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The changing spatiotemporal patterns of the individual susceptible-infected-symptomatic-treated-recovered epidemic process and 
the interactions of information/material flows between regions, along with the 2002–2003 Severe Acute Respiratory Syndrome 
(SARS) epidemiological investigation data in mainland China, including three typical locations of individuals (working unit/home 
address, onset location and reporting unit), are used to define the in-out flow of the SARS epidemic spread. Moreover, the in-
put/output transmission networks of the SARS epidemic are built according to the definition of in-out flow. The spatiotemporal 
distribution of the SARS in-out flow, spatial distribution and temporal change of node characteristic parameters, and the structural 
characteristics of the SARS transmission networks are comprehensively and systematically explored. The results show that (1) 
Beijing and Guangdong had the highest risk of self-spread and output cases, and prevention/control measures directed toward 
self-spread cases in Beijing should have focused on the later period of the SARS epidemic; (2) the SARS transmission networks 
in mainland China had significant clustering characteristics, with two clustering areas of output cases centered in Beijing and 
Guangdong; (3) Guangdong was the original source of the SARS epidemic, and while the infected cases of most other provinces 
occurred mainly during the early period, there was no significant spread to the surrounding provinces; in contrast, although the 
input/output interactions between Beijing and the other provinces countrywide began during the mid-late epidemic period, SARS 
in Beijing showed a significant capacity for spatial spreading; (4) Guangdong had a significant range of spatial spreading 
throughout the entire epidemic period, while Beijing and its surrounding provinces formed a separate, significant range of 
high-risk spreading during the mid-late period; especially in late period, the influence range of Beijing’s neighboring provinces, 
such as Hebei, was even slightly larger than that of Beijing; and (5) the input network had a low-intensity spread capacity and 
middle-level influence range, while the output network had an extensive high-intensity spread capacity and influence range that 
covered almost the entire country, and this spread and influence indicated that significant clustering characteristics increased 
gradually. This analysis of the epidemic in-out flow and its corresponding transmission network helps reveal the potential spatio-
temporal characteristics and evolvement mechanism of the SARS epidemic and provides more effective theoretical support for 
prevention and control measures. 
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The epidemic spread of infectious diseases is influenced by 
many factors, such as viral pathogenic characteristics, spa-
tial-temporal range and distributions of epidemic outbreak, 

prevention and control measures, and population social ac-
tivities; therefore, the epidemic spread mechanism is the 
focus of research in pathology, epidemiology, medical sta-
tistics, spatial information science, and sociology, among 
other fields. Research on epidemic spread could be classi-



 Hu B S, et al.   Chin Sci Bull   May (2013) Vol.58 No.15 1819 

fied into three types: (1) the macroscopic analysis of the 
statistical results of the epidemic spread; (2) the microscop-
ic analysis of the interaction mechanism between individu-
als; and (3) the analysis of an epidemic spread in a macro-
scopic area caused by microscopic interactions between 
individuals.  

A novel coronavirus-causing respiratory infectious dis-
ease, Severe Acute Respiratory Syndrome (SARS) induces 
fever, dry cough, chest tight, respiratory failure, and other 
symptoms as primary symptoms. SARS has spread path-
ways that include droplet transmission, contact with respir-
atory secretions and close spatial contact with infected cases, 
and SARS is recognized as a considerable threat to human 
health. Its outbreak and spread can cause significant human 
morbidity and mortality and directly influence social stability 
and economic development. The global spread of the SARS 
epidemic included 8422 cases with over 900 deaths widely 
distributed among 32 countries. The SARS epidemic in 
mainland China broke out in November 2002 and ended in 
July 2003, and SARS affected 26 provinces and municipali-
ties, including 5327 cases with over 340 deaths. The SARS 
epidemic spread had significant regional differences in the 
distributions of the infected cases, and indicated obvious 
spatial-temporal characteristics and direct or indirect rela-
tionships among environmental, societal and economic fac-
tors, among others. 

Recent research has focused on the macroscopic analysis 
of the spatial-temporal patterns of the SARS epidemic, such 
as the theoretical modeling of the SARS epidemic [1–3], 
analysis of the dynamic mechanism of the SARS epidemic 
process [4,5], statistical analysis of the epidemiological data 
[6], spatial-temporal statistical analysis of the distribution 
characteristics of the SARS epidemic, and autocorrelation 
and heterogeneity [7–11]. This retrospective and macro-
scopic research helps thoroughly recognize the spread 
mechanism of existing infectious diseases on a spatial- 
temporal scale and provides some probable scientific basis 
for researching other unknown infectious diseases. However, 
this research does not explain the spread characteristics 
from one individual to another or consider the interaction 
mechanism between individuals and regions. Some micro-
scopic research, such as the simulation and prediction of the 
SARS epidemic process based on system dynamics and a 
multi-agent system [12,13] and simulation of the spread 
mechanisms based on models of small-world network and 
scale-free network [14,15], has concentrated on the activity 
rules of individuals and influences of control parameters of 
the epidemic spread mechanism; however, character trans-
formation between individuals and influences of individual 
spatial activity during the epidemic process have rarely been 
considered. 

In general, epidemiological data applied to research on 
epidemic spread mainly include confirmed infected cases 
and those in close contact with infected individuals. During 
the entire epidemic process, susceptible individuals first 

became infected, then became infectious, received treatment 
after the symptoms appeared and, finally, recovered. There 
are many epidemic characters for individuals. Meanwhile, 
there are corresponding spatial locations for the various 
individual characters and the spatial-temporal changes of 
these individuals during the process of susceptible-infected- 
symptomatic-treated-recovered cause different infectious 
strengths and ranges. From another perspective, regions 
have inputs and outputs of the epidemic spread according to 
the location changes of individuals with various epidemic 
characters, and there are interaction mechanisms between 
individuals and regions. Similar to other complex networks 
that exist in the real world, such as gene networks in bio-
logical systems, computer networks and social networks, 
the interactions between individuals and regions form a 
complex dynamic network of epidemic spread, and by ana-
lyzing the structure and characteristics of the epidemic 
spread network, some potential spread mechanisms may be 
recognized and shown to be the driving effects of various 
factors in the SARS epidemic. 

Considering the location changes of individuals accord-
ing to character transformation based on the SARS epide-
miological investigation data in mainland China from 2002 
to 2003, the in-out flow of the SARS epidemic was defined 
in this paper according to the three typical location data of 
the individuals (working unit or address, onset location and 
reporting unit), and a transmission network of the SARS 
epidemic caused by the in-out flow was developed. The 
spatiotemporal distribution of the SARS in-out flow was 
comprehensively explored. The characteristic parameter 
analysis of nodes was implemented on spatial and temporal 
scales, and the dynamic structural characteristics of the 
SARS transmission networks were also analyzed. As a novel 
research method for epidemic spread, studies based on the 
in-out flow and transmission network have better explained 
the spread patterns caused by the location change and char-
acter transformation of individuals and the interaction 
mechanism between regions during the spread process, and 
this research better detected and discovered potential spa-
tial-temporal evolution rules and characteristics of the epi-
demic spread. 

1  Data 

The SARS epidemiological investigation data in mainland 
China from 2002 to 2003 originally included individual 
attributes of confirmed infected cases, which contained 
gender, age, occupation, household registration, working unit/ 
home address, onset location, reporting unit, onset time, 
treated time, and confirmed time of recovery, among other 
parameters. The original data were stored as data sheets, 
and the individual onset time, which was selected as tem-
poral information, was directly applied for quantitative 
analysis in a Time-Date format. Three typical locations 



1820 Hu B S, et al.   Chin Sci Bull   May (2013) Vol.58 No.15 

(working unit/home address, onset location and reporting 
unit) were selected for modeling the SARS epidemic in-out 
flow; this information was stored in Text format in the 
original data, and the description scales were not uniform. 
Therefore, the spatial data processing first required that the 
scales of the three locations should be converted into a con-
sistent province or municipality, and second, the selected 
data had at least two integrated locations; thus, individuals 
whose data had two or three missing locations were elimi-
nated. There were about 99.75% of original individual cases 
in mainland China selected in the final dataset, and the three 
location data were matched artificially and manually with 
geographical administrative maps with a scale of 1:1000000. 

Furthermore, 51.63% and 1.26% of the final selected 
cases had missing data for working unit/home address and 
reporting unit, respectively, and needed to be recovered, 
while all selected cases had complete onset location data. 
Few cases had missing information on other attributes, such 
as gender, age, and occupation. To maintain data integrity 
for the analyses, the recovery process was consistent in the 
regional attribute distributions and measured the relative 
influence of population distributions within the regions.  

For some attributes with missing data, ni and pi were as-
sumed to be the levels of existing effective data and popula-
tion for a region i, respectively, and their corresponding 
relative ratios were calculated as i=ni/N and i,pop=pi/P, 
where N and P were the total amounts of existing effective 
data and population for all regions, respectively. The pa-
rameter α was used to describe the relative adjustment be-
tween the existing effective data and population, and the 
ratio of data recovery for region i and its accumulative ratio 
were calculated as  

 ,(1 )i i i pop         , (1) 

 
1

i

i i  . (2) 

A random number rand, which ranged from 0 to 1, was 
set for particular attributes with missing data; rand was de-
termined to be within the interval of [Θi1, Θi], and certain 
information corresponding with Θi was used to recover 
missing attribute data. Considering the characteristic con-
sistency of the spatial distribution of the original data, the 
adjustment parameter  was set as 0.2. Based on the above 
recovery process, the similarity ratio for the attribute of re-
porting unit was 99.99% because of the extremely small 
proportion of missing data, and the similarity ratio for the 
attribute of working unit/home address was 98.22% due to 
the relatively large proportion of missing data. 

2  Methods 

2.1  SARS in-out flow 

During the epidemic transmission period, susceptible indi-

viduals changed their location information continuously after 
becoming infected. In several studies of epidemic transmis-
sion and spatial-temporal simulation, only a single variable 
of spatial information, such as onset location, was consid-
ered. Susceptible individuals had periods of being infected, 
exposed and treated, which corresponded with multiple spa-
tial data, such as the infected, onset and treatment locations. 
In contrast with other epidemic models, the in-out flow 
model primarily focuses on the location transformation 
process of infected individuals during the epidemic trans-
mission period, and this model explores the spread mecha-
nism of epidemic transmission inputs and outputs between 
regions on various scales. Epidemic in-out flow can be de-
fined by considering the three typical location data of indi-
viduals during an epidemic period: working unit or home 
address (S1), onset location (S2) and reporting unit (S3). S1 
is considered the main residence of individuals because the 
working unit and home address are the two most important 
locations. S2 is used as the approximate infection location 
of the individuals. The exposure period of most infectious 
diseases is short, and the spatial-temporal information of 
infected individuals is difficult to collect; therefore, the on-
set location is used instead of the infection location. S3 
commonly represents the treatment location of the infected 
individuals and is collected using the last medical units.  

Among most individuals, the main residence transforms 
to the infection location after the individual becomes in-
fected, and the residence transforms into the onset location 
when symptoms appear. Finally, this location transforms to 
the reporting unit where the individuals receive treatment. 
During the epidemic period, individuals transform their lo-
cation information from region to region, and for spatial 
regions, viral inputs and outputs between regions influence 
the spread process. In the logical definition of an epidemic 
in-out flow, the inputs of some regions, such as Beijing, in 
the province/municipality scale, represent the cases that 
have the treatment location that corresponds with Beijing 
but the residence is not Beijing, and the outputs are cases in 
which the residence is Beijing but the treatment location is 
not. Additionally, those who have the residence of Beijing 
and also receive treatment in Beijing are self-spread cases 
of Beijing. Moreover, considering the infection location of 
the individuals, the inputs and outputs could be categorized 
as primary and secondary types. The primary inputs and 
outputs are cases in which the infection location is Beijing 
and is not Beijing, respectively, and the secondary inputs 
and outputs are those in which the infection location is not 
Beijing and is Beijing, respectively. The epidemic in-out 
flow of Beijing is described by the following logical ex-
pressions: 

 
Input: S1 'Beijing' AND S3

Primary: S2 'Beijing',
              'Beijing'

Secondary: S2 'Beijing',




  

 (3)
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Output: S1 'Beijing' AND S3

Primary: S2 'Beijing',
                'Beijing'

Secondary: S2 'Beijing'.




  

 (4)
 

The inputs and outputs of some regions indicated that the 
information and material flows of the epidemic spread could 
end and start in a particular region. The in-out flows of oth-
er provinces and municipalities could be similarly defined 
as Beijing. The above epidemic in-out flows focus on the 
spatial information that included the residence, onset and 
treatment locations and reflect the characteristics and 
mechanism of the epidemic spread on the spatial scale. 
During the epidemic period, different regions had various 
inputs and outputs during the time sequence, and the input 
and output flows dynamically indicated the spread mecha-
nism between regions caused by the location changes of 
individuals corresponding with character transformation. 

2.2  Epidemic transmission network 

Compared with regular network and random network models 
[16,17], complex network models are more scientific and 
effective for modeling complex systems in the real world, 
and these models are more accurate in describing the vari-
ous network characteristics of the real world. In particular, 
after models of small-world networks [18,19] and scale-free 
networks [20] were proposed, research on complex net-
works reached a climax. Based on the definition of an epi-
demic in-out flow, there were two types of input and output 
flows in mainland China during the SARS epidemic spread 
period. Different regions had various inputs and outputs in a 
time sequence, and the in-out flows of different regions 
comprised directed and weighted transmission networks that 
were dynamically changing. Two types of SARS transmis-
sion networks, including an input network and output net-
work, described the transformation directions and weights 
of infected cases and indicated the dynamic interactions 
between provinces or municipalities during the epidemic 
spread process. 

According to the epidemiological survey data, the input 
and output cases of the regions could be determined by the 
time sequence and on different scales. Each input or output 
flow has two location parameters: the start location and the 
end location. The two types of transmission networks of 
epidemic in-out flow could be defined according to the in-
put and output flow results. Ni is used as a certain node in 
the transmission network that corresponds to the spatial 
regions. Ej is defined as a certain directed edge connecting 
the two nodes that describe the input or output flows be-
tween two regions. The two start and end nodes connected 
by Ej are Ns(j) and Ne(j). In the input flow network, the di-
rection of edge Ej is defined from Ns(j) to Ne(j), and the 
weight of edge Ej is the input cases from Ns(j) to Ne(j). Sim-
ilarly, in the output flow network, the direction of edge Ej is 
from Ne(j) to Ns(j), and its weight is the output cases from 

Ne(j) to Ns(j). For all of the provinces in mainland China, 
the input and output cases from each node to another node 
in a time sequence could be obtained based on the definition 
of the in-out flow and epidemiological data, and moreover, 
the corresponding input and output networks could also be 
dynamically built. 

2.3  Network characteristic parameters 

To understand the two types epidemic in-out flow transmis-
sion networks, some typical characteristic parameters of the 
complex network were applied for network analysis, in-
cluding degree, shortest path, distance and betweenness 
centrality of nodes, average degree, degree distribution, 
average distance and diameter of network, as well as the 
clustering coefficient of the nodes and networks. 

For a certain node Ni, its degree indicates the count of 
other nodes that have connections with Ni or the count of 
edges that have Ni as one of their two nodes; and in directed 
networks, there are two types of degrees, the in-degree and 
the out-degree, for which the mean Ni is the end node or the 
start node. <k> is defined as the average degree of network, 
which represents the average degree values of all nodes. p(k) 
is the degree distribution of the network, which represents 
the count ratio of the nodes that have a degree value k to the 
total nodes; furthermore, p(k) describes the probability that 
the degree value of a random node in the network equals k. 
According to different degree distributions, the networks 
could be classified into different types [21]. For example, 
the degree distribution of random networks follows a Pois-
son distribution, and scale-free networks follow a pow-
er-law degree distribution. Furthermore, a homogeneous 
network and inhomogeneous network could also be defined 
according to degree distributions. 

The shortest path between two nodes in a network repre-
sents one of the paths connecting the two nodes with the 
least edge count. dij is defined as the distance of nodes i and 
j, which represents the edge count of the shortest path be-
tween nodes i and j. The diameter of the network represents 
the maximum of distances between any two nodes in a net-
work, and is described as 

 
,

max .ij
i j

D d  (5) 

L is the average distance of the network, which repre-
sents the average value of distances between any two nodes 
in network, and is defined as 

 
1

,
( 1) 2 ij

i j

L d
N N 


   (6) 

where N is the whole node count in the network. 
Ci is defined as the clustering coefficient of node i, which 

is the ratio of the practical edge count to the utmost proba-
ble edge count between the nodes connected to node i. As-
suming there are ki nodes connected to node i, and that the 
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practical edge count between those ki nodes is Ai, the clus-
tering coefficient of node i can be described as [18]: 

 .
( 1) 2

i
i

i i

A
C

k k



 (7) 

Correspondingly, the clustering coefficient of the net-
work describes the connection situation between the nodes 
connected to the same node and reflects the trend of aggre-
gation clustering of the nodes in a network. The average 
value of clustering coefficients of all nodes [18] is imple-
mented as 

 
1

.i
i

C C
n

   (8) 

The betweenness centrality of the nodes is another im-
portant parameter that describes the clustering characteristic 
of the nodes. BCi is defined as the betweenness centrality of 
node i, which represents the count of the shortest paths with 
node i as an intermediate node, and can be calculated as  

 
( )mn

i
m i n mn

i
BC


 

  , (9) 

where mn is the count of all the shortest paths from node m 
to node n; and mn(i) is the count of all the shortest paths 
from node m to node n that have node i as an intermediate 
node. 

Furthermore, in our transmission networks of epidemic 
in-out flow, the edges connecting the nodes have both di-
rections and weights. The in-degree and out-degree distri-
bution could help describe the direction of the epidemic 
spread between regions, but the standard expression of the 
clustering coefficient can only describe the information 
flow of the epidemic spread between the nodes. To reflect 
the material flow of the epidemic spread, an improved ex-
pression of clustering coefficient is advanced as follows: 

 * ,
i NA A

i j j
j j

C Cas Cas   (10) 

where AN is the count of all edges in the network and Casj is 
the material flow of the edge j, which represents the count 
of input or output cases in the transmission network of epi-
demic in-out flow. The improved clustering coefficient Ci

* 
describes the clustering situation of the material flow be-
tween the nodes connected to node i. The corresponding 
network clustering coefficient C* directly reflects the small- 
world characteristic of the epidemic in-out flow. 

3  Results and interpretation 

3.1  Spatiotemporal distribution of SARS in-out flow 

The levels of input, output and self-spread cases in the 

provinces of mainland China were calculated based on the 
definition of the in-out flow and the SARS epidemiological 
investigation data. The total number of self-spread cases 
was 2625, and the number of input/output cases was 2825, 
among which primary input/output cases were the majority, 
while secondary cases accounted for only a small proportion, 
indicating that most of the input and output cases received 
treatment at the same location as the onset location, and 
therefore, the viral spread range caused by the location 
transformation of the individuals was maintained to a small 
extent. The spatial distribution of the cumulative input cases 
of the provinces is shown in Figure 1(a), which indicates 
that the distribution of input cases had significant clustering 
characteristics consistent with that of self-spread cases, with 
Beijing and Guangdong as clustering centers. The differ-
ence between Beijing and Guangdong was that the provinc-
es around Beijing had a certain number of input and 
self-spread cases, while the provinces around Guangdong 
were less affected. Figure 1(b) illustrates the spatial distri-
bution of the cumulative output cases in the provinces, in-
dicating that the output cases covered most of the eastern 
provinces of mainland China and some of the western 
provinces, such as Sichuan. A majority of the output cases 
were from Beijing and Guangdong, but a number of output 
cases were in the provinces surrounding Beijing and 
Guangdong. 

Five provinces with significantly large numbers of input/ 
output cases were selected—Shanxi, Guangdong, Inner 
Mongolia, Hebei and Beijing—and the temporal changes of 
their cumulative input, output and self-spread cases were 
calculated, as shown in Figure 2. Some findings could be 
obtained: (1) Beijing was one of the most hard-hit provinces 
in the SARS epidemic, but its input cases did not signifi-
cantly increase until the mid-term epidemic period, and its 
overall number accounted for a lower value in final; con-
cerning the provinces surrounding Beijing, such as Hebei, 
Shanxi and Inner Mongolia, the changes in the number of 
input cases were consistent, and their cumulative numbers 
accounted for a larger value compared with that of Beijing; 
(2) the cumulative input cases in Guangdong increased late 
and rapidly reached a higher value until the later epidemic 
period; (3) the output cases of the five provinces started to 
increase significantly in mid-January and maintained a slow 
growth at the beginning of the SARS epidemic, but there 
was a significant trend of rapid growth in the mid-late peri-
od; (4) compared with Beijing, the cumulative number of 
output cases in Guangdong grew slowly at the beginning, 
but in the late period, the number of output cases increased 
so rapidly that the cumulative number was similar to that of 
Beijing at the end of the period; (5) Guangdong was a good 
example of a province with significant growth of self-spread 
cases, with sporadic self-spread cases in early January, and 
rapid growth occurred during the early epidemic and con-
tinued for the entire period; and (6) the self-spread cases 
were a notable feature of the SARS epidemic in Beijing;  
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Figure 1  Spatial distribution of SARS in-out flow: (a) input cases; (b) output cases. Xinjiang: Xinjiang Uygur Autonomous Region; Tibet: Tibet Autono-
mous Region; Guangxi: Guangxi Zhuang Autonomous Region; Inner Mongolia: Inner Mongolia Autonomous Region; the same below. 

however, these cases appeared in the late epidemic, and the 
number of cases increased to a high value, with rapid growth.  

3.2  Degree analysis of nodes and network 

The input and output flow networks with the provinces/ 

municipalities as nodes were built based on the in-out flows 
of the SARS epidemic from November 30, 2002 to May 10, 
2003 in mainland China. The input flow network showed 
the input cases from other nodes to a particular node, and 
the output flow network indicated the output cases from a 
particular node to the other nodes, while the weight  
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Figure 2  Temporal changes of SARS in-out flow in the provinces of 
Shanxi, Guangdong, Inner Mongolia, Hebei and Beijing: (a) input cases;  
(b) output cases; (c) self-spread cases. 

values of the edges indicated the statistical number of in-
put/output cases. In the input and output flow networks, the 
values of the in-degree and out-degree of the nodes were 
calculated, indicating the levels of the input/output risk of 
the nodes. As illustrated in Figure 3, the spatial distribution 
of the node in-degree in the input flow network showed that 
the overall connection density was not high because there 
was only a small number of edges (84), and most of the 

weight values of the connecting edges were as low as 10 or 
less, except for the weight values of the edges between the 
central provinces (Beijing and Guangdong) of the SARS 
epidemic. Additionally, a few provinces surrounding these 
central provinces were at a level of 10–33. Furthermore, the 
distributions of the in-degree values of the nodes did not 
show significant spatial clustering characteristics. In detail, 
the in-degree values of Beijing and Guangdong were high-
est at 21 and 22, respectively, and the higher values were 
those of a few surrounding provinces, with values of 10–20, 
while the in-degree values of the other provinces were less 
than 10. The spatial distribution of the node out-degree in 
the output flow network is shown in Figure 4. The corre-
sponding overall connection density was very high because 
there were as many as 265 edges in the output network, and 
the weight values of a certain number of edges were above 
50, while the weight values of the edges from Beijing to 
Guangdong and Guangdong to Beijing were very high at 90 
and 121, respectively. The distribution of the node out-degree 
had significant characteristics of spatial clustering, with 
Beijing and Guangdong as the clustering centers, and Si-
chuan in the west also had an impressive out-degree value. 
Some findings obtained based on the above analysis were as 
follows: (1) the SARS transmission network of mainland 
China had significant characteristics of spatial clustering in 
the output flow and two clustering centers: Beijing and 
Guangdong; (2) there were a small number of edges and 
low weight values, and there was no distinct clustering 
characteristics in the input flow network, which indicated 
that there was only a small range of risk spread caused by 
infected cases from onset to treatment, and control measures 
for infected cases, such as isolation, were remarkably effec-
tive; and (3) Sichuan had a particularly large range of output 
spreading, which indicated that it was necessary to imple-
ment priority control measures in provinces with mainly an 
output floating population during the SARS epidemic.  

Five provinces (Shanxi, Guangdong, Inner Mongolia, 
Hebei and Beijing) with a significantly large number of 
both in-degree and out-degree were selected in the SARS 
transmission networks of input flow, and the output flow, 
temporal changes of node degree, in-degree and out-degree 
in those provinces were analyzed, as illustrated in Figure 5. 
The results suggested that (1) the out-degree of Guangdong 
in the input flow network appeared as early as the beginning 
of January 2003, and its corresponding in-degree began in 
early February, indicating that Guangdong was the early 
original source of the SARS epidemic, from which the in-
fections in many other provinces were at an early time ; (2) 
the in-degree and out-degree of Beijing in the input flow 
network appeared to occur as late as in early-mid March, 
and the in-degree and out-degree of Beijing’s three sur-
rounding provinces (Shanxi, Hebei and Inner Mongolia) 
also appeared late, indicating that control measures had 
taken effect in the early-mid period of the SARS epidemic 
in regions centered in Beijing, while the input cases from  
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Figure 3  Spatial distribution of node in-degree in input flow network. 

 
Figure 4  Spatial distribution of node out-degree in output flow network.  

other provinces increased dramatically in the mid-late epi-
demic period due to the substantial increase of the range of 
epidemic spread; (3) the in-degree and out-degree of Guang-

dong in the output flow network appeared early, and the 
in-degree increased to a maximum value in early February 
and was then maintained at the same value, indicating that  
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Figure 5  Temporal changes of node degree/in-degree/out-degree Shanxi, Guangdong, Inner Mongolia, Hebei and Beijing. (a) Input flow network; (b) 
output flow network.  

Guangdong was the primary origin of the SARS epidemic 
in the early period and that there were continuous output 
cases from Guangdong to the other provinces throughout 
the entire epidemic period; and (4) in the output flow net-

work, the in-degree and out-degree of Beijing and its three 
surrounding provinces (Shanxi, Hebei and Inner Mongolia) 
appeared late and gradually spread to the national level 
during the mid-late period. The following interpretation was 
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obtained from the above comprehensive analysis: Guang-
dong and Beijing were the two most severely affected 
provinces during the SARS epidemic in mainland China, 
but the characteristics and features of their epidemic spread 
were essentially different from each other. In particular, 
Guangdong was the original source of the SARS epidemic 
during the early-mid period and continued to output infec-
tions to other provinces throughout the whole epidemic pe-
riod, but no clustering area formed with Guangdong as the 
center. However, although there was no obvious interaction 
of the input and output flows between Beijing and the other 
countrywide provinces until the mid-late period, Beijing had 
a distinct high-level capacity for spatial spreading and 
formed a clustering area for the SARS epidemic with its 
surrounding provinces (Shanxi, Hebei and Inner Mongolia). 

3.3  Characteristic parameter analysis of nodes 

The clustering coefficient and betweenness centrality are 
two important indicators that reflect the clustering charac-
teristics of a network structure, and based on the constructed 
transmission network of the SARS in-out flow, the cumula-
tive values of the clustering coefficient and betweenness 
centrality of nodes were calculated by code programming. 
In the input flow network, with its low connection density, 
the values of the betweenness centrality of most nodes were 
less than 100, and the values of the clustering coefficient of 
many nodes were 0, indicating that there were no significant 
clustering characteristics between nodes in the input flow 
network. However, there were a certain number of cold 
nodes with clustering coefficient values equal to 1, mainly 
because the number of nodes connected to nodes with a full 
connection load was too small to reflect the clustering 
characteristics. In the output flow network, with its dis-
tinctly high connection density, the statistical results of the 
node clustering coefficient could directly characterize the 
clustering feature; in addition, the betweenness centrality of 
most nodes was high. The combination analysis of the spa-
tial distributions of the clustering coefficient and between-
ness centrality in the input flow network and output flow 
network, which are shown in Figures 6 and 7, respectively, 
indicated that (1) the distribution of the clustering coeffi-
cient in the input flow network had no significant clustering 
characteristics and the clustering coefficient of hotspot 
nodes of the SARS epidemic, including Beijing and Guang-
dong, was also not high, indicating that although there were 
several other nodes from which the input cases of hotspots 
nodes arose, these source nodes were too cold to form a 
cluster with each other; (2) in the output flow network, the 
distribution of the clustering coefficient of the nodes had 
significant clustering characteristics, and the connection 
density between the nodes connected to Beijing and Guang-
dong was very high, while the distribution of the nodes 
connected to Beijing and Guangdong was relatively con-
centrated mainly in the north, east and southwest of main-

land China; (3) in the input flow network, the betweenness 
centrality distribution was also concentrated mainly in 
Guangdong and Beijing with its surrounding provinces 
showing that the spatial floating of the input cases had some 
clustering characteristics; and (4) several provinces sur-
rounding Beijing and Guangdong formed a distance clus-
tering trend in the output flow network, indicating that the 
spatial floating of output cases mainly covered a range be-
tween Beijing, Guangdong and their surrounding provinces. 

Shanxi, Guangdong, Inner Mongolia, Hebei and Beijing 
were selected for an analysis of temporal clustering coeffi-
cient and betweenness centrality changes of the nodes dur-
ing the SARS epidemic period. As illustrated in Figure 8, 
the results suggested that (1) there were phases with unrea-
sonably high-value clustering coefficients in both the input 
flow and output flow networks, and this was mainly due to 
no extensive interactions occurring between the cold nodes 
during the early-mid period of the SARS epidemic; (2) in 
the input flow network, the clustering coefficients of the 
two hotspot centers (Beijing and Guangdong) were not sig-
nificant until mid-late March, indicating that there were no 
interactions between the nodes from which the infected 
cases of Beijing and Guangdong came during the early-mid 
period of the SARS epidemic; prevention/control measures 
should also be focused on these provinces with connections 
to hotspot nodes due to the appearance of input and output 
interactions between these nodes during the mid-late period; 
(3) in the output flow network, Guangdong appeared to 
have a clustering coefficient in early January, showing that 
the other nodes with output cases from Guangdong had in-
teractions since the early epidemic period; however, Beijing 
did not appear to have a clustering coefficient until early 
March, with a high initial value, because there had been 
extensive interaction between most nodes since the 
mid-epidemic period; (4) there was a betweenness centrality 
value in Guangdong since early January in the input flow 
network, which was further evidence that Guangdong was 
the original source of the SARS epidemic during the early 
period. The betweenness centrality value of Guangdong 
continued to increase, indicating that Guangdong carried the 
most information of input flow throughout the entire period; 
in contrast, Beijing and its surrounding Hebei, Shanxi and 
Inner Mongolia carried only a small part of the information 
of input flow during the early period and gradually in-
creased through the late period; (5) in the output flow net-
work, the betweenness centrality value in Guangdong ap-
peared early, with a high value, and rapidly increased to the 
maximum value without decreasing until late in the epi-
demic, indicating that Guangdong began to output cases to 
many provinces since the early epidemic period, and that its 
output flow rapidly covered an almost nationwide scope; in 
the mid-late period, after another hotspot clustering area 
was formed in Beijing and its surrounding provinces, where 
the influence sphere of the output flow from Guangdong 
gradually weakened; and (6) the betweenness centrality value  
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Figure 6  Spatial distribution of clustering coefficient of nodes. 

 
Figure 7  Spatial distribution of betweenness centrality of nodes.  

of Beijing appeared during the early period and increased 
gradually in the output flow network while forming a larger 
sphere of influence, and the nodes surrounding Beijing 

maintained the same output flow spread level, while during 
the late period, Hebei had an even higher level of spread 
range than Beijing, indicating that control measures for the  
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Figure 8  Temporal changes of clustering coefficient and betweenness centrality in the provinces of Shanxi, Guangdong, Inner Mongolia, Hebei and Bei-
jing. (a) Input flow network; (b) output flow network.  

nodes surrounding Beijing should be strengthened during 
the later epidemic, especially for the Hebei Province. 

3.4  Structural characteristics of input flow and output 
flow networks 

During the SARS epidemic, the input flow and output flow 
networks formed by the input/output interactions between 
provinces were dynamic, directed and weighted, and the 
network structural characteristics gradually changed during 
the time sequence. The temporal changes of the structural 
characteristics of the two types of networks were analyzed 
in a one-day time interval. Figure 9 illustrates the temporal 
changes of the diameter, average distance and average de-
gree of the input/output flow networks. The results showed 
that (1) the overall connection density of the input flow 
network was low, and its diameter, average distance and 
average degree were at a low value, with a slow integrated 
increasing trend; (2) in the input flow network, the maxi-
mum values of the average degree and average distance 
were 2.54 and 4.94, respectively, indicating that the number 
of nodes with input flow spreading was small and that the 
spreading range was also low; (3) the maximum value of the 
diameter in the input flow network was 20, indicating that 
the spreading range of the input flow belonged to a middle 
level on the national scale; (4) in the output flow network 

with high connection density, the average degree value ap-
peared early and expanded rapidly to a maximum value of 
14 during the mid-late period, indicating that the number of 
objects affected by the output flow was large; (5) the aver-
age distance value in the output flow network appeared ear-
ly in the epidemic, increased rapidly to a maximum of 14 
and then had a small irregular decreasing trend, indicating 
that the spreading intensity of the output flow was very 
strong during the early-mid period and effectively con-
trolled to a certain extent, when control measures were 
strengthened later in the epidemic; and (6) in the output 
flow network, the diameter value rapidly increased to a 
maximum value of 41 and showed a clear decreasing trend 
in the late epidemic period, indicating that the spreading 
range of the output flow covered the nation in only the 
mid-epidemic period and was apparently controlled until the 
mid-late period with strengthened control measures. 

Further analysis on the temporal clustering coefficient 
and betweenness centrality changes in the input/output flow 
networks were implemented and shown in Figure 10. The 
analyses indicated that (1) in the input flow network, with 
its weak clustering characteristics, the clustering coefficient 
appeared at the end of March, which was at the same time 
as when the betweenness centrality value significantly in-
creased, indicating that the spreading range of the input 
flow showed overall stochastic features without significant  
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Figure 9  Temporal changes of diameter, average distance and average 
degree of input/output flow networks. 

 

Figure 10  Temporal changes of clustering coefficient and betweenness 
centrality of input/output flow networks. 

clustering characteristics, even late in the epidemic, and (2) 
the clustering coefficient value in the output flow network 
appeared at an early stage, continued growing and reached a 
maximum value of 0.72; similarly, the betweenness central-
ity value had the same developing trend and reached a 
maximum value of 89.62, indicating that there was signifi-
cant clustering characteristics in the output flow network, 
and the characteristics gradually became increasingly in-
tense during the entire SARS epidemic period. 

4  Conclusion and discussion  

The spread of infectious diseases is due to interactions in a 
human-earth environment and forms a complex system 
during an epidemic period. The exploration and study of the 
spatiotemporal characteristics and patterns of epidemic 
spread extensively aid the understanding of the spread 
mechanism and provide theoretical support for the preven-
tion and control of future novel epidemics. Extensive re-
search on epidemic spread mechanisms has been conducted 
in pathology, epidemiology, medical statistics, spatial in-
formation science, sociology, and anthropology, among other 
fields, and the results have provided detailed explanations 
regarding spread mechanisms, spatiotemporal distribution 
and prevention/control measures. However, the systematic 
understanding and explanation of spatiotemporal change 
patterns of the individual susceptible-infected-symptomatic- 
treated-recovered epidemic process and dynamics that direct 
the transmission network between individuals and regions 
caused by interactions of information and material flow are 
still lacking. In this paper, the SARS epidemic in mainland 
China in 2002–2003 was used as an example. Based on key 
data regarding individual location change in the process of 
being infected, disease onset, receiving treatment and re-
covery, the concept of in-out flow was defined to effectively 
explain the spatiotemporal evolution pattern of the individ-
ual location transformation in the SARS epidemic and 
characteristics of information and material flow in the dy-
namic transmission network caused by the input/output in-
teractions between regions. The transmission network of the 
SARS epidemic was built based on the in-out flow, and the 
spatiotemporal distribution of the SARS in-out flow, the 
spatial distribution and temporal change of node character-
istic indicators, and the network structure characteristics 
were comprehensively and systematically implemented, 
resulting in a series of new conclusions. Future research 
based on these two new perspectives, including the epidem-
ic in-out flow and transmission network, may help explain 
the spatiotemporal spread pattern of infectious diseases and 
provide new study ideas and practical implications, includ-
ing results revealing the characteristics and laws of the 
SARS epidemic in mainland China. 

Discussion and proposed future work are as follows: (1) 
the proposed definition of the SARS epidemic in-out flow 
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was primarily based on three individual locations (working 
unit/home address, onset location and reporting unit), and to 
provide a more accurate description of the individual sus-
ceptible-infected-symptomatic-treated-recovered epidemic 
process, the location data of the in-out flow could be further 
redefined to be more exact; (2) the SARS transmission net-
work model can be optimized, for instance, by adding a ring 
structure to the network to consider the self-spread node 
cases, and the two input flow and output flow networks could 
be merged as an integrated network considering the bidirec-
tional and multi-weighted edge characteristics; (3) the 
weights of the nodes could be diversified by considering 
population density, traffic level, and socio-economic indi-
cators of the nodes; and (4) the study scale could be further 
redefined by building a transmission network model with 
cities or counties as nodes, which more accurately analyze 
the network structure and explore additional potential char-
acteristics of the SARS epidemic. 
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