predictions in the 

presence of missing data, the reduced models method construct a reduced model with only 

the available predictors in the original model. The reduced models method has demonstrated 

superior performance compared to imputation in a benchmark study over many datasets (9). 

It is worth noting that, many missing value methods only handles missing values at the time 

of model construction, i.e. missingness in training data, such as the full information 

maximum likelihood and expectation maximization (7,10). These methods do not apply to 

missing variables at the time of prediction.

In the present study, we introduce a new strategy for handling missing data at the time of 

prediction. Our method, the MMTOP (Multiple models for Missing value at the Time Of 

Prediction) leverages multiple predictively equivalent risk models for handling missing data 

at the time of risk prediction. Multiple predictively equivalent models are defined as a set of 

risk models for the outcome based on distinct set of risk factors with statistically 

indistinguishable predictive performances. Our strategy is depicted in Figure 1, part (3): We 

first construct multiple predictively equivalent risk models utilizing different risk factor sets. 

To predict a patient’s risk for SH in the presence of incomplete data, we select the risk 

model based on measurement availability for that patient from our collection of predictively 

equivalent models and make the risk prediction with the selected model. This strategy does 

not require measuring additional data elements or data imputation, if the patient's available 

data can be matched with a predictively equivalent risk model.

Our strategy relies on the presence of multiple predictively equivalent models for the 

outcome of interest and the ability to construct them. The presence of multiple predictively 

equivalent models has long been recognized in machine learning. It was first coined as the 

“Rashomon Effect” by Leo Breiman (11) and later mathematically formalized as target 

information equivalence (12). Intuitively, multiple predictively equivalent models stem from 

the presence of overlapping or redundant information in candidate predictors regarding the 

outcome of interest. In biomedicine, overlapping or redundant information often manifests 

as co-occurring symptoms in multiple organs and systems, concurrent abnormal lab values 

from different lab tests, and simultaneously disturbed molecular pathways (13-16). Because 

of the redundancy, one could obtain multiple models with distinct risk factor sets that predict 

patient risk equally well. Several algorithms exist for deriving multiple Markov boundaries, 

including the TIE*(17), the SES(18), and the MB-DEA(19). The TIE* algorithm has 

mathematically proven theoretical properties and has been benchmarked on various datasets 

intensively (17). Moreover, the application of the TIE* algorithm to various datasets in the 
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general domain as well as biomedicine (11,17,20,21) has resulted in collections of highly 

accurate and predictively equivalent risk models. The TIE* algorithm is also flexible and can 

be adapted to work with various distribution families. Given the demonstrated success of 

TIE*, we chose to use TIE* to derive multiple predictively equivalent models.

In the following sections, we first introduce the necessary statistical concepts and the 

theoretical underpinning of multiple predictively equivalent models (section 2). We than 

describe the MMTOP algorithm for handling missing data at the time of prediction (section 

3). Next, in section 4, we demonstrate the application of the MMTOP algorithm on the 

ACCORD dataset for severe hypoglycemia risk prediction. We compared the performance of 

the MMTOP algorithm to four competitor methods. Finally in section 5, we discuss practical 

considerations when applying MMTOP and future directions.

This study contributes to the field of biomedical informatics by introducing a new strategy 

for handling missing data at the time of prediction. We demonstrate this strategy by applying 

the MMTOP algorithm in the ACCORD dataset for the risk prediction of SH. In our 

empirical evaluation, the MMTOP outperforms all four tested competitor methods.

2. Notations and Definitions

In this section, we provide the definition of essential concepts and analytical tools used in 

subsequent sections of the paper. All the definitions and theoretical results have been 

previously reported elsewhere, we include them in this section so the paper is relatively self-

contained. We choose to include the minimal set of theoretical tools for brevity, and 

encourage the interested readers to follow the references for more details.

Unless specifically mentioned, we use uppercase letters to denote a variable (e.g. X,Y), bold 

uppercase letters to denote a variables set (e.g. Z), lowercase letters to denote instantiations 

or values of the corresponding uppercase variables (e.g. x is a instantiation of X).

For all the discussion below, we use the following common notations. V = {V1,V2,…,Vp} 

denotes all measured variables. T denotes the target of interest. p(V,T) denotes the joint 

distribution over of all variables in V ∪ T.

2.1 Optimal Variable Set and Markov Boundary Theory

Since we are concerned about clinical grade risk models, it would be ideal to be able to 

construct models with optimal performance. Therefore, we first introduce the Markov 

boundary theory, which formalizes the statistical relationship between the optimal variable 

(risk factor) set, other measured variables, and the target of interest.

Definition: optimal variable set (17,22). Given a data set D sampled form p(V,T) for 

variables V, a learning algorithm L, and a performance metric M, variable set Vopt is an 

optimal variable set of T if applying L on Vopt maximizes the performance metric M for 

predicting T.

To put it plainly, the optimal variable set Vopt for predicting T is a subset of variables that 

produces a model that maximizes the predictive performance T. This definition is intuitive 
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but not very useful, since it does not provide a way to identify Vopt. We next introduce the 

Markov Blanket theory and related concepts, since it describes the statistical characteristics 

of the optimal variable set and provides the theoretical foundation for deriving the optimal 

variable set.

To define Markov blanket and Markov boundary, we first define conditional independence 

(23,24).

Definition: Conditional Independence. Let V be a set of variables and p(V) be the joint 

distribution over V, ∀ X ⊂ V, Y ⊂ V, Z ⊂ V, X and Y are conditionally independent given 

Z, if p(X ∣ Y,Z) = p(X∣Z), where p(Z) > 0.

In other words, variables in Y do not provide additional information regarding X once Z is 

available. And therefore including variables in Y in a model for predicting variables in X is 

redundant, when Z is part of the model. We use the symbol “ ⊥ ” to represent independence 

and symbol “∣” to represent conditioning. The statement “X and Y are conditionally 

independent given Z” is expressed as X ⊥ Y∣ Z.

Definition: Markov blanket (23,24). A Markov blanket X of the response variable T in the 

joint probability distribution p(V,T) is a set of variables conditioned on which all other 

variables are independent of T, that is, ∀ Y ∈ V − {X,T}, T ⊥ Y∣X.

Definition: Markov boundary (23,24). If no proper subset of Markov blanket X of T satisfies 

the definition of Markov blanket of T, then X is a Markov boundary (MB) of T.

The correspondence between Markov blanket and optimal feature set of T was established in 

the theorem below.

Theorem 1 (17,25): If M is a performance metric that is maximized only when p(T∣V −{T}) 

is estimated accurately, and L is a learning algorithm that can approximate any conditional 

probability distribution, then variable set M is a Markov blanket of T if and only if it is an 

optimal feature set of T.

Similarly, under the condition of the above theorem, a Markov boundary of T is a minimal 

optimal feature set of T.

2.2 Target Information Equivalence and Multiple Markov Boundaries

If there is only one unique Markov boundary of T, there is only one irreducible variable set 

that result in optimal performance for predicting T. Given Theorem 1, any other variable set 

that do not include all variables of the Markov boundary will result in suboptimal predictive 

performance. In this case, our strategy for handling missing data with predictively equivalent 

models would not work, since there is no predictively equivalent optimal models with an 

alternative risk factor set. In other words, our proposed method for using predictive 

equivalent models to handle missing variable depends on having multiple Markov 

Boundaries.
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The uniqueness of Markov boundary is guaranteed under the faithfulness condition, more 

specifically when the intersection property (23) is satisfied (17). Under faithfulness, the 

unique Markov boundary of T have structure property with respect to the data generation 

process (a faithful Bayesian network). It correspond to the parents, children and parents of 

the children of T (25). When the intersection property is violated, there can exist multiple 

Markov boundaries for the target T. The multiple Markov boundaries of T are Target 

information equivalent (12,17). One of the many Markov boundaries of T would correspond 

to the parents, children and parents of the children of T (17,26).

Definition: Target information equivalence. Two subsets of variables X ⊂ V and Y ⊂ V 
contain equivalent information about a variable T iff the following conditions hold: T ⊥ X, T 
⊥ Y, T ⊥ X∣Y, T ⊥ Y∣X.

Multiple Markov boundaries is a specific form of target information equivalence, where 

there exist multiple distinct and irreducible variable sets that produces predictively optimal 

models for target T.

3. The MMTOP Algorithm

In this section, we present the MMTOP algorithm for handling missing data at the time of 

prediction. MMTOP consists of two parts: the model construction procedures and the 

prediction time procedures. The model construction procedures produce predictively 

equivalent models. At prediction time, given the missing data pattern in the observation (e.g. 

a patient) to be predicted, the prediction time procedures select the appropriate models and 

make a prediction.

3.1 Model Construction Procedures

The first procedure in the model construction procedures is TIE*: TIE* derives all Markov 

boundaries of a target T. TIE* (previously described in detail in (17)) is a generative 

algorithm, which describes a family of algorithms that have the same underlying algorithmic 

principle. Here, we describes the instantiation of TIE* that is used in our demonstration 

study in section 4. For the generative TIE*, other potential instantiations, computational 

complexity, and proof of correctness, see (17). The generative nature of TIE* makes it 

flexible and able to handle different distributions (e.g. particular outcome distribution and/or 

time dependent relationship among variables).

A high level summary of our instantiation of the TIE* is the following: (i) the entire data are 

partitioned into two non-overlapping subsets, one for the identification of risk factor sets that 

are candidate Markov boundaries (training set), the other for determining target information 

equivalence (validation set). This separation obtains unbiased performance estimation for 

multiple Markov boundary induction. (ii) In the training set, we first learn the 1st Markov 

boundary of T using the generalized local learning algorithm, GLL (27,28) (line 2). (iii) To 

construct other Markov boundaries, we removed one or more risk factors from the already 

derived Markov boundaries from the data, and applied GLL to identify risk factors that 

could potentially substitute for the removed risk factors, resulting a new risk factor set (line 

5,6). (iv) The new risk factor set is considered predictively equivalent if its predictive 
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performance is comparable to that of the 1st Markov boundary risk factor set in the 

validation set (line 7-9). Steps (iii) and (iv) are repeated until all Markov boundaries have 

been identified (line 4-11).

The second model construction procedure is GenerateEquivalentModels, this simple 

procedure constructs models for target T based on the multiple Markov boundaries identified 

by TIE*, a dataset D, and a learning algorithm ℒ. The choice of the learning algorithm is 

mainly influenced by the distribution of target T. For our demonstration study in section 4, 

since our target of interest is time-to-event, we choose the Cox proportional hazard (coxph) 

(29,30) as our learning algorithm. In general, any learning algorithm that is compatible with 

the distribution of the target could be used here. If several possible learning algorithms are 

available, model selection can be conducted via standard protocol such as nested cross 

validation to optimize predictive performance (not shown in pseudo code below).

Procedure TIE*(Dt,Dv,T)

/* generates multiple Markov boundaries */

Inputs:

• Dataset Dt sampled from p(V,T), training set for identifying candidate Markov 

Boundary sets.

• Dataset Dv sampled from p(V,T), validation set for evaluating target information 

equivalence.

Output: Set MMB, containing all Markov boundaries of T

1. MMB = {}

2. Use GLL to learn a Markov boundary MB of T from the training set Dt

3. MMB = MMB ∪ {MB}

4. Repeat

5. Generate a dataset Dt
e = Dt(V ∖ G) by removing from the full set of variables V 

the smallest subset G ⊂ ∪MMB, such that:

i. G was not considered in the previous iterations of this step, and

ii. G does not include any subset of variables that was found not to be a 

Markov boundary of T (per step 9)

6. Use GLL to learn a Markov boundary MBnew of T on Dt
e

7. On validation set Dv, compute predictive performance of model based on MBnew 

for T

8. On validation set Dv, compute predictive performance of model based on MB for 

T
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9. If the performance based on MBnew is not statistically worse compared to that of 

MB

10. MMB = MMB ∪ {MBnew}

11. Until all dataset De generated in step 5 are considered.

Procedure GenerateEquivalentModels(D,MMB,ℒ)

/* Generates multiple predictively equivalent models */

Inputs:

• Dataset D sampled from p(V,T)

• Set MMB containing multiple Markov boundaries derived by procedure TIE*

• Learning algorithm ℒ to learn function T = m(X), X ⊂ V

Output: Set PEM, contains predictively equivalent models based on MMB for T

1. PEM = {}

2. for MB ∈ MMB

3. Use ℒ to learn model m based on variables in MB from D for T

4. PEM = PEM ∪ m

3.2 Prediction Time Procedures

To predict an observation with missing values given a collections of predictively equivalent 

models (procedure PredictWithMissing), we need to specify what subset of models among 

all predictively equivalent models are applicable (procedure ModelSelect) and how to arrive 

at a single prediction if multiple models are applicable (procedure IntegratePredictions). 

There are many ways to achieve the two tasks above. We show below our implementation 

the demonstration study in section 4.

Briefly, to select applicable models (procedure ModelSelect), we simply take any model 

where all predictors in the model are measured. To obtain a single prediction from the 

collection of models selected by ModelSelect (procedure IntegratePredictions), we choose 

one model at random and make prediction with that model. Alternative instantiations of 

these procedures are discussed in section 5.

Procedure PredictWithMissing(d, PEM)

/* Handles missing data at the time of prediction leveraging predictively equivalent models 

*/

Inputs:

• Vector d = {v1,v2,…,vi,…} representing available variables for the observation 

(e.g. a patient) for predicting T
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• Set PEM, containing all predictively equivalent models of T, derived by 

Procedure GenerateEquivalentModels.

Output: Prediction for T given available data d = {v1,v2,…,vi,…}

1. M = ModelSelect(PEM, d)

2. prediction = IntegratePredictions(M,d)

Procedure ModelSelect(d, PEM)

/*selects appropriate models for risk prediction according to availability of data*/

Inputs:

• Vector d = {v1,v2,…,vi,…} representing available variables for the observation 

(e.g. a patient) for predicting T

• Set PEM, containing all predictively equivalent models of T, derived by 

Procedure GenerateEquivalentModels.

Output: M ⊆ PEM can be applied to d = {v1,v2,…,vi,…}

1. M = {}

2. for m in PEM

3. if predictors in m are all present in d

4. M = M ∪ m

Procedure IntegratePredictions(M,d)

/*Produce a single prediction for T given d and multiple models in M */

Inputs:

• M, a collection of models for predicting T given sets of elements in d

• Vector d = {v1,v2,…,vi,…} representing available variables for the observation 

(e.g. a patient) for predicting T

Output: Prediction for T given d

1. Randomly select model m ∈ M

2. prediction = m(d)

4. Demonstration of MMTOP

In this section, we demonstrate the application of MMTOP using data from the ACCORD 

dataset. We first derive multiple predictively equivalent models for severe hypoglycemia risk 

in the training set. We than systematically introduced missingness in the testing set by 

dropping out variables at varying rates to simulate missing data at time of prediction. We 

compared the performance of MMTOP vs. four competitor methods for handling missing 

data at the time of prediction.
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4.1 Type II Diabetes and Severe Hypoglycemia

More than 20 million Americans have type 2 diabetes (T2DM) (31), an acknowledged 

public health burden. Although intensive glucose control to lower HbA1c to near-normal 

levels has established benefits in patients with T2DM, including reduction in microvascular 

disease (32-34) and possibly macrovascular events (32,35), fear of hypoglycemia commonly 

limits intensification of glycemic control (36). Many clinical risk factors for hypoglycemia 

have been identified. These include older age, diabetes duration, burden of co-morbidities, 

glycemic treatment intensification, current insulin treatment, duration of insulin treatment 

and use of other T2DM medications (37-42). Risk models predicting short-term (2-12 

months) (43-48) and long-term (5 years) (49) hypoglycemia have been developed. However, 

the application of these risk models to the clinical setting is limited.

4.2 Data

4.2.1 The ACCORD Dataset—The Action to Control Cardiovascular Risk in Diabetes 

(ACCORD) study was a randomized, multicenter, double 2x2 factorial design study in 

patients with pre-existing T2DM (50). The ACCORD study examined the effects of 

glycemic control (Intensive vs. Standard), blood pressure control and lipid control on 

cardiovascular (CV) morbidity and mortality (51).

All study participants (n=10,251) had a clinical diagnosis of T2DM, defined using the 1997 

ADA criteria, and were on stable diabetes treatment program for at least 3 months. In 

addition, all study participants either had a history of diagnosed CV disease or at least 2 CV 

risk factors in addition to diabetes. Exclusion criteria included the following: self-reported or 

previously diagnosed type 1 diabetes, secondary causes of diabetes, or gestational diabetes. 

All participants were randomized to standard glycemic treatment [HbA1c target 

7.0-7.9%(53-63 mmol/mol)] or intensive glycemic treatment [HbA1c target < 6.0%(42 

mmol/mol)]. Due to higher mortality in the intensive treatment group, participants receiving 

intensive treatment were transitioned to standard treatment partway through the study 

(median follow up: 3.7 years) (52).

The ACCORD study has rigorously documented risk factors, defined follow-up, and 

adjudicated SH outcomes. The wealth of information collected prospectively within the 

ACCORD study provides a rich dataset, enabling the identification of multiple predictively 

equivalent models.

Deidentified data from the ACCORD study were obtained from BioLINCC (https://

biolincc.nhlbi.nih.gov/) in June, 2017.

4.2.2 Outcome—The outcome of this analysis was the time to the first severe 

hypoglycemia (SH) event. SH was defined as an episode of hypoglycemia requiring medical 

assistance and either blood glucose less than 50 mg/dL or requiring the administration of 

glucose. Hypoglycemia events were assessed by clinic staff at each visit based on self-report 

by the participant and then adjudicated by the ACCORD study.

4.2.3 Candidate Risk Factors—We extracted 91 variables as candidate risk factors for 

SH analysis within ACCORD (Table 1 and Supplemental Table 2). Table 1 contains all 
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variables that are significantly associated with the outcome (48 out of 91), whereas 

Supplemental Table 2 contains all 91 variables. These risk factors span the following 

sources: demographics, lab values, medications, physical exam findings and mental health 

evaluations. Some candidate risk factors were only collected at baseline, others were 

collected at baseline and over varying intervals during ACCORD follow-up. Frequency of 

these measurements are reported in Table 1 and Supplemental Table 2. Candidate risk 

factors measured at multiple time points, including the discontinuation of the intensive 

hypoglycemic treatment, were treated as time-varying covariates in our models.

4.3 Analytical Procedure

4.3.1 Application of MMTOP—MMTOP was instantiated as in section 3. Since our 

target of interest time-to-SH, for several procedures, we use their variants that are designed 

for time-to-SH. Specifically, in TIE* line 2 and 6, we used a version of GLL that 

accommodates the time-to-event outcome, a similar implementation was reported here (53). 

In TIE* line 7 and 8, we used the coxph model to compute predictive performance. In 

GenerateEuivalentModels, we used coxph as the learning algorithm for deriving multiple 

predictively equivalent models. Also, in TIE* line 9, we operationally define “not 

statistically worse” as achieving a c-index greater than the c-index (see 4.3.2) of the model 

built from the 1st Markov boundary minus 1 standard deviation of the c-index. The standard 

deviation of the c-index is estimated from all the cross validation runs.

4.3.2 Performance Estimation for Predictively Equivalent Models—We first 

evaluated the model construction procedures of MMTOP, in other words, we evaluated the 

performance of predictively equivalent models without the presence of missing data. We 

performed 10-fold cross-validation, in which participants were randomly split into ten 

outcome stratified non-overlapping subsets, each containing about 10 percent of the 

participants. The TIE* was applied in nine of these ten data subsets (where eight subsets 

were used as training set and one subset was used as validation set) to identify predictively 

equivalent risk factor sets. Coxph models were built for each of the identified risk factor sets 

and tested in the remaining tenth subset (testing set) to serve as an independent performance 

estimation. This procedure was conducted iteratively, resulting in each of the ten data 

subsets being used once for testing of the models. We repeated the 10-fold cross validation 

procedure five times to account for splitting variance, resulting in 50 repetitions of model 

construction and performance estimation. This procedure, repeated balance nested cross 

validation, has been shown to produce robust and unbiased performance estimation for 

predictive models (54-56).

We used the concordance index (c-index) as the performance metric for the models (29). 

Concordance is defined as probability of agreement for any two randomly chosen 

observations, where agreement means that the observation with the shorter survival time also 

has the larger risk score. The c-index ranges from 0 to 1. A c-index of 1 indicate perfect 

agreement, a c-index of 0.5 indicate agreement of random chance.

4.3.3 Comparing the Performance of MMTOP with Competitor Methods—We 

then evaluated the prediction time procedures of MMTOP. We quantitatively compared 
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MMTOP to three other widely adopted imputation methods as well as the reduced models 

method (9) for handling missing data at the time of prediction in the presence of missing 

data. The three imputation methods were median value imputation (6), Multivariate 

Imputation by Chained Equations (MICE)(57), and k nearest neighbor imputation (KNN, 

with k=5)(58).

We conducted this analysis using the ACCORD dataset and systematically introduced 

missingness by dropping out variables at varying rates. Specifically, we tested dropping out 

1 through 5 randomly selected variables.

Risk models were derived from training data where values for all variables were available, 

and evaluated on the testing data where missingness was introduced. To make a prediction 

with MMTOP, we randomly selected an equivalent model where the missing variables were 

not risk factors. To make a prediction using imputation methods, we assumed that only the 

1st risk model was available to us and applied the 1st risk model to the imputed test data to 

obtain risk predictions. To make a prediction using the reduced models method, we 

compared the available data element to the 1st risk model, made a reduced model based on 

what is available in the 1st risk model and applied the reduced model to obtain risk 

predictions. Note that as suggested in (9), an alternative would be to compute and store the 

reduced models for all possible patterns of missingness at model construction time and 

query the reduced models at prediction time.

The above analytical procedure was repeated 50 times to assess the variability in 

performance while randomly dropping different variables. We also embedded the procedure 

in five repeat ten-fold cross validation to ensure unbiased performance estimation. We used 

the paired t-test to compare the predictive performance between MMTOP and the competitor 

methods and applied Bonferroni correction to correct for multiple comparisons.

4.3.4 Analysis Software—We used the survival package in R for the coxph model 

(59,60). We used the mice package and the DMwR package for MICE and KNN imputation 

respectively. For reduced models method and MMTOP custom scripts were created in R 

(17). The Majority of the analysis was performed on the super computers provided by 

Minnesota Supercomputing Institute.

4.4 Results

4.4.1 Identification of Multiple Predictively Equivalent Risk Models—By 

applying TIE* on the full dataset, we identified 77 Markov boundary risk factors sets which 

result in predictively equivalent models. The cross-validated c-index of the predictively 

equivalent risk models are 0.77+/−0.03 (mean+/−std), estimated by 5 repeat 10 fold cross 

validation. The number of risk factors in each risk factor set ranged from 12 to 17 (median 

14 variables). Out of the 91 candidate risk factors, 27 are present in at least one risk factor 

set. Table 2 shows the 77 predictively equivalent risk factor sets and corresponding risk 

models. Figure 2 shows the percentage of time that a given variable appears in all identified 

predictively equivalent risk factor sets.
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The following risk factors were consistently selected by TIE* into most predictively 

equivalent risk factor sets (appears in more than 80% of risk factor sets): 1) number of 

hypoglycemia episodes requiring hospitalization or emergency care or medical assistance in 

the previous visit period, 2) number of hypoglycemia episodes in the past 7 days, 3) other 

bolus insulin use, 4) diastolic blood pressure, 5) highest level of education 6) age, 7) black 

race, 8) Health Utilities Index Mark3, 9) urinary albumin to creatinine ratio, 10) duration of 

diabetes 11) renal function (Glomerular filtration rate: eGFR) 12) intensive hypoglycemia 

treatment, 13) NPH or L Insulin use.

Many of the risk factors underlying the multiple predictively equivalent models derived in 

the present study (such as previous hypoglycemia, intensive hypoglycemia treatment, black 

race, diastolic blood pressure, age, education, years of diabetes, eGFR, and insulin use) are 

in concordance with previously reported risk factors in SH literature (38) as well as previous 

work based on the ACCORD study(40).

Examination of the derived predictively equivalent models reveals information regarding 

information equivalence among sets of risk factors with respect to SH. For example, our 

model suggests that eGFR and retinopathy contain the same information content regarding 

SH as serum creatinine in conjunction with years of diabetes given a set of 15 other 

variables (See table 2, comparing risk factor set 11 with risk factor set 12). Another example 

(table 2, compares risk factor set 42 with risk factor set 46) is HUI and other medication 

contain the same information regarding SH as UACR in the presence of other 11 other risk 

factors. Understanding which risk factors contain overlapping information could provide 

mechanistic insights regarding the disease.

4.4.2 Comparing the Performance of MMTOP with Competitor Methods—
Figure 3 and supplemental table 3 illustrates the performance of MMTOP compared to four 

competitor methods for handling missing data at the time of prediction. Paired t-tests 

showed statistically significant superiority of the MMTOP vs the competitor methods for all 

examined rates of missingness (all p-values<0.001 after adjusting for multiple comparisons). 

As expected, the number of missing variables did not affect the performance of the MMTOP, 

since predictively equivalent models were used for all predictions. The c-index for MMTOP 

is 0.77+/−0.03 for all rates of missingness tested. As the number of missing variables 

increased, the performance of all competitor methods deteriorated. When only one variable 

is missing, the average c-index for all competitor methods was 0.76+/−0.03. When five 

variables are missing, the c-index for the reduced models method is 0.75+/−0.03, the c-index 

for KNN and median imputation is 0.74+/−0.03, and the c-index for MICE is 0.73+/−0.03.

5. Discussion and future work

The present study extends the current literature by illustrating a novel strategy for making 

risk prediction in the presence of missing data. Our strategy leverages multiple predictively 

equivalent risk models and makes risk predictions based on models that match the available 

data. We demonstrated the successful application of this strategy on SH risk prediction. We 

showed that, the performance of the MMTOP methods is not influenced by the presence of 

missing data, it achieved the same performance compared to when it was operating on the 
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complete dataset, whereas the performance of all tested competitor methods deteriorated as 

number of missing variables increased.

There are several considerations for deploying this strategy in the clinical setting. First, the 

number of predictive equivalent models could be reduced based on knowledge of clinical 

workflow (modification to procedure ModelSelect). For example, certain variables such as 

age, education, race, years of diabetes, and blood pressure can be measured with little cost 

and/or burden during a clinical encounter, therefore, we could consider predictively 

equivalent models that utilize these risk factors. This reduces the number of models from 77 

to 30. Second, the measurement quality of different risk factors in the clinical setting should 

be taken into consideration. Our predictively equivalent models were derived from 

ACCORD, a clinical trial, where measurement quality of certain variables (e.g. number of 

recent hypoglycemic events) are likely higher compared to what can be obtained in routine 

clinical setting. The models utilizing these variables may result in suboptimal risk prediction 

when applied to the clinical setting. Therefore, one should either prioritized models 

constitutes of risk factors with high measurement quality (modification to procedure 

IntergateModels by weighting models based on measurement quality) or consider improving 

measure quality of these variables. Third, the prediction time procedures of MMTOP could 

be linked to the EHR so that our missing data strategy could be incorporated into the clinical 

workflow. Fourth, it is possible that in certain clinical situation, we may not want the 

optimal risk prediction models (e.g. risk factors in optimal risk model is too expensive to 

collect), and are happy with risk models with performance that are higher than a certain 

threshold. In this case, procedure TIE* can be swapped with a procedure that output all risk 

factor sets that result in models with performance greater than the specified threshold.

In summary, the primary strength of our study is the novel approach of leveraging multiple 

predictively equivalent models to handle missing data at the time of prediction. This 

approach accommodates missing data by presenting alternative, equivalent models that do 

not require measuring the missing data elements or imputation.

The future direction of this work is to evaluate the performance of our missing value strategy 

on data collected through routine clinical practice and to design a clinical decision support 

system that incorporate the multiple predictive equivalent models into the clinical workflow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We introduce a new strategy, predictively equivalent models, to address the 

missing data issue at the time of prediction

• Its application in severe hypoglycemia risk prediction for Type 2 Diabetes is 

demonstrated.

• The predictively equivalent models outperformed all tested competitor 

methods methods when applied to data with missing values.
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Figure 1. 
Handling missing data at the time of prediction with different methods.

Consider a scenario where we want to predict SH risk for a patient with SBP and A1C 

missing. When we only have one (hypothetical) risk model based on age, SBP and A1C, we 

could handle the missing SBP and AIC by (1) measuring the missing variables, or (2) 

imputing the missing variables. (3) When we employ the reduced model technique, a 

reduced model (only containing age as a predictor) of the original model with be used. 

When we have multiple predictively equivalent risk models available (e.g. model 1-4), we 

could handle the missing data by (4) find the risk model that matches the data availability of 

the patient.
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Figure 2. 
Frequency of a variable being present in a predictively equivalent risk factor set. See Table 1 

for description of variables. Dark gray bar indicate a variable is selected in more than 80% 

of the predictively equivalent risk factor sets.
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Figure 3. 
Predictive performance of different methods for handling missing data at the time of 

prediction.
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Table 1:

Candidate risk factors and their univariate relationship with the outcome variable time to SH. HR=hazard 

ratio; CI=confident interval; Only risk factors that are univariately significantly associated with time to SH are 

shown (48 out of 91). See supplemental table 1 for all candidate risk factors.

Variable Name Description measurement time

Univariate Relationship with SH

HR CI (95%) P-
Value

Glycemia Glycemia Trial Status: 1=active, 0=inactive
every 2 weeks in the first 
three month; monthly 
afterwards

2.83 1.51 5.29 0.001

Intensive Tx Intensive Hypoglycemia treatment baseline 2.52 2.15 2.96 <0.001

Black Black Race baseline 1.81 1.54 2.13 <0.001

White White Race baseline 0.79 0.68 0.92 0.002

Age Age (yrs) at Randomization baseline 1.05 1.04 1.06 <0.001

Education Highest level of education baseline 0.79 0.74 0.85 <0.001

DBP Diastolic Blood Pressure (mmHg)
Monthly in the 1st four 
month; every two month 
afterwards

0.96 0.96 0.97 <0.001

Serum Creatinine Serum creatinine (mg/dL) quarterly 1.93 1.76 2.12 <0.001

eGFR eGFR from 4 variable MDRD equation 
(ml/min/1.73 m2) quarterly 0.98 0.98 0.98 <0.001

Urine Protein Urinary albumin to creatinine ratio (mg/g) every two years 1 1 1 <0.001

CVD History CVD History at Baseline: 0=No, 1=Yes baseline 1.31 1.13 1.52 <0.001

Ulcer foot ulcer requiring antibiotics baseline 0.63 0.47 0.84 0.002

UACR protein in urine baseline 0.81 0.68 0.96 0.016

Years Diab year of diabetes diagnosis baseline 1.06 1.05 1.06 <0.001

# Recent
Hypoglycemia

# of hypoglycemic episodes (SMBG <70 
mg/dL or <3.9mmol/L) in last 7d monthly 1.34 1.29 1.38 <0.001

Visual Acuity (R) visual acuity score, right eye baseline 0.99 0.99 0.99 <0.001

Visual Acuity (L) visual acuity score, left eye baseline 0.99 0.98 0.99 <0.001

Retinopathy participant had retinopathy annually 0.48 0.39 0.59 <0.001

Vision Loss vision loss annually 0.62 0.5 0.76 <0.001

Ankle Reflexes ankle reflexes annually 1.31 1.12 1.54 0.001

# hypoglycemia 
hospitalization

hypoglycemia requiring hospitalization, 
emergency care without hospital admission, 
or medical assistance without emergency 
care or hospitalization, number of times 
since last call

monthly 15.4 10.9 22 <0.001

HUI3 Health Utilities Index Mark3 (HUI3); baseline; 12m; 36m; 48m 
and Exit visit 0.48 0.37 0.62 <0.001

HUI2 Health Utilities Index Mark2 (HUI2); baseline; 12m; 36m; 48m 
and Exit visit 0.4 0.27 0.6 <0.001

Loop Loop diuretics annually 2.12 1.78 2.53 <0.001

Thiazide Thiazide diuretics annually 1.25 1.08 1.45 0.003

Ksparing Ksparing diuretics annually 1.54 1.1 2.15 0.012

Potassium Potassium supplements annually 1.19 1.03 1.38 0.022
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Variable Name Description measurement time

Univariate Relationship with SH

HR CI (95%) P-
Value

Ace Inibitos Ace inhibitors annually 1.18 1.02 1.37 0.025

DHP CCD Dihydropyridine calcium channel blockers annually 1.34 1.08 1.66 0.008

Alpha-Blocker Peripheral alpha-blockers annually 1.45 1.08 1.96 0.014

Beta-Blocker Beta-blockers annually 1.48 1.27 1.71 <0.001

Antiarrhythmic Anti-arrhythmics annually 1.96 1.05 3.65 0.035

Nitrates Nitrates annually 1.4 1.05 1.86 0.02

Other CV Meds Other cardiovascular drugs annually 1.94 1.07 3.51 0.03

Sulfonylurea Sulfonylureas annually 0.6 0.52 0.7 <0.001

Biguanide Biguanides annually 0.58 0.5 0.67 <0.001

Meglitinide Meglitinides annually 1.36 1.11 1.67 0.003

NPH/L Insulins NPH or L Insulins annually 3.49 2.94 4.14 <0.001

TZD Thiazolidinediones annually 1.43 1.23 1.66 <0.001

Reg Insulin Regular Insulins annually 2.52 1.95 3.26 <0.001

Lisprot/Aspart
Insulin Lispro or Aspart Insulins annually 2.43 2.08 2.84 <0.001

Other Bolus
Insulin Other Bolus Insulins annually 0.23 0.07 0.77 0.018

Premixed Insulins Premixed Insulins annually 1.56 1.31 1.86 <0.001

Anti Coag Oral anitcoagulants (warfarin, coumadin, 
anisindione) annually 1.44 1.04 2 0.029

Platelet Agi Inhibitors of platelet aggregations (except 
aspirin) annually 1.35 1.03 1.76 0.029

Thyroid Thyroid agents annually 1.35 1.07 1.72 0.013

Fluid Retention Diuretic for fluid retention annually 2.58 1.22 5.44 0.013

Other Meds Any other prescribed medication annually 1.4 1.21 1.62 <0.001
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