Abstract
Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1–14) Ad and 14 other restricted activities assigned as “1”(+) and “0”(−), respectively. The latter comprised 6 Ab(15–20), 3 Ak(21–23), 2 Ek(24–26), 2 H-2k(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drwan: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.
Keywords: molecular electronegativity distance-edge vector (VMED), antigenic polypeptide (AGPP) sequences, bioactive oligopeptide (BAOP) chains, quantitative sequence-activity models (QSAM), theoretically computational descriptors (TCD)
Footnotes
Supported by National High-Tech R&D Programme of China (863) (Grant No. 2006AA02Z312), National 111 Programme Introducing Talents of Discipline to Universities (Grant No. 0507111106), National Chunhui Project (Grant No. 990404+00307), State New Drug Project (Grant No. 1996ND1035A01), Fok Ying Tung Educational Foundation (Grant No. 980706), State Key Laboratory of Chemo/Biosensing and Chemometrics Foundation (KCBCF0501201), Chongqing University Innovation Fund (CUIF030506), Chongqing Municipality Applied Science Fund (Grant No. CASF01-3-6), and Momentous Juche Innovation Fund for Tackle Key Problem Items (MJIF 03-5-6+04-10-10)
Contributor Information
ZhiLiang Li, Email: zlli-cqu@163.com.
MengJun Zhang, Email: zlli2662@163.com.
Gang Chen, Email: gchen@sp.edu.sg.
References
- 1.Placa J. Human genome—Development of energy on the map. Nature. 1986;321:371–386. doi: 10.1038/321371a0. [DOI] [PubMed] [Google Scholar]
- 2.Venter J C, Smith H O, Hood L. A new strategy for genome sequencing. Nature. 1996;381:364–366. doi: 10.1038/381364a0. [DOI] [PubMed] [Google Scholar]
- 3.International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
- 4.Chen K.-X., Jiang H.-L., Ji R.-Y. Computer-assisted Drug Design—Principle, Method and Application (in Chinese) Shanghai: Shanghai Science and Techonlogical Publishing House; 2000. [Google Scholar]
- 5.Martin Y. C. Quantitative Drug Design: A Critical Introduction. New York: Marcel Dekker Inc; 1978. [Google Scholar]
- 6.Miyashita Y, Li Z, Sasaki S. Chemical pattern recognition and multivariate analysis for QSAR studies. Trend Anal Chem TrAc, 1993, 12: 50-60, doi: 10.1016/0165-9936(93)87051-X
- 7.Wang Z. X. Assessing the accuracy of protein secondary structure. Nat Struct Biol. 1994;1:145–146. doi: 10.1038/nsb0394-145. [DOI] [PubMed] [Google Scholar]
- 8.Wang Z. X. How many fold types of protein are there in nature? Proteins: Structure, Function and Genetics. 1996;26:186–191. doi: 10.1002/(SICI)1097-0134(199610)26:2<186::AID-PROT8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- 9.Wang Z. X. Influence of substrates on in vitro dephosphorylation of glycogen phosphorylase a by protein phosphatase-1. Biochem J. 1999;341:545–554. doi: 10.1042/0264-6021:3410545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wang Z. X., Yuan Z. How good is the prediction of protein structural classes by the component-coupled method? Proteins: Structure, Function and Genetics; 2000. pp. 165–175. [DOI] [PubMed] [Google Scholar]
- 11.Wang Z. X., Wu J. W. Autophosphorylation kinetics of protein kinases. Biochem J. 2002;368:947–952. doi: 10.1042/BJ20020557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Wu H., Zheng Y., Wang Z. X. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2. Biochemistry. 2003;42:1129–1139. doi: 10.1021/bi026857l. [DOI] [PubMed] [Google Scholar]
- 13.Wu H., Wang Z. X. The mechanism of p21-activated protein kinase 2 autoactivation. J Biol Chem. 2003;278:41768–41778. doi: 10.1074/jbc.M308196200. [DOI] [PubMed] [Google Scholar]
- 14.Luo Y., Jiang X. L., Lai L. H. Modeling protein backbone structure based on Cα guiding coordinates. Protein Eng. 1992;5:147. doi: 10.1093/protein/5.2.147. [DOI] [PubMed] [Google Scholar]
- 15.Luo Y., Lai L. H., Xu X. J. Defining topological equivalents in protein structures by means of dynamic programming algorithm. Protein Eng. 1993;6:373. doi: 10.1093/protein/6.4.373. [DOI] [PubMed] [Google Scholar]
- 16.Qu C. X., Lai L. H., Xu X. J. Phyletic relationship of proteins based on structure preference factors. J Mol Evol. 1993;36:67. doi: 10.1007/BF02407306. [DOI] [PubMed] [Google Scholar]
- 17.Cao W., Liu L., Lai L. H., et al. Molecular recognition: monomer of the yeast transcriptional activator GCN4 recognizes its dimer DNA binding target sites specifically. Sci China Ser B-Chem Sci. 2000;43(5):466–476. doi: 10.1007/BF02969492. [DOI] [Google Scholar]
- 18.Zhang W., Feng J. N., Shen B. F. Identification of binding epitope of a monoclonal antibody (Z12) against human TNF-α using computer modeling and deletion mutant technique. Sci China Ser C-Life Sci. 2004;47(3):279–286. doi: 10.1360/03yc0053. [DOI] [PubMed] [Google Scholar]
- 19.Feng J. N., Wan T., Wu J. J., et al. Epitope prediction based on three-dimensional structure. J Mol Sci. 1999;15(2):112–115. [Google Scholar]
- 20.Wan T., Sun T., Wu J. J., et al. The multi-parameter prediction of protein antigenic determinants. Chin J Immunol. 1997;13(6):329–333. [Google Scholar]
- 21.Anfinsen C. B., Haber E., Sela M., et al. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA. 1961;47:1309. doi: 10.1073/pnas.47.9.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Martin J., Mayhew M., Lattger T., et al. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature. 1993;366:228. doi: 10.1038/366228a0. [DOI] [PubMed] [Google Scholar]
- 23.Sneath P. H. A. Relations between chemical structure and biological activity in peptides. J Theor Biol. 1966;12:157–195. doi: 10.1016/0022-5193(66)90112-3. [DOI] [PubMed] [Google Scholar]
- 24.Borea P. A., Santo G. P., Salvadori S., et al. Opioid peptides. Pharmacological activity and lipophilic character of dermorphin oligopeptides. Farmaco Ed Sci. 1983;38:521–526. [PubMed] [Google Scholar]
- 25.Asao M., Iwamura H., Akamatsu M., et al. Quantitative structure-activity relationships of the bitter thresholds of amino acids, peptides, and their derivatives. J Med Chem. 1987;30:1873–1879. doi: 10.1021/jm00393a031. [DOI] [PubMed] [Google Scholar]
- 26.Fauchere J., Charton M., Kier L. B., et al. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res. 1988;32:269–278. doi: 10.1111/j.1399-3011.1988.tb01261.x. [DOI] [PubMed] [Google Scholar]
- 27.Depriest S. A., Mayer D., Naylor C. D., et al. 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries. J Am Chem Soc. 1993;115:5372–5384. doi: 10.1021/ja00066a004. [DOI] [Google Scholar]
- 28.Cocchi M., Johansson E. Amino acids characterization by GRID and multivariate data analysis. Quant Struct Act Relat. 1993;12:1–8. doi: 10.1002/qsar.19930120102. [DOI] [Google Scholar]
- 29.Charton M. The quantitative description of amino acid, peptide, and protein properties and bioactivities. Prop Phys Org Chem. 1990;18:163–284. doi: 10.1002/9780470171974.ch5. [DOI] [Google Scholar]
- 30.Kidera A., Konishi Y., Oka M., et al. A statistical analysis of the physical properties of the 20 naturally occurring amino acids. J Protein Chem. 1985;4:23–55. doi: 10.1007/BF01025492. [DOI] [Google Scholar]
- 31.Hellberg S., Sjostrom M., Skagerberg B., et al. Peptide quantitative structure-activity relationships, A multivariate approach. J Med Chem. 1987;30:1126–1135. doi: 10.1021/jm00390a003. [DOI] [PubMed] [Google Scholar]
- 32.Hellberg S., Eriksson L., Jonsson J., et al. Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int J Pept Protein Res. 1991;37:414–424. doi: 10.1111/j.1399-3011.1991.tb00756.x. [DOI] [PubMed] [Google Scholar]
- 33.Wold S., Eriksson L., Hellberg S., et al. Principal property values for six non-natural amino acids and their application to a structure-activity relationship for oxytocin peptide analogues. Can J Chem. 1987;65:1814–1820. doi: 10.1139/v87-305. [DOI] [Google Scholar]
- 34.Collantes E. R., Dunn W. J. Amino acid side chain descriptors for quantitative structure activity relationship studies of peptide analogues. J Med Chem. 1995;38:2705–2713. doi: 10.1021/jm00014a022. [DOI] [PubMed] [Google Scholar]
- 35.Zaliani A., Gancia E. MS-WHIM scores for amino acids: A new 3D-description for peptide QSAR and QSPR studies. J Chem Inf Compt Sci. 1999;39:525–533. doi: 10.1021/ci980211b. [DOI] [Google Scholar]
- 36.Raychaudhury C., Banerjee A., Bag P., et al. Topological shape and size of peptides: Identification of potential allele specific helper T cell antigenic sites. J Chem Inf Comput Sci. 1999;39:248–254. doi: 10.1021/ci980052w. [DOI] [PubMed] [Google Scholar]
- 37.Liu S. S., Cai C. Z., Li Z. Approach to estimation and prediction for normal boiling points of alkanes based on a molecular distance-edge vector(MDE), lambt. J Chem Inf Comput Sci. 1998;38(3):387–394. doi: 10.1021/ci970109z. [DOI] [Google Scholar]
- 38.Liu S. S., Cai S. X., Liu Y., et al. A novel molecular electronegativity-distance vector(MEDV) Acta Chim Sin (in Chinese) 2000;58(11):1353–1357. [Google Scholar]
- 39.Liu S. S. Novel molecular electronegativity-distance vector for pharmaceutical characterization and application. Chongqing: Chongqing University; 2001. [Google Scholar]
- 40.Liu S. S. Selected 100 Excellent PhD Dissertations (in Chinese) Beijing: Higher Education Press; 2005. Novel molecular electronegativity-distance vector for organic characterization and application. [Google Scholar]
- 41.Ling Z. Chemical structural parameterization and chemobiological property quantitation of types of organic compounds. Chongqing: Chongqing University; 2000. [Google Scholar]
- 42.Ling Z. H., Liu S. S., Li Z. Structural parameterization and QSAR study of oligopeptides. Acta Chim Sin (in Chinese) 2001;59(7):1004–1008. [Google Scholar]
- 43.Xu H. Chemical structural parameterization and chemobiological property quantitation of typical organic compounds. Chongqing: Chongqing University; 2001. [Google Scholar]
- 44.Sun L. L. Structure expression and function prediction of biologically active compounds. Chongqing: Chongqing University; 2004. [Google Scholar]
- 45.Sun L. L., Zhou Y., Li G. R., et al. Molecular eletronegativity-distance vector (MEDV-4):A two-dimensional QSAR method for the estimation and prediction of biological activities of estradiol derivatives. J Molecular Structure (Theochem) 2004;679:107–113. doi: 10.1016/j.theochem.2004.04.010. [DOI] [Google Scholar]
- 46.Xiong Q. Eukaryotic promoter prediction. Chongqing: Chongqing University; 2004. [Google Scholar]
- 47.Xiong Q., Wang Y., Li Z. Eukaryotic promoter recognition using backpropagation neural network. Chin J Biomed Eng. 2004;13(2):87–92. [Google Scholar]
- 48.Mei H. Peptide QSARs. Chongqing: Chongqing University; 2005. [Google Scholar]
- 49.Li S. Z., Fu B., Wang Y., et al. On structural parameterization and molecular modeling of peptide analogues by molecular electronegativity edge vector (VMEE): Estimation and prediction for biological activity of dipeptides. J Chin Chem Soc. 2001;48(5):937–944. [Google Scholar]
- 50.Zhou P., Tian F. F., Zhang M. J., et al. Applying generalized hydrophobicity scale of amino acids to quantitative prediction of human leukocyte antigen-A*0201-restricted cytotoxic T lymphocyte epitope. Chin Sci Bull. 2006;51(12):1439–1443. doi: 10.1007/s11434-006-1439-z. [DOI] [Google Scholar]
- 51.Zhou P., Zhou Y., Wu S. R., et al. A new descriptor of amino acids based on the three-dimensional vector of atomic interaction field. Chin Sci Bull. 2006;51(5):524–529. doi: 10.1007/s11434-006-0524-7. [DOI] [Google Scholar]
- 52.Rothbard J. B., Taylor W. R. Sequence pattern common to T cell epitopes. EMBO J. 1988;7(1):93–100. doi: 10.1002/j.1460-2075.1988.tb02787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Willims D. B., Ferguson J., Gariepy J., et al. Characterization of the insulin A-chain major immunogenic determinant presented by MHC class II I-Ad molecules. J Immunol. 1993;151:3627–3627. [PubMed] [Google Scholar]
- 54.Sette A. S., Buus S., Colon S., et al. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif. J Immunol. 1988;141:45. [PubMed] [Google Scholar]
- 55.Demotz S., Sette A., Sakaguchi K., et al. Self peptide requirement for class II major histocompatibility complex allorecognition. Proc Natl Acad Sci USA. 1991;88(19):8730–8734. doi: 10.1073/pnas.88.19.8730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Marrack P., Kappler J. The T cell receptor. Science. 1987;238(4830):1073–1079. doi: 10.1126/science.3317824. [DOI] [PubMed] [Google Scholar]
- 57.Adorini L., Sette A., Buus S., et al. Interaction of an immunodominant epitope with Ia molecules in T-cell activation. Proc Natl Acad Sci USA. 1988;85(14):5181–5185. doi: 10.1073/pnas.85.14.5181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Ozaki S., Durum S.K., Muegge K., et al. Production of T-T hybrids from T cell clones. Direct comparison between cloned T cells and T hybridoma cells derived from them. J Immunol. 1988;141(1):71–78. [PubMed] [Google Scholar]
- 59.Liu S. S., Yin C. S., Cai S. X., et al. QSAR study of steroid benchmark and dipeptides based on MEDV-13. J Chem Inf Comput Sci. 2001;41(2):321–329. doi: 10.1021/ci0003350. [DOI] [PubMed] [Google Scholar]
- 60.Mei H., Sun L. L., Zhou Y., et al. Identification of encoding proteins related to SARS-CoV. Chin Sci Bull. 2004;49(19):2037–2040. doi: 10.1360/03wb0198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Mei H., Sun L. L., Zhou Y., et al. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers: Pep Sci; 2005. pp. 775–786. [DOI] [PubMed] [Google Scholar]
- 62.Liang G. Z., Li Z. L. A new sequence pepresentation (FASGAI) as applied in better specificity elucidation for human immunodeficiency virus type 1 protease. Biopolymers (Pept Sci) 2007;88(3):401–412. doi: 10.1002/bip.20669. [DOI] [PubMed] [Google Scholar]
- 63.Liang G. Z., Li Z. L. Scores of generalized base properties for quantitative sequence-activity modelings for E. coli promoters based on support vector machine. J Mol Graph Model. 2007;26(1):269–281. doi: 10.1016/j.jmgm.2006.12.004. [DOI] [PubMed] [Google Scholar]
- 64.Liang G. Z., Yang S. B., Zhou Y., et al. Using scores of amino acid topological descriptors for quantitative sequence-mobility modeling of peptides based on support vector machine. Chin Sci Bull. 2006;51(22):2700–2705. doi: 10.1007/s11434-006-2138-5. [DOI] [Google Scholar]
- 65.Zhou P., Zeng H., Tian F. F., et al. Applying novel molecular electronegativity-interaction vector (MEIV) to QSPR study on collision cross section of singly protonated peptides. QSAR Comb Sci. 2007;26(1):117–121. doi: 10.1002/qsar.200510220. [DOI] [Google Scholar]
- 66.Zhou P., Mei H., Tian F. F., et al. A new two-dimensional approach to quantitative prediction for collision cross-section of more than 110 singly protonated peptides by a novel moecular electronegativity-interaction vector through quantitative structure-spectrometry relationship studies. Frontiers of Chem China. 2007;2(1):55–64. doi: 10.1007/s11458-007-0012-x. [DOI] [Google Scholar]
- 67.Liu S. S., Cai S.X., Li Z. Molecular electronegative distance vector (MEDV) related to 15 properties of alkanes. J Chem Inf Comput Sci. 2000;40(6):1337–1348. doi: 10.1021/ci0003247. [DOI] [PubMed] [Google Scholar]
- 68.Zhou P., Tian F. F., Li Z. L. Novel molecular electronegativity-interaction vector and its application in quantitative prediction for collision cross-section of singly protonated peptides. Chin J Anal Chem. 2006;34(6):778–782. doi: 10.1016/S1872-2040(06)60039-X. [DOI] [Google Scholar]