Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2004;47(4):313–321. doi: 10.1360/03yc0137

Prokaryote phylogeny based on ribosomal proteins and aminoacyl tRNA synthetases by using the compositional distance approach

Wei Haibin 1,2,, Qi Ji 3,4, Hao Bailin 3,2,
PMCID: PMC7088628  PMID: 15493472

Abstract

In order to show that the newly developed K-string composition distance method, based on counting oligopeptide frequencies, for inferring phylogenetic relations of prokaryotes works equally well without requiring the whole proteome data, we used all ribosomal proteins and the set of aminoacyl tRNA synthetases for each species. The latter group has been known to yield inconsistent trees if used individually. Our trees are obtained without making any sequence alignment. Altogether 16 Archaea, 105 Bacteria and 2 Eucarya are represented on the tree. Most of the lower branchings agree well with the latest, 2003, Outline of the second edition of the Bergey’s Manual of Systematic Bacteriology and the trees also suggest some relationships among higher taxa.

Keywords: prokaryote, Archaea, phylogeny, phylogenetic tree, composition distance

Footnotes

These authors contributed equally to this work.

References

  • 1.Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: Breathing new life into microbiology. J. Bacteriol. 1994;176:1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA. 1977;74:5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.The European Ribosomal RNA database. Available at:http:// oberon.fvms.rgent.ac.be:8080/rRNA/index.html
  • 4.Cole J. R., Chai B., Marsh T. L., et al. The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucl. Acids Res. 2003;31:442–443. doi: 10.1093/nar/gkg039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bergey’s Manual Trust . Bergey’s Manual of Systematic Bacteriology. 2nd Ed. New York: Springer-Verlag; 2001. [Google Scholar]
  • 6.Brocchieri L. Phylogenetic inferences from molecular sequences: Review and critique. Theoretical Population Biology. 2001;59:27–40. doi: 10.1006/tpbi.2000.1485. [DOI] [PubMed] [Google Scholar]
  • 7.Nomura M. Engineering of bacterial ribosomes: Replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. Proc. Natl. Acad. Sci. USA. 1999;96(5):1820–1822. doi: 10.1073/pnas.96.5.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Doolittle W. F. Phylogenetic classification and the universal tree. Science. 1999;284:2124–2128. doi: 10.1126/science.284.5423.2124. [DOI] [PubMed] [Google Scholar]
  • 9.Ragan M. A. Detection of lateral gene transfer among microbial genomes. Current Opinion in Genetics & Development. 2001;11:620–626. doi: 10.1016/S0959-437X(00)00244-6. [DOI] [PubMed] [Google Scholar]
  • 10.Wolf Y. I., Rogozin I. B., Grishin N. V., et al. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evolutionary Biology. 2001;1:8–8. doi: 10.1186/1471-2148-1-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wolf Y. I., Rogozin I. B., Grishin N. V., et al. Genome trees and the tree of life. Trends in Genetics. 2002;18:472–479. doi: 10.1016/S0168-9525(02)02744-0. [DOI] [PubMed] [Google Scholar]
  • 12.Brown J. R., Douady C. J., Italia M. J., et al. Universal trees based on large combined protein sequence data sets. Nature Genetics. 2001;28:281–285. doi: 10.1038/90129. [DOI] [PubMed] [Google Scholar]
  • 13.Qi J., Wang B., Hao B. L. Whole genome prokaryote phylogeny without sequence alignment: A K-string composition approach. J. Mol. Evol. 2004;58:1–11. doi: 10.1007/s00239-003-2493-7. [DOI] [PubMed] [Google Scholar]
  • 14.Chu K. H., Qi J., Yu Z. G., et al. Origin and phylogeny of chloroplasts: A simple correlation analysis of complete genomes. Mol. Biol. Evol. 2004;21:70 –76. doi: 10.1093/molbev/msh002. [DOI] [PubMed] [Google Scholar]
  • 15.Gao L., Qi J., Wei H. B., et al. Molecular phylogeny of coronoaviruses including human SARS-Cov. Chinese Science Bulletin. 2003;48(12):1170–1174. doi: 10.1360/03wc0254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Matte-Tailliez O., Brochier C., Forterre P., et al. Archael phylogeny based on ribosomal protein. Mol. Biol. Evol. 2002;19(5):631–639. doi: 10.1093/oxfordjournals.molbev.a004122. [DOI] [PubMed] [Google Scholar]
  • 17.Doolittle R. F., Handy J. Evolutionary anomalies among the aminoacyl-tRNA synthetases. Current Opinion in Genetic & Development. 1998;8:630–636. doi: 10.1016/S0959-437X(98)80030-0. [DOI] [PubMed] [Google Scholar]
  • 18.Wolf Y. I., Aravind L., Grishin N. V., et al. Evolution of aminoacyl-tRNA synthetases-Analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Research. 1999;9:689–710. [PubMed] [Google Scholar]
  • 19.Woese C. R., Olsen G. J., Ibba M., et al. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiology and Molecular Biology Reviews. 2000;64(1):202–236. doi: 10.1128/MMBR.64.1.202-236.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Benson D. A., Karsch-Mizrachi I., Lipman D. J., et al. GenBank. Nucl. Acids Res. 2003;31:23–27. doi: 10.1093/nar/gkg057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wheeler D. L., Church D. M., Federhen S., et al. Database resources of the National Center for Biotechnology. Nucl. Acids Res. 2003;31:28–33. doi: 10.1093/nar/gkg033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Nei M., Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000. pp. 87–103. [Google Scholar]
  • 23.Felsenstein, J., PHYLIP (phylogeny inference package) version 3.5c, 1993, available at: http://evolution.genetics.washington.edu/ phylip.html
  • 24.Garrity G. M., Johnson K. L., Bell J. A., et al. Taxonomic Outline of the Procaryotes, Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer-Verlag; 2002. [Google Scholar]
  • 25.Burggraf S., Stetter K. O., Rouviere P., et al. Methanopyrus kandleri: An archeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 1991;14:346–351. doi: 10.1016/s0723-2020(11)80308-5. [DOI] [PubMed] [Google Scholar]
  • 26.Slesarev A. I., Mezhevaya K. V., Makarova K. S., et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl. Acad. Sci. USA. 2002;99:4644–4649. doi: 10.1073/pnas.032671499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Garrity G. M., Bell J. A., Lilburn T. G. Taxonomic Outline of the Procaryotes, Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer-Verlag; 2003. [Google Scholar]

Articles from Science in China. Series C, Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES