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Abstract

Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the devel-
opment of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided
opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and sta-
ble at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the anti-
gens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa
and helminths. Numerous studies were conducted over the past 14 years of 21% century, employing various administration techniques,
adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been reward-
ing. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient ad-

juvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.
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Introduction

In our previous review concerning usefulness of cDNA vac-
cination in preventing parasitic diseases of man and animals
(Kofta and Wedrychowicz 2001), we concluded that this tech-
nology opens up many new opportunities but still requires
much more research like cloning and testing antigenic prop-
erties and protectivity of new c-DNA sequences, using differ-
ent ways of delivery, design of vectors containing appropriate
immunostimulatory sequences, the coadministration of im-
munomodulating DNA constructs in order to trigger protec-
tive immune mechanisms not necessarily the same as those
elicited during natural infection. During the past thirteen years
most of these suggestions have been addressed in many vac-
cination trials but still there is no anti-parasitic DNA vaccine
available on the market.

Vaccination is the most effective and efficient procedure for
disease prevention (McCullers 2007). At the end of XX century
development of molecular biology and biotechnology raised
hopes for a quick development of anti-parasitic vaccine indus-
try thanks to DNA (cDNA) based vaccines (Wolff ez al. 1990).
However, despite that numerous experimental studies have been

conducted since Wollff’s publication, to date there are only few
DNA vaccines that have been approved for veterinary use
(Davidson et al. 2005; Garver et al. 2005; Bergman et al. 2006;
Person et al. 2008). Moreover, only two of them are prophy-
lactic vaccines; one to prevent West Nile Virus infections in
horses (Davidson et al. 2005) and the second to stimulate in-
nate and adaptive immune responses of salmons to infections
with haematopoietic necrosis virus (Garver et al. 2005). Despite
the success of these DNA vaccines and the positive results of
others in clinical trials, the efficiency of DNA vaccines in hu-
mans and large animals like bovines and sheep is still lower
than it was expected (Liu 2010).

DNA vaccination: mechanisms of action and
adjuvants

Several factors still limit the effectiveness of vaccination,
which must be overcome with the advances in the biotech-
nology field and a deeper comprehension of the immune
mechanisms active during parasitic infections. It is commonly
agreed that an ideal vaccine should be save for entire popula-
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tion as well as induce a long term immunity and demonstrate
a good, long lasting efficacy. It also should be efficient after
single dose application, be easy for administration, simple to
produce, resistant to temperature changes, multivalent and
able of controlling disease (Levine and Sztein 2004).

DNA vaccines are composed of an antigen-encoding gene
or cDNA and a strong mammalian promoter expressed on a
plasmid backbone of bacterial DNA (Wolf et al. 1990; Sato et
al. 1996; Klinman et al. 1997). These plasmids contain DNA
sequences necessary for selection and replication in bacteria
and often additional promoters, enhancers, and other elements
designed to increase expression of the encoded protein in vac-
cinated organism. When administrated, DNA vaccine plasmid
is absorbed by the cells then uses a net of microtubules and
associated with them motor proteins in the cytoplasm to reach
the cellular nucleus (Vaughan and Dean 2006). Cells trans-
fected with DNA vaccines transcribe, translate, and express
the encoded protein(s) in the context of MHC of vaccinated or-
ganism. Transcription and translation of the transgene occurs
via the host’s cellular machinery and the produced proteins
are then presented to the surface of cells to become a target of
the immune system. Dendritic cells are probably the most im-
portant antigen presenting cells associated with the capture
and processing of antigens via receptor-mediated endocytosis
and its presentation to MHC class I and II. CD4+ and CD8+
lymphocytes can be activated during the process of DNA vac-
cination, inducing cellular immune and specific antibodies re-
sponses (Payette et al. 2001; You et al. 2001).

Multiple phase I clinical trials involving DNA vaccines
against viral and bacterial infections have been conducted
(Martin et al. 2008). Results from those trials indicate that al-
though DNA vaccines seem to be safe, the immune response
they elicit in humans and large mammals is poor (Mancini et
al. 2005; Martin et al. 2008).

Efforts have been made to improve immunogenicity of
DNA vaccines by changing promoters, codon usage of antigen
sequences (Zhu et al. 2010), the insertion of genetic adjuvants
such as cytokines and innate immune activation molecules,
strategies to prime and boost vaccination, and the route of ad-
ministration (Saade and Petrovsky 2012).

Candidate genes for a DNA prophylactic anti-parasitic
vaccine construction, which are usually molecules associated
with pathogenicity and/or important for parasite feeding, re-
production and survival in the host can be modified to target
proteins to different cellular locations: cytoplasm, cell wall
or extracellular medium, since the expression of proteins in
different compartments can influence the immunological
response. Moreover, targeting antigens of interest to protea-
somes or endosomes, using ubiquitin fusions, can also in-
crease the number of peptides available to ligate to the major
histocompatibility complex of class I (MCH-I) when induc-
tion of cytotoxic cells is required (Dobano et al. 2008).

Often, when it is necessary to express more than one gene
of interest to trigger a protective immune response, poly-
cistronic expression systems or even molten epitopes ex-

pressed as a unique polypeptide can be used (Rainczuk et al.
2004; Yuan et al. 2006; Anand et al. 2011; Zhu et al. 2011).
Immune stimulatory sequences, like unmethylated phospho-
diester linked cytosine and guanine (CpG) motifs which in-
teract with the Toll-like receptor 9 (TLR-9) may induce a
series of immune stimulatory cytokines that lead to the acti-
vation of B-cells, monocytes, macrophages, dendritic cells
(DCs) and natural killer (NK) cells, enhancing both non-spe-
cific and antigen-specific responses (Kennedy et al. 2006;
Jenkins et al. 2004). In turn, vaccination with constructs en-
coding CTLA-4 fusion proteins (which bind to CD80/86 of
APC’s) can induce strong antibody responses and provides a
novel generic DNA vaccine for the development of therapies
against a wide range of diseases. Kennedy et al. (2006) in-
vestigated the ability of ovine cytotoxic lymphocyte antigen 4
(CTLA-4) mediated targeting and ruminant specific CpG op-
timised plasmids, both alone and in combination, to enhance
immune responses in sheep to the pro cathepsinB(FhCatB)
antigen from Fasciola hepatica. They found that CTLA-4 me-
diated targeting enhanced the speed and magnitude of the pri-
mary antibody response and effectively primed for a potent
memory response compared to conventional DNA vaccina-
tion alone, which failed to induce a detectable immune re-
sponse. While the CpG-augmentation of the CTLA-4 targeted
construct did not further enhance the magnitude or isotype
profile of the CTLA-4 induced antibody titres, it did result in
the induction of significant antigen-specific, lymphocyte-pro-
liferative responses that were not observed in any other treat-
ment group, showing for the first time that significant cellular
responses can be induced in sheep following DNA vaccina-
tion. In contrast, CpG-augmentation in the absence of CTLA-
4 mediated targeting failed to induce a detectable immune
response. However, Januszkiewicz (2010) did not observed
any significant differences in cellular and humoral responses
after invasion of Fasciola hepatica in Merino lambs vacci-
nated intramuscularily with cDNA encoding F. hepatica phos-
phoglycerate kinase (FhPGK) together with ovine CTLA-4 in
comparison to non vaccinated animals. Although fluke bur-
dens were similar in vaccinated and control sheep, some sta-
tistically significant differences were observed in fluke body
size. The highest number of flukes in size between 0,5 to 1,5
cm was observed in group vaccinated with cDNA of FhPGK
but the number of biggest flukes in this group was the least.
Moreover the percentage of initial body weight increase was
highest in this group in comparison to control.

A great advantage of DNA vaccines is their ability to po-
larise immune response of vaccinated organism into TH1 or
TH2 regulated profiles not only by modifications to the form
of antigen expressed (i.e. intracellular vs. secreted), the
method and route of delivery, and the dose of DNA delivered,
but also by the co-administration of "genetic adjuvants". Such
adjuvants are composed of plasmid DNA encoding immune
regulatory molecules such as cytokines, lymphokines or other
co-stimulatory molecules and can be administered as a mix-
ture of 2 separate plasmids, one encoding the immunogen and
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the other encoding the cytokine; as a single bi- or polycistronic
vector, separated by spacer regions; or as a plasmid-encoded
fusion protein. The genetic adjuvants have been very often
used in experimental trials of DNA vaccines against protozoan
infections (Tables: I-III), and rather seldom in research on
DNA vaccination against fluke or nematode infections (Table:
V, V).

DNA vaccination: methods of delivery

There are various means of delivery of DNA vaccines against
parasites (Tables I-VI). It has been known from the start of
research on naked DNA vaccines that the outcome of vacci-
nation often depends on the route of the immunisation (Kofta
and Wedrychowicz 2001).

The intradermal injection of the c-DNA of the given anti-
gen induces the Th1-dependent response, while injecting of
the same antigen in the protein form generates the Th2 re-
sponse. Naked DNA plasmid transfection is a simple and di-
rect method, free of complex formulations or from agents,
to transfer in vivo DNA gene sequences of interest. Yu et al.
(2010) investigated BALB¢ mice response to intranasal or
intramuscular vaccination with recombinant pVAXI plas-
mids. DNA sequences of Cp12 and Cp21 surface proteins on
the sporozoite of Cryptosporidium parvum have been used as
antigens. DNA sequences of Cp12, Cp21, Cp12-Cp21, and
C (CpG oligodeoxynucleotide (ODN))-Cp12-Cp21 were
amplified and then cloned into pVAX1 vector to form the
four recombinant plasmids pVAX1-Cpl12, pVAX1-Cp21,
pVAXI1-Cpl12-Cp21, and pVAX1-C-Cp12-Cp21. All the four
DNA vaccines elicited significant antibody responses and
specific cellular responses when compared to control mice
that received vector only or PBS. Among those four plas-
mids, pVAX1-C-Cp12-Cp21 elicited significantly higher
levels of IgG. Also, the percentages of CD4+ and CD8+ T
cells were significantly higher in the group with pVAX1-C-
Cp12-Cp21 nasal sprays. Their efficacy in immunoprotec-
tion against homologous challenge was also detected after
administration of the four DNA vaccines. The results showed
that mice in the pVAX1-C-Cpl12-Cp21 nasal group had
a 77.5% reduction in the level of oocyst shedding and a
significant difference was detected when this group
was compared with the pVAX1, PBS, pVAX1-Cpl2, and
pVAX1-Cp21 groups. The reduction in the level of oocysts
shedding from the group of pVAX1-C-Cpl12-Cp21 nasal
spray was also higher than that of pVAX1-Cp12-Cp21 group.
However, to achieve significant levels of immunity in hu-
mans and large animals, DNA delivery methods often require
very high doses of plasmids and multiple doses (Wahren and
Liu 2014) thus, increasing the efficiency of DNA vaccines in
humans is still required. Insufficient cell membrane perme-
ability and low cellular uptake of DNA plasmid vectors con-
tribute for a decreased protein expression and consequently
for a reduction of DNA vaccine effectiveness.

Liposomes are synthetic vesicles consisting of phospho-
lipid bilayers and represent one of the major techniques used
for gene delivery into cells nowadays. A large number of
cationic lipids with different molar ratios, such as derivate of
diacylglycerol, lipids, polyamines and cholesterol, make the
generation of different kinds of liposomes, possessing differ-
ent physicochemical characteristics like size and net surface
charge, possible (Hiszczynska-Sawicka ef al. 2011 a,b). Upon
mixing with cationic liposomes, plasmid DNA is condensed
into lipoplexes that trigger cellular uptake and facilitate the
release of DNA from intracellular vesicles.

Bacterial DNA vaccine delivery systems consist in the in-
ternalization of bacteria, harboring a plasmid vector contain-
ing the sequence of the gene of interest, by target cells.
Subsequent primary vesicles are formed and then fused to lyso-
somal compartments where lysis of bacteria occurs, releasing
the plasmid DNA into the host’s cytosol. The plasmid DNA
then migrates to the nucleus of the cell where the gene se-
quence of interest is transcribed for subsequent transduction
and protein synthesis by the host’s cells machinery (Du and
Wang 2005). The use of bacteria as vehicles for the delivery
of DNA vaccines has several advantages when compared to
other methods. Bacteria deliver DNA vaccine plasmids di-
rectly into the interior of the cells protecting the DNA from
degradation by nucleases.

The DNA prime/vector boost concept, has been initialy
used mostly in research on vaccine against malaria (Schnei-
der et al. 2001; Kimani et al. 2014). DNA priming appears
to improve the outcome of boosting with recombinant pro-
teins, or with vector-based vaccines. The potency is de-
pendent upon DNA being the prime rather than the boost.
Although the mechanism is still not entirely clear, it is pos-
sible that focusing the immune response on the one or few
antigens generated by the plasmid gene(s), may result in po-
tent boosting when larger amounts of proteins are produced
by the viral vector in the context of the innate/inflammatory
responses generated by the viral vector (Wahren and Liu
2014). Kimani et al. (2014) used heterologous prime-boost
immunization strategy, employing a chimpanzee adenovirus
vector followed by modified vaccinia Ankara (MVA), both
encoding the pre-erythrocytic malaria antigen ME-throm-
bospondin-related adhesive protein (TRAP), to vaccinate
adults in Kenya and The Gambia in areas of similar seasonal
malaria transmission. The vaccination induced strong
cellular and humoral immune responses. This prime-boost
approach targeting the pre-erythrocytic stage of the malaria
life-cycle is now being assessed for efficacy in a target
population.

The prime /boost strategy has been widely used in expe-
rimental studes on development of effective vaccines against
protozoan infections like Leishmania donovani, L. Infantum,
Plasmodium falciparum (Table 1), Neospora caninum, Toxo-
plasma gondii (Table 1) as well as flukes such as Schisto-
soma mansoni (Table IV) and a nematode Brugia malayi
(Table VI)
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DNA vaccination against parasites — impediments

Specific studies relating to the use of DNA vaccines to im-
munise against parasitic diseases have mostly concentrated on
vaccines against intracellular parasites, i.e. protozoans.

Some of the interesting results obtained are presented in
Tables I-1I1.

Starting from year 2001 there were more than 35 reports
on ¢c-DNA vaccination against helminth infections and most
have been conducted in laboratory animal models (Tables
IV-VI). Results depended on the host—parasite system
tested and the ¢c-DNA fragments used. Schistosoma trials
brought results ranging from 0 to 63% in terms of protection
level. In our own research we tested a DNA vaccine against
the liver fluke Fasciola hepatica infection in rats, a recog-
nised model for the infection of cattle, and sheep with vari-
able success (Wedrychowicz ef al. 2002, 2003; Jaros et al.
2010; Wesotowska et al. 2013).

Why it is so hard to develop a modern vaccine against par-
asitic protozoa or helminths? Possible reasons lay both on the
parasite and host sides. Parasites have developed a number of
immune evasion mechanisms, and it is possible that one or
more of these played a role in limiting the efficacy of the vac-
cine under study, including the ability to cleave immunoglob-
ulin, thus neutralising protective antibodies. F. hepatica is
known to secrete a number of different cysteine proteases dur-
ing their development, some of which may act as smoke
screen antigens distracting/interfering with host immune re-
sponses to critical epitopes on other proteases, while redun-
dancy through overlapping specificities between proteases
may also confer some degree of protection (Dalton et al. 2013;
Robinson et al. 2013; VanRiet ef al. 2007). Several studies
have shown that helminths can influence vaccine efficacy by
modulating host immune response, in particular when Thl-
like and cellular-dependent responses are required (Mc Neilly
and Nisbet 2014). Recent studies are showing that infection
with helminth parasites alters the bacterial composition of in-
testinal flora and that the presence or absence of a single mi-
crobial species in the gut can regulate the balance between
effector and regulatory T cells (Molloy ef al. 2012). Although
F. hepatica only spends a relative short time traversing the gut
wall the parasite may impact on the gut bacterial flora; even
after 14 weeks of infection when parasites are residing in the
bile ducts enhanced responses to antigen stimulation and in-
creased numbers of immunocytes (e.g. eosinophils) can be ob-
served in the lamina propria.

Mucosal immune system plays an essential role in main-
taining intestinal homeostasis with commensal bacteria and
other organisms. Gastrointestinal parasites have coevolved
with the mammalian immune system similarly to the gut mi-
crobiota. Just as commensal bacteria can shape mammalian
immunity, helminths exert immune regulatory effects on their
mammalian hosts. However, the relationship between
helminths and gut microbiota is still unclear. Recent evidence
has suggested a role for the cytokine IL-22, during helminth

infection and in maintaining mucosal barrier function. IL-22
may therefore play an important role in the relationship be-
tween the mammalian immune response, gut microbiota and
helminth infections (Molloy et al. 2012).

It has been recently demonstrated that host gender con-
tributes to the ultimate outcome of vaccination against para-
sites (Wedrychowicz et al. 2003; Wesotowska et al. 2013).
It becomes apparent that the differences between the sexes
must be taken into account when developing not only new im-
munoprophylactic strategies but also drugs directed against
F. hepatica. Currently the majority of F. hepatica research is
carried out using male rats or sheep as they lack periodic fluc-
tuations of hormonal cycle. Nevertheless, the effectiveness of
an animal treatment can be influenced by the hosts gender and
may not be successful in both sexes. Further, farmed females
are often of greater economic interest in animal husbandry
than males, e.g. dairy cattle, and research should also focus
on them. Taken together, recent data highlights the necessity
of research on both sexes in experiments when developing
control methods against parasitic infection.

Conclusion

DNA vaccines showed several advantages like antigen presen-
tation by both MHC class I and class II molecules ; ability to po-
larise to TH1 regulated and antigen specific immune response;
simplicity of production; stability for storage and shipping; cost-
effectiveness. In vivo expression in verterbrate host ensures that
antigenic proteins receive normal eukaryotic structure and post-
translational modifications. However, despite of intense re-
search, much remains to be done to develop effective vaccine
against parasites. Because it has been found that increased anti-
gen expression correlates with improved immunogenicity in hu-
mans and large animals, next generation vectors should be
adopted to improve antigen expression, manufacturing yield,
quality, and regulatory compliance (Williams 2013). Further,
selection of optimal protective antigens should be very careful,
remembering that majority of parasites have co-evolved with
their vertebrate hosts and have developed multiple strategies to
persist asymptomatically for the lifetime of the hosts. To enable
this survival, these parasites have developed complex and mul-
tifaceted mechanisms to subvert or suppress host immunity.
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