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ABSTRACT: Aberrant expression, function, and mutation of G protein-coupled
receptors (GPCRs) and their signaling partners, G proteins, have been well
documented in many forms of cancer. These cell surface receptors and their
endogenous ligands are implicated in all aspects of cancer including proliferation,
angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the
second largest family of GPCRs, most of which are orphan receptors with unknown
physiological functions. This is mainly due to our limited insight into their
structure, natural ligands, signaling pathways, and tissue expression profiles.
Nevertheless, recent studies show that aGPCRs play important roles in cell
adhesion to the extracellular matrix and cell−cell communication, processes that are
dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in
migration, proliferation, and survival of tumor cells. We here review the role of
aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate,
and gastric) and emphasize the importance of further translational studies in this field.
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■ G PROTEIN-COUPLED RECEPTORS AND THEIR
ROLE IN CANCER

G protein-coupled receptors (GPCRs) are the largest super-
family of cell surface receptors in the human genome and are
implicated in various biological processes including sensory
perception (vision, olfaction, taste), cellular adhesion, angio-
genesis, development, and hormonal regulation, among
others.1 Structurally, GPCRs are defined by seven-trans-
membrane domains with alternating extracellular and intra-
cellular loops2−4 and are grouped into five classes: rhodopsin-
like, secretin, glutamate, adhesion, and frizzled (GRAFS
classification).5 The diverse stimuli of GPCR signaling and
the consequent physiological events make these receptors one
of the most intriguing pharmacological targets. To date,
approximately 34% of drugs in the global market target 108
unique GPCRs6 and about 56% of the nonolfactory GPCRs
have yet to be studied in a clinical trial.6 This underscores the
high potential of GPCRs as novel targets in various therapeutic
areas.
Compelling evidence suggests that GPCRs play major roles

in cancer including growth, migration, metastasis, invasion, and
survival.7−10 GPCRs and their cognate heterotrimeric G
proteins and signaling circuits are implicated in breast, lung,
colorectal, prostate, and brain tumors, among many
others.9,11−13 Despite the recent advancements in our
structural and functional knowledge of GPCRs,14−16 only
eight FDA-approved drugs target GPCRs for cancer therapy.17

This underscores the need to explore the function of both
deorphanized and orphan GPCRs in tumorigenesis, with a

mission to reveal novel therapeutic targets. Adhesion GPCRs
(aGPCRs) form the second-largest (33 members) family of
GPCRs, of which only 11 members have been deorphanized.18

The role of some members of the aGPCR family as modulators
of proliferation, metastasis, and cancer cell communication is
gradually being appreciated.19

■ STRUCTURE AND MECHANISMS OF ACTIVATION
OF AGPCRS

aGPCRs maintain the seven-transmembrane structure but are
uniquely identified by a large N-terminal fragment (NTF)
(Figure 1). In some aGPCRs, NTF contains several domains
including EGF-like, cadherin, pentraxin, and leucine-rich
repeats, which enable cells to interact with adhesion molecules
(e.g., ADGRE5 with integrins20) or extracellular matrices
(ECM) (e.g., ADGRG1 with collagen III;21 ADGRG6 with
collagen IV22). aGPCRs, except ADGRA1, include a GPCR
Autoproteolysis-Inducing domain (GAIN), which is located N-
terminally to the first transmembrane domain.18 Within the
GAIN domain is a highly conserved GPCR proteolytic site
(GPS) and a stretch of residues that connects GPS to the first
transmembrane domain.23 Proteolytic cleavage at the GPS
during protein translation divides aGPCRs into NTF and C-
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terminal fragments (CTF), which remain associated via
noncovalent interactions.
Several modes of activation of aGPCRs have been proposed,

some of which are unique to specific aGPCRs and cellular
contexts (reviewed in detail in refs 24 and 25). Dissociation of
NTF from CTF by an extracellular molecular partner unmasks
a 15−25 amino acid tethered agonist that remains extracell-
ularly on the N-terminus of CTF. Several studies have reported
that NTF-truncated mutants of ADGRB2,26 ADGRG1,27

ADGRG2,28,29,139 ADGRF1,30 and ADGRE531 show con-
stitutive activation of downstream signaling pathways. Further
studies proved that this activity is due to the interaction of the
tethered agonist with the cognate receptors. For instance, the
deletion of tethered agonists in NTF-truncated ADGRD1,32

ADGRG2,139 and ADGRG632 abolished certain signaling
pathways and exogenous addition of synthetic peptides, that
are identical to tethered agonists, stimulated receptor signal-
ing.29,30,33,139 Alternative mechanisms of activation of aGPCRs
exist. Unlike the aforementioned receptors, the interaction of
NTF and CTF is required for proper signaling and function of
ADGRC2 in the brain.34 Moreover, circulating NTF of several
aGPCRs have been reported26,35,36 and the secreted NTF of
ADGRB1 (Vasculostatin, a.k.a. Vstat120) showed antiangio-
genic and antitumorigenic functions in glioma xenograft
models,37 pointing to CTF-independent roles that NTF may
play in distant or neighboring cells. To add to the complexity
of the aGPCR activation and signaling, recent studies have
shown that while NTF and tethered agonist are required for
certain signaling pathways of ADGRG1,38 ADGRB1,38 and
ADGRG2,139 they can be dispensable for interaction of these
receptors with β-arrestins. Together, these studies suggest that
GPS, NTF, CTF, tethered agonist, and other domains of
aGPCRs play various functional roles.

■ AGPCRS IN CANCER

Multidomain NTF of aGPCRs enables cell−cell communica-
tion and cell-extracellular matrix interaction, processes that are
dysregulated in cancer. Current evidence suggests that some
aGPCRs regulate the cell cycle, proliferation, survival, and
dissemination of cancer cells (Table 1).
For example, knockdown of ADGRL4 reduced the

proliferation of glioblastoma cells in vitro.151,152 ADGRG1 is
upregulated in colorectal cancer tissues and cell lines and
promotes tumor growth and metastasis via induction of
epithelial to mesenchymal transition (EMT).134 However, in
melanoma cell lines, ADGRG1 suppressed the production of
vascular endothelial growth factor, a known stimulator of
tumor angiogenesis, and inversely correlated with melanoma
progression in mouse tissues and xenograft models of human
melanoma.135 Antigrowth153 and pro-metastasis136 roles have
also been reported for ADGRG1 in melanoma studies.
ADGRB1 functions as an inhibitor of angiogenesis in
pulmonary adenocarcinoma,120 glioblastoma,121 colorectal
cancer,123 and astrocytoma.124 ADGRG2 showed functional
roles in both benign (parathyroid adenoma28) and highly
metastatic (Ewing sarcoma142) tumors. Various carcinoma-
associated mutations (endometrial, lung, liver) in ADGRL1
revealed altered surface expression and exaggerated basal
activity of the receptor.154 In the era of -omics, there is now
evidence of aberrant expression and mutational profile of
aGPCRs in different malignancies that warrant future transla-
tional studies. Here, we review the current body of knowledge
regarding the expression and function of aGPCRs in the five
most common types of cancer (Figure 2).155

■ LUNG CANCER

Lung cancer is the leading cause of death and the most
common cancer globally, totaling approximately 12% of new
cancer cases in 2018.156 ADGRB3 was shown to be one of the
most significantly mutated genes in 13% of lung squamous and
5% of lung adenocarcinoma tumors.157 These mutations span
NTF, 7TM, and C-terminus of ADGRB3, and authors
suggested that this protein might act as a putative tumor
suppressor. This is in line with the reported antiangiogenic and
antineurogenic activity of other members of this subfamily,
ADGRB1 and ADGRB2.158,159 Currently, small cell lung
cancer (SCLC) and large cell neuroendocrine lung carcinomas
(LCNEC) are differentiated based on morphological analysis,
which tends to be a poor determinant of cancer subtype.
Immunohistochemical (IHC) analysis of human lung tumors
showed that ADGRB3 is expressed in the nucleus of a majority
of SCLC samples but is either absent or expressed at low levels
in the cytoplasm of LCNEC tissues.129 The ability to use
ADGRB3 staining to differentiate between SCLC and LCNEC
will be of significant clinical importance. Nuclear localization
and signaling of some GPCRs160,161 and β-arrestins162,163 have
been reported in HEK293 cells and tumor cells. Interestingly,
the NTF-truncated ADGRB3 was shown to interact with β-
arrestin2.164 Whether the nuclear ADGRB3 in SCLC cells is
the activated form of the receptor that is transported to the
nucleus by β-arrestin2 requires further studies.
MicroRNAs (miRNAs) are a family of noncoding small

RNAs that regulate gene expression, are dysregulated in
various cancers and are either tumor suppressors or
oncogenes.165 Down-regulation of miR-138-5p increased the
expression of ADGRA2 in nonsmall-cell lung carcinoma

Figure 1. General structure of an aGPCR. All aGPCRs, except
ADGRA1, contain a GPCR Autoproteolysis-Inducing domain
(GAIN)23 that includes the GPCR proteolysis site (GPS) and a
tethered agonist sequence.30 The cleavage at GPS results in a two-
subunit molecule, including an N-terminal fragment (NTF) and a C-
terminal fragment (CTF) that remain associated via noncovalent
interactions. In some aGPCRs, NTF includes additional domains such
as EGF-like, cadherin, pentraxin, and leucine-rich repeats. These
domains interact with other cell adhesion molecules and extracellular
matrices, by which they orchestrate the intracellular signaling.
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(NSCLC) cell lines and patient-derived cells.166 NSCLC
patients who are treated with gefitinib, a common tyrosine
kinase inhibitor, often become resistant to this drug.167

Interestingly, introducing miR-138-5p to resistant NSCLC
cells down-regulated ADGRA2 and resensitized cells to
gefitinib.166 Although the endogenous ligand of ADGRA2 is
unknown, this receptor has been implicated in tumor
angiogenesis, a known mechanism of gefitinib resistance in
lung cancer patients.166−169 Whether inhibition of ADGRA2
by a small molecule or biologic can resensitize patients to
gefitinib is yet to be explored.
Expression profiling revealed that 97 miRNAs were

differentially expressed in NSCLC patients’ lungs compared
with normal lung tissues, of which miR-099a was one of the
most down-regulated miRNAs in NSCLC tissues. Expression
of miR-099a in NCI-H1650, NCI-H1975, and NCI-H1299
lung adenocarcinoma cell lines reduced expression of
ADGRE2 and increased cell cycle arrest and apoptosis.55

Rescue experiments suggested that ADGRE2, a target of miR-
099a, mediates NSCLC cell migration and its knockdown
increases adhesion and decreases proliferation. ADGRE2
expression also correlated with β-catenin expression,55 a
known marker for EMT and metastasis in lung adenocarcino-
ma.56 IHC analysis of 119 lung cancer patient biopsies revealed
that ADGRE2 is upregulated in approximately 12% of cases.55

ADGRE2 binds to chondroitin sulfate,53 a proteoglycan that is
involved in lung growth170 and is present at elevated levels in
lung tumors.171 This evidence, combined with the fact that
ADGRE2 couples to Gα15,112 a promiscuous Gα protein that
activates phospholipase Cβ, provides strong grounds for the
screening of small molecules that interfere with ADGRE2-
mediated signaling and migration of NSCLC cells.
Insertional mutagenesis experiments, either by retroviruses

or lentiviruses, have been exploited as a tool to identify genes
that potentially regulate cell growth and culminate in
tumorigenesis.172 Genomic localization of proviral sequences

after a retroviral screen in mice suggested that ADGRF1 is a
proto-oncogene in mouse leukemia,102 which was corroborated
by additional reported insertion sites.173,174 Lum et al. followed
this proto-oncogenic indication by mRNA and protein
expression analysis and found that, whereas ADGRF1
expression was low in lung cancer cell lines, lung
adenocarcinoma tumor samples showed upregulated
ADGRF1 compared to either normal lung, squamous, or
small lung tumor samples.102

■ BREAST CANCER
Breast cancer was the second most commonly diagnosed
cancer in 2018 with over 2 000 000 newly diagnosed cases.156

Several aGPCRs show altered expression or mutation in breast
malignancies (Table 1).73,92,105,175 ADGRC2 was initially
shown to be down-regulated in human epidermal growth
factor receptor 2 (HER2)-positive breast carcinomas.176

Further immunohistochemical studies by the same group did
not identify a significant correlation between ADGRC2
expression and either HER2 or estrogen receptor (ER) status
of breast tumor tissues or cell lines.175 However, they identified
a small group of cell lines and tumors that show striking down-
regulation of ADGRC2, pointing to a potential impact of this
receptor in a subset of breast cancers. ADGRC2 is a member of
the nonclassical cadherin family of proteins due to the presence
of several cadherin domains in its NTF. Interestingly,
cadherins are involved in cell−cell communication and cell
adhesion, and E-cadherin promotes metastasis in diverse
models of invasive ductal carcinomas.177−179 Therefore, it
would be interesting to know whether the deletion of cadherin
domains in ADGRC2 changes the metastatic potential of
breast cancer cells.
Localization and expression of ADGRE2 correlated with

breast cancer patient prognosis.58 While ADGRE2 is not
expressed in normal breast epithelial cells, invasive breast
carcinomas and ductal carcinoma in situ (DCIS) showed

Figure 2. List of aGPCRs with altered expression (blue and red arrows), mutation (purple diamonds), or localization (orange circles) in the five
most common cancers globally (organ images are taken from https://smart.servier.com).
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upregulation of ADGRE2.58 Nuclear expression of ADGRE2
was correlated with lower tumor grades and a longer disease-
free survival.58 Since inactive GPCRs do not reside in the
nucleus, it is possible that ADGRE2 is either activated on the
cell surface and endocytosed to the nucleus or it is not shuttled
to the plasma membrane after translation. Further research is
necessary to define the mechanism by which ADRGE2
regulates breast cancer cell function and to confirm nuclear
localization as a prognostic biomarker.
Data from the Cancer Genome Atlas (TCGA) show that

52% of patients with invasive ductal carcinoma have reduced
levels of ADGRB1, which correlates inversely with patient
survival.125 This is consistent with the down-regulation of
ADGRB1 in several other tumors including glioblastoma,121

colorectal,123 and lung cancer.120 The secreted N-terminal
fragment of ADGRB1 (Vasculostatin, a.k.a. Vstat120) was
shown to suppress growth in xenograft models of glial
tumors.37 Vstat120 contains an arginine−glycine−aspartate
domain and five thrombospondin type-1 repeats, motifs that
are known modulators of angiogenesis.180,181 Overexpression
and consequent secretion of Vstat120 reduced the viability of
various subtypes of breast cancer cell lines.125 Injection of
Vstat120-expressing virus into the brain of breast cancer-
derived brain metastases (BCBM) mouse models significantly
decreased the tumor size and disease burden and increased
survival.125 This experiment is of significant clinical importance
because BCBM is a feature of treatment-resistant HER2-
positive and triple-negative breast cancer, for which the
standard of care is systemic chemotherapy and radiation with
poor prognosis and low survival rates.182 Given the
antiangiogenic effects of Vstat120 and its motifs, it would be
important to investigate their stability and bioavailability in
mouse models of cancer. Also, the therapeutic efficacy of these
molecules in combination with other current therapies
warrants future research.
ADGRE5 is upregulated in MDA-MB231, MDA-468, MCF-

7, and T47D breast cancer cell lines and its knockdown
decreased cell growth, proliferation, and migration.73 However,
the mechanisms by which ADGRE5 regulates these cellular
functions in breast cancer cell lines are mainly unknown.
Independent studies have provided contradictory results
whether the expression of the endogenous ligand of
ADGRE5, CD55, correlates with breast cancer prognosis
positively or negatively.183,184 This might be due to the
different methods used by authors to define “high and low
expression”. It is noteworthy that ADGRE573 and CD55184 are
coexpressed on the surface of MCF-7 cells. Further studies
may reveal whether this receptor−ligand pair are colocalized in
breast tumor tissues as well and if deletion of either or both
proteins alters the in vivo manifestation of breast tumor. As
elaborated in more detail later in this minireview, the
expression of ADGRE5 in various epithelial carcinomas
correlates with the stage and progression of the tumor.
As great strides are made in cancer treatments, there are still

many patients who develop resistance to targeted therapies.
Bhat et al. recently showed that several aGPCRs are expressed
in cancer stem cells and anti-HER2 therapy-resistant cells.
Using Aldefluor, a nonimmunological fluorescent marker for
stemness, Baht et al. found that ADGRB3, ADGRE2,
ADGRA2, ADGRF5, and ADGRF1 are all overexpressed in
cancer stem cells.105 The only aGPCR found to be expressed
in both cancer stem cells and anti-HER2 therapy-resistant cell
lines was ADGRF1.105 Knockdown of ADGRF1 in BT747 cells

decreased anchorage-independent growth, a common feature
of metastatic cell lines and reduced the mammosphere
formation, suggesting a role for ADGRF1 in cancer stem-
ness.105 These data warrant further investigation into the
downstream effects and potential targeting of ADGRF5 in
HER2+ breast cancer.
Knockdown of ADGRF5 in highly metastatic breast cancer

cell line, MDA-MB-231 reduced the cell migration in vitro and
metastasis in mammary tumor mouse models in vivo.115 The
potential role of ADGRF5 in cell invasion was further
confirmed by the ectopic expression of the receptor in less-
metastatic breast cancer lines (MCF-7 and Hs578T).115

Activation of a well-known cytoskeletal remodeling signaling
cascade, Gαq, p63RhoGEF and small GTPases, RhoA and
Rac1 was confirmed as the potential mechanism of cell motility
by ADGRF5 in breast cancer cells.115 The increased expression
of ADGRF5 in human breast cancer tissues correlated with
cancer metastasis and poor prognosis,115 further suggesting
this receptor as a potential candidate for breast cancer therapy.
The expression of ADGRG2 in breast cancer cell lines has

been debated. Richter et al. showed low to no expression of
ADGRG2 transcripts in MDA-MB-231 and Hs578T breast
cancer cell lines.142 We have also not been able to show the
expression of ADGRG2 in MDA-MB231 cells at either mRNA
or protein level (data not shown). However, Peeters et al.
revealed the effect of ADGRG2 knockdown on migration and
adhesion of these cell lines, presumably via its effect on RelB, a
member of the NF-κB family.141 Surprisingly, Peeters et al. did
not provide expression data for ADGRG2 at either mRNA or
protein level in either cell lines. An impedance-based assay
(xCELLigence) showed that ADGRG2 knockdown delays
breast cancer cell adhesion but does not modulate cell
proliferation.141 Constitutive activation of the serum response
element (SRE) transcription factor was dependent on the
autoproteolysis of ADGRG2 at its GPS site when the receptor
was overexpressed in HEK293 cells.141 Unlike reports on the
inhibitory function of NTF in ADGRG2 signaling,28,29,139

Peeters et al. showed that NTF plays a crucial role in the
activation of both NF-κB and SRE pathways by ADGRG2.141

Further studies to profile the expression and localization of
ADGRG2 in breast cancer cell lines and patient breast tumor-
derived cells are necessary to provide a thorough under-
standing of its function in this disease.

■ COLORECTAL CANCER
The current standard of care for colorectal cancer (CRC), the
third most commonly diagnosed cancer,155 is surgical
resection, radiotherapy, and chemotherapy.185 In recent years
targeted therapies such as inhibitors of angiogenesis, immune
checkpoint, and epidermal growth factor receptor (EGFR)
have turned CRC into a highly treatable disease. However,
resistance due to tumor mutation and recurrence following
surgery warrant further studies.186

The expression of several aGPCRs is changed in CRC.
While ADGRB1 is down-regulated in the colon mucosa of
CRC patients,122 ADGRB2 is upregulated in advanced CRC127

and ADGRE3 is upregulated in CRC biopsies of relapsed
patients compared with patients who are disease-free.51,59,60 In
addition, expression of ADGRE1 is decreased in colon tissue
biopsies of mouse models of colorectal carcinoma compared
with control mice.51 Unfortunately, these aGPCRs have no
prognostic indications and no further work has been done to
elucidate their mechanistic roles in CRC.
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Other aGPCRs have shown more promise in the laboratory
and clinical settings. Analysis of three Gene Expression
Omnibus (GEO) data sets and one data set from TCGA
(151 cases of CRC) revealed that ADGRA3 is down-regulated
in 78% of CRC specimens and its elevated expression in 22%
of the samples is associated with prolonged recurrence-free
survival.89 CRC patients with upregulated ADGRA3 showed
reduced KRAS mutation, smaller tumors, and less metastasis.89

Interestingly, gain-of-function mutations in KRAS contribute
to the transition from adenoma to CRC187 and are good
predictors of resistance to EGFR therapy.186 Overexpression of
ADGRA3 in a CRC cell line (HCT116) suppressed the Wnt/
β-catenin signaling pathway, a known driver of CRC89,188 and
down-regulated c-Myc and cyclin-D1. There is compelling
evidence that KRAS mutations can cause aberrant Wnt/β-
catenin signaling, which will cause an oncogenic trans-
formation in intestinal epithelial cells.189 Yet, it is unclear
whether there is a crosstalk between ADGRA3 and KRAS at
the levels of Wnt/β-catenin signaling.
High ADGRE5-expressing CRC cells show greater local-

ization of β-catenin in the nucleus, indicating activation of the
Wnt/β-catenin signaling pathway.65,68 Wobus et al. found that
CRC cells with increased expression of ADGRE5 showed an
elevated invasion and a poor clinical outcome.65,68,190 Given
that ADGRE5 has an observable effect on tumor cell invasion,
migration, and secondary metastasis in various can-
cers,31,74,191,192 its interactions with junctional proteins were
studied. Proximity ligation and coimmunoprecipitation assays
in various human CRC cell lines showed a strong interaction
among ADGRE5, β-catenin, and E-cadherin when compared
to normal tissues and cell lines.67 Malignant samples had
reduced membrane-bound and increased cytoplasmic
ADGRE5.67 These results suggest that ADGRE5 plays an
important role in the regulation of cell junctions in normal
colon tissue. Whether the cytoplasmic ADGRE5 is an
indication of its prior activation and endocytosis in CRC
cells awaits further investigation. IHC staining of various rectal
adenocarcinoma tissue samples showed a strong coexpression
of ADGRE5 and CD55 in the invasive front of the tumor.69

However, cells in the center of the tumor showed little to no
expression of either ADGRE5 or CD55. Patients with high
ADGRE5 expression showed a less favorable prognosis, more
metastatic burden, and a higher rate of clinical recurrence.69

These data indicate that ADGRE5 and its ligand, CD55, may
have a prognostic role as a biomarker in CRC.
Protein and mRNA analysis of 48 colorectal carcinoma cases

showed a significant increase in ADGRF5 levels when
compared with normal tissues.116 These results were confirmed
in three microarrays from the Oncomine database and IHC
staining of over 90 CRC samples.116 Patients expressing high
levels of ADGRF5 showed an increase in distant metastasis and
histological differentiation.116 Univariate analysis of these
results, along with several other in-silico studies, show that
high levels of ADGRF5 could act as an unfavorable prognostic
indicator in CRC patients. miR-511−5p is known to be down-
regulated in a variety of CRC cell lines, and patients who
expressed elevated levels of miR-511-5p show higher survival
rates.193 In vitro overexpression of miR-511-5p mimetics in
CRC cells reduced proliferation and colony formation and
increased cell apoptosis.193 Interestingly, miR-511-5p binds the
3′UTR of the ADGRF5 gene to repress its transcription, and
overexpression of ADGRF5 reverses the antitumor features of

miR-511-5p.193 Together, these data support tumorigenic roles
for ADGRF5.
mRNA, IHC, and in situ hybridization analyses showed that

ADGRG1 is highly expressed in CRC specimens194 and
colonic crypt cells195 compared with normal gastrointestinal
tissues and cells. This overexpression is intensified in mice that
express progastrin, a peptide that is upregulated in CRC and
other cancer cell lines.195,196 Jin et al. found that ADGRG1
directly interacts with progastrin to increase the proliferation
rate of colonic cells and the genomic deletion of ADGRG1
increases apoptosis in the colonic mucosa and decreases
proliferation in mice.195 The increased expression of ADGRG1
predicted a worse prognosis for patients suffering from CRC134

and knockdown of ADGRG1 down-regulated mesenchymal
markers, N-cadherin, and vimentin via the PI3K/AKT
pathway.134 The current screening method for CRC is an
optical colonoscopy that does not detect the early stages of
cancer development. It remains to be investigated whether
ADGRG1 can potentially be a less invasive diagnostic
biomarker for CRC.

■ PROSTATE CANCER
There were 1 276 106 newly diagnosed cases of prostate cancer
in 2018, globally. Because of the indolent nature and slow
progression of prostate cancer many cases remain undiagnosed
until later stages of the disease. Examination of prostate cancer
screenings such as prostate-specific antigen and digital rectal
exam lack internal validity and have shown inconsistent results
and false-positives.197

Histological analysis of a prostate tissue array derived from
36 adenocarcinoma cases revealed that ADGRE5 is upregu-
lated in these tumors compared with normal adjacent tissues.31

This was corroborated by the high expression of ADGRE5 in
some prostate cancer cell lines (PC3 and DU145) and the low
expression in nontransformed prostate cells. The depletion of
ADGRE5 in DU145 cells reduced the serum-induced
activation of RhoA small GTPase in vitro and cell migration
and invasion in Matrigel.31 The described mechanism of
ADGRE5-mediated migration of prostate cells is consistent
with a previous study, in which ADGRE5 regulated the
migration of neural progenitor cells through Gα12/13 G
proteins and RhoA small GTPase.133 Mice injected with
ADGRE5-depleted PC3 cells showed a significant reduction in
bone metastasis but no change in tumor growth when
compared with mice that were injected with parental PC3
cells.31 In addition to ADGRE5, the increased expression of
lysophosphatidic acid receptor 1 (LPAR1) has been reported
in prostate cancer cells.198 Interestingly, the ectopic coex-
pression of ADGRE5 and LPAR1 in LNCaP cells (an
androgen-sensitive prostate adenocarcinoma) revealed that
these GPCRs heteromerize and ADGRE5 potentiates the LPA-
induced RhoA activation.31 Heteromerization and crosstalk of
various GPCRs and the consequent regulation of tumori-
genesis and metastasis of prostate,199,200 breast,199,200 and
glioblastoma201 cells have been previously reported. Histo-
logical examination indicated an association between ex-
pression of LPAR1 and ADGRE5 in prostate cancer biopsies.31

Together, these data suggest crosstalk between LPAR1 and
ADGRE5 in prostate tumor cells. Considering that LPAR1
antagonists have not yet been approved to mitigate tumor
burdens and metastasis, it would be interesting to examine
whether inhibition of ADGRE5 by small molecules or specific
antibodies suppresses the LPAR1-mediated metastasis.
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Prostate biopsies from old subjects, which are prone to
benign hyperplasia or have undiagnosed cancer, showed higher
expression of ADGRF1.102 There is a spectrum of ADGRF1
expression among main prostate cancer cell lines; high in PC3,
low in LNCaP, and negative in DU145. Histological analysis
with antibodies raised against two distinct peptides from the
NTF of ADGRF1 showed differential staining in prostate
adenocarcinoma tissues, suggesting potential expression of
different splice variants.102 Such differential staining precluded
a comparative analysis of ADGRF1 expression between benign
prostate hyperplasia and prostate adenocarcinomas and
emphasized the importance of relative quantification of splice
variants of aGPCRs in tumors.

■ GASTRIC CANCER

Gastric cancers are the fifth most commonly diagnosed cancer
in the world.156 Aust et al. found that ADGRE5 was expressed
in 44 of 50 gastric cancer biopsies.202 Alternative splicing
generates three isoforms of ADGRE5 that contain three, four,
or five repeats of EGF domains on their NTF. Overexpression
of the smaller isoform, ADGRE5/EGF1,2,5 in BGC-823
stomach adenocarcinoma cells increased their invasive
behavior in vitro.203 In line with these findings, orthotopic
mouse models of gastric carcinoma that lacked the ADGRE5/
EGF1,2,5 showed reduced metastatic spread and tumor
volume.192 However, the full-length isoform, ADGRE5/
EGF1,2,3,4,5 suppressed the invasion and increased prolifer-
ation. These studies indicate that the characteristics of gastric
tumor cells may be regulated by the balance of ADGRE5 splice
variants.203

Recently, Chao et al. found that the exosomes isolated from
the stomach adenocarcinoma cell lines that express wild-type
ADGRE5 stimulated migration of other cells in a transwell
assay.72 This was accompanied by phosphorylation of the
major signaling molecules of the MAPK pathway. Consistent
with these findings, exosomes released from ADGRE5-
expressing tumors increased metastasis of gastric adenocarci-
nomas.204 In a footpad mouse model of aggressive gastric
adenocarcinoma, Liu et al. found that tumors lacking ADGRE5
show a diminished metastasis and metastatic niche forma-
tion.204 Exosomes isolated from SGC-L, an SGC-7901 cell-
derived highly metastatic gastric cancer cell line expressing
ADGRE5, were also able to increase the metastatic phenotype
of tumor cells.204 Taken together, these studies suggest that
ADGRE5 increases cell proliferation and metastasis in gastric
cancer via vesicle-mediated tumor cell communication and
activation of the MAPK pathway.
A recent study showed that ADGRF1 mRNA and protein

are significantly upregulated in tumor biopsies compared with
paired adjacent normal tissues resected from 117 gastric cancer
patients.205 Patients with high ADGRF1 protein levels had
shorter survival and increased recurrence after surgery
compared with gastric cancer patients with low ADGRF1
expression. These data suggest that ADGRF1 may be a
candidate biomarker for diagnostic purposes in gastric cancer
patients. N-Docosahexaenoylethanolamine (synaptamide, a.k.a.
DHEA), a stimulant of neurite growth, was recently shown to
induce cyclic AMP production via ADGRF1.101 It would be
interesting to know (a) whether the level of synaptamide, an
endogenous metabolite ligand of ADGRF1, is altered in the
gastric tumor microenvironment, (b) what the pathologic
impact of synaptamide-ADGRF1 interaction is, and (c) what

molecular mechanism(s) are used by ADGRF1 in gastric
cancer cells.

■ CONCLUSIONS AND POTENTIAL THERAPEUTIC
APPROACHES

Although the field of aGPCR research has seen constant
growth in terms of engaged signaling pathways in the past
decade, the physiological functions of these receptors are yet to
be explored further. In particular, their role in all aspects of
cancer, from tumor initiation to metastasis is incompletely
understood. aGPCRs are implicated in diverse diseases from
diabetes to various neoplasms. However, there are currently no
approved drugs targeting any aGPCRs.
The difficulty in obtaining structural information from

aGPCRs has hampered the process of developing small
molecules or biologics to target them. On the other hand,
the large NTF and its multiple domains provide potential sites
to target therapeutically. The recent discovery of an ADGRG1
antagonist206 gives hope for the development of future small
molecules with proper pharmacology to regulate the function
of these understudied receptors in cancer. In addition to small
molecules, antibodies against domains of the NTF can be
potentially interesting modulators. Salzman et al. showed that
monobodies designed for certain domains on the NTF of
ADGRG1 can act as activators or inhibitors of G protein
signaling.207 It remains to be explored whether antibodies
against either tethered agonist or its binding site(s) will act as
antagonists.
Another hypothetical approach that may modulate aGPCR

function is the design of cell-permeable inhibitors of
autoproteolysis, as this cleavage is required for activation of
certain signaling pathways by ADGRG2 and ADGRG1.141,208

aGPCRs interact strongly with β-arrestins, particularly in the
absence of NTF.38,139 The signaling bias of classical GPCRs
toward either G protein or β-arrestin pathways and their
physiological effects have challenged the drug develop-
ment.209−211 This phenomenon should be taken into account
in the development of aGPCR modulators too.
Fibrosis in the tumor microenvironment, a side effect of

protease actions and metastasis, alters the composition of ECM
dramatically.212 Given the ECM-binding domains on the NTF
of some aGPCRs, it would be interesting to examine whether
these changes modulate aGPCR activity and thereby
proliferation and migration of tumor cells. Also, targeting the
large ECM ligands of aGPCRs to interfere with the protein−
protein interaction can be a potential approach to regulate
aGPCR functions in cancer.
On average, aGPCRs have 19 transcript variants with tissue-

dependent expression patterns, leading to functional differ-
ences.213 As mentioned above for ADGRF1 in prostate cancer
and for ADGRE5 in gastric tumors, splice variants of aGPCRs
show a differential impact on tumorigenesis. Therefore, it is
crucial to use the genomics/bioinformatics tools such as RNA-
Seq to quantify various transcripts of aGPCRs of interest in
tumor specimens at the first stages of cancer studies.
The body of evidence provided here points to fundamental

roles that aGPCRs may play in promotion or prevention of
cancer, and we hope this would trigger future translational
studies to explore their potential as therapeutic targets.
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