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Abstract This paper is an attempt to estimate the risk of infection importation and
exportation by travelers. Two countries are considered: one disease-free country and
one visited or source country with a running endemic or epidemic infectious disease.
Two models are considered. In the first model (disease importation), susceptible indi-
viduals travel from their disease-free home country to the endemic country and come
back after some weeks. The risk of infection spreading in their home country is then
estimated supposing the visitors are submitted to the same force of infection as the
local population but do not contribute to it. In the second model (disease exporta-
tion), it is calculated the probability that an individual from the endemic (or epidemic)
country travels to a disease-free country in the condition of latent infected and even-
tually introduces the infection there. The input of both models is the force of infection
at the visited/source country, assumed known. The models are deterministic, but a
preliminary stochastic formulation is presented as an appendix. The models are exem-
plified with two distinct real situations: the risk of dengue importation from Thailand
to Europe and the risk of Ebola exportation from Liberia to the USA.
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1 Introduction

From time to time theworld is put on high alert, triggered by some exotic and frequently
unknown infectious disease spread by travelers of international routes to previously
uninfected regions (Stannard 1993). The most notorious example is perhaps the Black
Death of the XIV century, which decimated from a quarter to a half of the European
population (Massad et al. 2004; Bossak and Welford 2009). Many centuries later, the
Spanish Flu, which killed between 50 and 100 million individuals worldwide, started
in an American army barrack in the United States in 1918, and rapidly spread by
travelers to others areas of the world (Caley et al. 2007; Massad et al. 2007). Almost
one hundred years later, SARS frightened many countries due to its potential spread
by infected travelers (Wilder-Smith and Freedman 2003; Massad et al. 2005a). The
swine flu pandemic (H1N1) of 2009 is another example of the dangers of international
spread of communicable diseases (Khan et al. 2009; Massad et al. 2010). The current
outbreak of Ebola is the most recent example of the risk of a new and, in this case,
frequently fatal disease, posed by individuals traveling from infected to uninfected
areas of the world (Gomes et al. 2014; Pandey et al. 2014).

Human mobility networks, increasingly play a role in the spread of communicable
diseases (Stannard 1993; Tatem et al. 2012). This occurs at the international and
national levels and even between different districts in the same city. Moving people
can introduce infectious agents to new areas and populations (Massad et al. 2004). The
greatest concern for global health now is the ability of a traveller with an infectious
disease to travel to virtually any part of the world within 24h. The current volume,
speed, and reach of travel are unprecedented. International tourist arrivals have shown
a virtually uninterrupted growth—from 25 million in 1950 to 278 million in 1980,
528 million in 1995, and 1087 million in 2013 (UNWTO 2014). Asia and the Pacific
recorded the fastest relative growth across all World Tourism Organization (UNWTO)
regions, with a 6% increase in international arrivals per year in recent years. Asia is
the epicenter of many infectious diseases (UNWTO 2014). Africa, another continent
with many emerging infectious diseases, saw an increase of 5%. International tourist
arrivals worldwide are expected to increase by 3.3% a year from 2010 to 2030 to reach
1.8 billion by 2030, according toUNWTO’s long-term forecast TourismTowards 2030
(UNWTO 2014).

In fact, air travel has led to the rapid global spread of many diseases, notably
respiratory diseases such as SARS (Wilder-Smith and Freedman 2003; Massad et al.
2005a) and H1N1 (Khan et al. 2009; Massad et al. 2010). An increased volume of
international passenger air traffic originating from regions with endemic dengue has
contributed to a rise in the number of dengue cases in both endemic areas and elsewhere
(Jones et al. 2008; Wilder-Smith 2006; Khan et al. 2010). Another example is that the
main hindrance to polio eradication is the spread of polio via travelers to polio-free
countries (Quam et al. 2014; Wilder-Smith and Tambyah 2007).
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Modeling Importations and Exportations of Infectious Diseases… 187

It is important to be able to calculate or at least estimate the number of cases
due to the importation or exportation of infectious diseases via travelers. Current
methodological approaches to estimate the risk of diseases in travelers still have many
shortcomings (Wilder-Smith 2006; Khan et al. 2010; Quam et al. 2014; Wilder-Smith
and Tambyah 2007; Leder et al. 2013). For example, estimations based on notifications
of imported cases underestimate the risk. This is so because many diseases are either
not notifiable to authorities or even if legally notifiable are underreported, as not
every traveller will report her/his condition to healthcare providers. Moreover, many
imported diseases may go unnoticed because of a high frequency of asymptomatic
cases that may also contribute to the transmission of diseases.

In the absence of good data on importation and exportation of infectious diseases
via international travelers, mathematical models can provide an additional tool for
the estimation of the risks involved. Here, a novel mathematical model is developed,
taking into account air travel volume, force of infection in the country of disembarka-
tion, herd immunity due to either background immunity or immunization coverage
by vaccination. Two distinct situations related to the spread of infections by travelers
(importation and exportation of infections) are considered, with particular emphasis
on the risk for disease-free areas.

This paper is organized as follows. After this introduction, Sect. 2 describes the
models used for estimating the risk of infections spread to previously disease-free areas
in two distinct contexts, namely, the spread of infections by travelers from disease-
free countries that visit an endemic area and bring the infection back home (Sect.
2.1); and the spread of infections by inhabitants of endemic areas that visit disease-
free countries, eventually introducing the infection in these areas (Sect. 2.2). Two
differentmodels describe these two situations. The theory described in Sect. 2.1 and 2.2
are exemplified by the case of the potential risk of dengue introduction into Europe
(importation model, Sect. 2.1.5), and the case of Ebola exportation to disease-free
countries (Sect. 2.2.1). The model’s implications and limitations are discussed in
Sect. 3. In “Appendix 1”, we present a more detailed discussion of the parameters and
data aggregation used previously to estimate the risk of dengue among international
travelers visiting Thailand (Massad et al. 2013). Finally, in “Appendix 2”, a stochastic
equivalent of the importation model is presented in detail.

2 The Models

In what follows, two models describe two different situations.
The first one, “Importation of an infection,” applies to the case where travelers from

a disease-free country visit a country endemic to a given infection and, after few days
or weeks, return to their disease-free home country. If some of the travelers acquire the
infection and return still infective (before recovering), they could introduce the disease
in their disease-free country. The importation model will be analyzed and exemplified
with the case of a vector-transmitted infection.

The second model, “Exportation of an infection,” considers the case where individ-
uals living in an endemic (or epidemic) country travel to a disease-free country. If some
of the travelers contracted the infection and are in an infective or latent (pre-clinical)
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stage when leaving their home country, they could export the infection to the visited
country.

In both scenarios, the infective individuals could trigger infection outbreaks in the
previously disease-free area, given that the specific disease transmission conditions
are satisfied. In the next subsections, such possibility is discussed in detail.

2.1 Importation of Infection

This section considers travelers from a disease-free country visiting an endemic region
and eventually returning infected to their home country (importing the infection).
Arriving to their home country, these infected travelers could trigger an outbreak that
can (or cannot) establish itself (that is, reach an endemic equilibrium) depending if the
basic reproduction number (R0) of the infection is greater or lesser than one (Massad
et al. 1994). To calculate the risk that a traveller acquires the infection, the number of
individuals returning infected at time (t) and the period of time they remain infectious
after returning home, it is necessary taking a detailed account of the chronology of
events and the populations involved. This is done in the next subsections.

2.1.1 Time-Line of Events

The model assumes that travelers from a disease-free country arrive at the visited
country at time t = 0. Those travelers may or may not acquire the infection. Then:

1. If they do not acquire the infection, they return home at a time between t ′ and
t ′ + dt ′ (t ′ < t = present time), without any further consequences.

2. If they do acquire the infection, then two things may happen:
(a) The visitors acquire the infection at a time between τ and τ + dτ , recover at

a time between t ′′ and t ′′ + dt ′′, while still in the visited country, and return
home between t ′ and t ′ + dt ′

(
t ′′ < t ′

)
, already recovered. Again, no further

consequences.
(b) The visitors become infected at a time between τ and τ +dτ , then return home

between t ′ and t ′ +dt ′, while still infectious, and recover there between t ′′ and
t ′′ + dt ′′ (it is worth noting that now t ′ < t ′′). Depending on the duration of
the infectiousness period and the transmission characteristics, individuals in
this third history may be infectious after arriving for time enough to trigger an
outbreak in their previously disease-free home country.

The above chronology is pictured in Fig. 1.

Remark 1 Note that the model assumes that infected travelers return to their home
country nomatter if they are symptomatic or not. In the Discussion section, we address
this simplification of the model.

2.1.2 The Populations Involved

The chronology described in the above subsection defines a set of populations and
subpopulations as well as a set of flows. They can be depicted as shown in Fig. 2. There
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Modeling Importations and Exportations of Infectious Diseases… 189

Fig. 1 Time-line of events: 1 Susceptible visitors that do not acquire the infection during the visit; 2a
people that acquire the infection and recover before returning home; 2b those that acquire the infection,
return still infectious and recover at their home country

the home country population is divided in four subpopulations and the different flows
among the subpopulations and their classes are shown. As the disease is considered
a vector-transmitted one, the vector population (mosquitoes) and its classes are also
included.

1. The first subpopulation (leftmost flow in Fig. 2) comprises those individuals liv-
ing in the disease-free country, which have never travelled to endemic countries
but may eventually acquire the infection locally (autochthonous cases). Consistent
with classical S-I-R models (Anderson andMay 1991), the individuals in that sub-
population can be classified as SH (susceptible to the infection), IH (autochthonous
and infectious cases) and RH (recovered from IH ).

2. The second subpopulation (center-left flow in Fig. 2) includes those travelers expe-
riencing the first time-line of Fig. 1. The individuals of that subpopulation reside
in the disease-free country have travelled to the endemic country, but have not
been infected there. They have returned to their home country still susceptible. To
differentiate them from those in the first subpopulation, their representing letters
will receive a subscript T . As in the first population, those individuals can be clas-
sified as ST (susceptible to the infection), IT (autochthonous and infectious cases
among returning travelers), and RT (recovered from IT ).
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Fig. 2 Flow diagram of the classes of individuals involved in the disease importation model

3. The third subpopulation (rightmost flow in Fig. 2) consists of those individuals
experiencing the second time-line of Fig. 1. Those travelers have been infected in
the endemic country, have recoveredwhile still abroad andhave eventually returned
to their home country. To differentiate them from those in the second subpopu-
lation, they will be represented by starred letters. Differently from the previous

subpopulations, this must be divided in four classes:
∗
ST (susceptible to the infec-

tion),
∗
I T (infectious cases abroad),

∗
RT (recovered from

∗
I T and still abroad) and

∗∗∗
R T (recovered that returned home). These last classes of recovered individuals
are resistant to the infection and do not influence the dynamic of the infection
eventually introduced in their home country. Because of that, they received two
additional stars and were mentioned only for completeness.

4. Finally, the fourth subpopulation (center-right flow in Fig. 2) considers those indi-
viduals that have travelled to the endemic country, have acquired the infection
there and returned still infective to their home country. It is the population that
experience the third time-line in Fig. 1. To differentiate them from the other sub-
populations, the individuals of this subpopulation will receive two stars in their
representing letters. This subpopulation has no susceptible individuals and can
be split in just two classes: those infective individuals that returned home still

infective, denoted by
∗∗
I T , and those individuals that recovered when back home,

denoted by
∗∗
RT .

5. As for the vector population (such as mosquitoes) living in the home coun-
try, as most usual, the model considers three classes: SM (susceptible vectors),
LM (infected but not infectious vectors, also called latents), and IM (infected and
infectious vectors).
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Table 1 Description of the
subpopulations

Class symbols Description

SH Susceptible individuals in home country

that never travelled to the endemic country

IH Infectious individuals in home country

that acquired the infection locally in their home
country

(autochthonous infections from the SH class)

RH Recovered individuals in home country, from the

autochthonous infections IH class

ST Susceptible travelers that returned susceptible

to their home country

IT Infectious travelers, infected locally in home country

after returning (autochthonous infections from the
ST class)

RT Recovered individuals from the autochthonous

infections IT class
∗
ST Susceptible travelers visiting an endemic country
∗
I T Infectious travelers, that acquired the infection at the

visited country and return infectious
∗
RT Recovered travelers, that were infected and

recovered in

the visited country before returning home
∗∗∗
R T Individuals

∗
RT that returned to their home country

∗∗
I T Individuals

∗
I T that returned to their home country

∗∗
RT Recovered travelers, that were infected in the visited

country, returned home infected, and recovered there

SM Susceptible mosquitoes (disease vectors in the home
country)

LM Latent mosquitoes, disease vectors which have been
infected

locally by IH , IT and
∗
I T but are not yet infectious

IM Infectious mosquitoes, disease vectors which have
survived

to the incubation period and can transmit the disease

It is worth noting that the local (that is, in the disease-free country) vectors can be

infected by all the three classes of infectious humans, IH , IT , and
∗
I T , and can infect

all classes of susceptible individuals. All classes defined above are listed in table 1.

2.1.3 Model’s Assumptions

The model assumes a vector-borne infection characteristic of tropical regions. Its
vector, however, is also present in some disease-free countries. The model will be
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exemplified by dengue fever and the risk of its introduction into Europe. Two important
assumptions characterize the model:

1. Travelers are subject to the same risk of infection as the residents of the endemic
visited country.

2. The number of visitors is small when compared to the visited country population,
and they stay there for a relatively short period. Therefore, they do not contribute
significantly to the local force of infection (Massad et al. 2014).

2.1.4 Model’s Equations

In Sect. 2.1.2 the disease-free country population was divided in three human sub-
populations and one vector population. Therefore, five different dynamics are to be
described. Starting with the dynamics of the first subpopulation, the individuals that
do not travel, they can be described by the following set of equations:

dSH (t)

dt
= −ab

SH (t)

NH
IM (t) − μSH (t) + ΛSH

dIH (t)

dt
= ab

SH (t)

NH
IM (t) − (μ + α + γ ) IH (t)

dRH (t)

dt
= γ IH (t) − μRH (t)

NH = SH (t) + IH (t) + RH (t) + ∗
ST (0) = const.

SH (0) = NH − ∗
ST (0). (1)

In Eq. (1) a is the mosquitoes’ biting rate, b is the probability of infection from an
infectious mosquito to a susceptible human, μ is the humans’ natural mortality rate,
ΛSH is the growth function of susceptible humans, related to births, chosen to keep
the population constant, α is the disease induced mortality rate, γ is the recovery rate
from the infectious status and NH is the total number of human individuals in the
population in the home country, including those susceptibles that travel. Note that
transmission happens when an infected mosquito IM (t) bites a fraction SH (t)

NH
of the

susceptible humans with rate a. These bites result in new infections with probability
b.

Remark 2 In the above formulation (vector-transmitted disease), the state variables
are actually densities. To simplify the writing and reading, they were multiplied by a
small unitary area so that they become numbers. For this kind of models, the procedure
does not affect the results because at the end they will be a sum of the infection taking
place in all different areas (see “Appendix 2”).

The dynamics of the second subpopulation (travelers returning still susceptible) can
be described by a similar set of equations:

dST (t)

dt
= −ab

ST (t)

NH
IM (t) − μST (t) + ΛT (t)
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dIT (t)

dt
= ab

ST (t)

NH
IM (t) − (μ + α + γ ) IT (t)

dRT (t)

dt
= γ IT (t) − μRT (t),

NT (t) = ST (t) + IT (t) + RT (t)

ST (0) = IT (0) = RT (0) = 0, (2)

whereΛT = σ
∗
ST (see below) is the growth function of ST , that is the rate (migration)

at which travelers come back home still susceptible (it is worth noting that these indi-
viduals can acquire the infection after their return home and will eventually recover).

Let us now consider the subpopulation that acquires the infection abroad. Let
∗
ST be

the number of susceptible travelers in the endemic country at a given timebetween t and
t+dt . They can return home still susceptible at a rate σ , acquire the infection abroad at
a rate λL (assumed to be constant because it is an endemic situation and, therefore, is

at equilibrium) or die at a rate μ. Then, if
∗
ST (0) is the number of susceptible travelers

that arrived at the visited endemic country at time t = 0 (an arbitrary date of the year),

∗
ST (t) = ∗

ST (0)e−(λL+σ+μ)t . (3)

Remark 3 The force of infection λL for such a vector-borne infection is defined as

λL = aLbL IML

NHL

,

where aL , bL , IML and NHL are, respectively, the local (that is, in the visited country)
mosquitoes’ biting rate, the probability of infection of susceptible humans bitten by
infected mosquitoes, the local number of infected mosquitoes and the local humans
residents. The number of visitors should be added to NHL but is neglected here because
it is tinny compared to NHL and does not contribute significantly to the local force of
infection. Additionally, since IML and NHL are densities they are both multiplied by
ΔA (that cancels out), for taking into account the limited area visited in the endemic
country.

The number of susceptible travelers returned home at a time between t ′ and t ′ +dt ′
is

ST (t ′) = σ
∗
ST (t ′).

Then, at a time t (t < t ′), the number of these travelers, in the absence of infection,
is

ST (t, t ′) = σ
∗
ST (t ′)e−μ(t−t ′) (4)

and inserting Eq. (3) into (4) gives:

ST (t, t ′) = σ
∗
ST (0)e−(λL+σ)t ′−μt . (5)
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Further integration of Eq. (5) for all t ′ < t gives the number of susceptible travelers
that returned home still susceptible up to time t , ST (t):

ST (t) = σ
∗
ST (0)e−μt

∫ t

0
dt ′e−(λL+σ)t ′

= σ
∗
ST (0)

λL + σ

[
e−μt − e−(λL+σ+μ)t

]
. (6)

For completeness, note that differentiation of Eq. (6) recover the first equation of
system (2), showing that:

ΛT (t) = σ
∗
ST (t). (7)

Given the above equations,
∗
I T , the number of infected travelers that acquired the

infection at any time τ < t ′, returned to their home country at time t ′ < t and are still
infectious at time t can be calculated.

The number of travelers, at time t , that acquired the infection between τ and τ +dτ
and have not returned home yet, is given by:

∗
I T (t, τ ) = ∗

I T (τ, τ )e−(γ+σ ′+μ+α)(t−τ) (τ < t), (8)

where γ is the recovery rate of the disease, σ ′ is the rate at which infected travelers

return to their home country, and α is the disease-specific mortality rate.
∗
I T (τ, τ ) is

given by:
∗
I T (τ, τ ) = λL

∗
ST (τ ) = λL ST (0)e−(λL+σ+μ)τ (9)

and ∗
IT (t, τ ) = λL

∗
ST (0)e−(λL+σ ′+μ+α)t−(λL+σ−σ ′−γ−α)τ . (10)

From Eq. (10)
∗∗
IT (t, t ′, τ ), the number of individuals that acquired the infection

between τ and τ + dτ , returned to their home country between t ′and t ′ + dt ′ and are
still infectious at time t is given by:

∗∗
IT (t, t ′, τ ) = ∗

I T (t ′, t ′, τ )e−(γ+μ+α)(t−t ′) (τ < t ′ < t). (11)

Again,

∗∗
IT (t ′, t ′, τ ) = σ ′ ∗I T (t ′, τ ) = σ ′λL ST (0)e−(λL+σ+μ)t ′−(λL+σ−σ ′−γ−α)τ (12)

and,
∗∗
IT (t, t ′, τ ) = σ ′λL ST (0)e−(γ+μ+α)t−σ ′t ′−(λL+σ−σ ′−γ−α)τ . (13)
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Finally,
∗∗
IT (t) can be calculated by integrating Eq. (13) for τ from 0 to t ′ and t ′

from 0 to t :

∗∗
IT (t) = λL ST (0)

λL + σ − σ ′ − γ − α
e−(γ+μ+α)t

[
1 − e−σ ′t

]

− λLσ ′ST (0)

(λL + σ − σ ′ − γ − α)(λL + σ − γ − α)
e−(γ+μ+α)t

[
1 − e−(λL+σ−γ−α)t

]
.

(14)

Those individuals
∗∗
IT (t) that are still infectiouswhen returning to their home country

will be the ones that may introduce the infection in the disease-free country.

No expressions were derived for
∗
RT ,

∗∗
RT and

∗∗∗
R T because the model assumptions

imply that these classes would not influence the importation related disease dynamics.
Finally, the dynamics of the vector population following the disease introduction

by infected (returning) travelers can be described by the following set of equations:

dSM (t)

dt
= −acSM

(IH + IT + ∗∗
IT )

NH
− μMSM + ΛM

dLM (t)

dt
= acSM

(IH + IT + ∗∗
IT )

NH
− (μM + δM )LM

dIM (t)

dt
= δMLM − μM IM , (15)

where a is the vector’s biting rate, c is the probability of infection from one infectious
human to a susceptible vector, μM is the vector natural mortality rate, ΛM is the rate
of growth of susceptible vectors and δM is the inverse of the latency period of the
infection in the vectors. Again, vectors can be infected by any or all of the infectious

humans, IH , IT and
∗∗
IT .

2.1.5 Exemplifying the Importation Model with the Potential Risk of Dengue
Introduction into Europe

The risk of dengue introduction into some European countries is causing great concern
among local health authorities.With the increasing number of tourists visiting endemic
countries, the climatic changes observed around the world (which favors dengue trans-
mission in both endemic and disease-free countries) and the already detected presence
of potential vectors in some European countries, the introduction and maintenance of
autochthonous dengue transmission is indeed a possibility. Therefore, new techniques
to quantify the number of expected infected individuals returning fromdengue infected
countries is important in order to provide decision makers tools to estimate the risk
of dengue importation. In this section the expected number of travelers importing the
disease from visited countries is calculated using the model described above.
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Fig. 3 Numerical simulation of the incidence (λL (t)SH (t)) with parameters fitted to retrieve the actual
data (continuous line) as compared with actual number of reported dengue cases (dots) averaged over a
long period of time for the Thailand dengue data described in Massad and Wilder-Smith (2009)

In the majority of endemic countries, reported dengue incidence has observable
seasonal trends with peaks in the warmer wet seasons and troughs in the dryer cool
seasons. The force of infection in those countries therefore presents an important time
dependence throughout the year. In fact, seasonality is dependent on temperature but,
as the seasonal temperature variations recur cyclically, we assumed a time dependence
as a proxy for the temperature variation.

As an example, consider a European country where Aedes mosquitoes are present,
but the basic reproduction number of dengue is less than 1. Consider also the dengue
(surveillance) data from Thailand for the “visited country”. As described in Massad
and Wilder-Smith (2009), an expression for the time-dependent force of infection in
Thailand can be obtained by fitting a bell-shaped function to the available incidence
data as shown in Fig. 3 (see “Appendix 1” for details).

Remark 4 For completeness, note that as displayed in Fig. 3, the long-term average
number of cases peak around the seventh month of the year, which corresponds to the
month of July. Figure 4 shows that the month of June, corresponding to the period
of highest temperature in Thailand, precedes the peak of simulated dengue incidence
shown in Fig. 5 (Massad and Wilder-Smith 2009). This is due to the time necessary
to mount up enough quantity of infected mosquitoes.

With those data, the equations for the susceptible travelers ST (t),
∗
ST (t) and ΛT

read:
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Fig. 4 Monthly average temperature in Thailand (oC). Data from http://www.selectiveasia.com/
thailand-holidays/weather, accessed in 16th January 2015

∗
ST (t) = ∗

ST (0) exp

[
−

∫ t

0
λL(s)ds

]
e−(σ+μ)t , (16)

ST (t) = σ
∗
ST (0)e−μt

λL(t) + σ

[
1 − eσ t+∫ t

0 λL (s)ds
]

(17)

and

ΛT = σ
∗
ST (t) = ∗

σ ST (0) exp

[
−

∫ t

0
λL(s)ds

]
e−(σ+μ)t . (18)

The equation for travelers that return still infectious to their home country is given
by:

∗∗
I T (t) = σ ′ST (0)e−(γ+μ+α)t

×
∫ t

0
dt ′e−σ ′t

∫ t ′

0
dτλL(τ )e− ∫ τ

0 λL (s)ds−(σ−σ ′−γ−α)τ . (19)

Simulation of the model with the parameters that resulted from the curve fitting
shown in Fig. 3 gives the results shown in Fig. 5. It displays the variation in the number
of non-infected susceptible mosquitoes (SM ) and infective mosquitoes (IM ) along the
year.

Remark 5 Tomake comparable temporal visualization possible, the two lines of Fig. 5
are not in the same scale on the y-axis, rather IM was multiplied by 2000. Notably,
both the number of infective mosquitoes and the force of infection (not shown) peak
between the months of July and August in Thailand.

Suppose that a cohort of Europeans travel to Thailand in August (holiday month in
much of Europe) and remain an average of 15 days there. Suppose also that they are
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Fig. 5 Numerical simulation for the dynamics across the year in the number of non-infected susceptible
mosquitoes (SM ) and infective mosquitoes (IM ) along the year for the Thai data. The number of infective
mosquitoes was multiplied by 2000 to be visible in the same scale as the susceptible mosquitoes (Color
figure online)

subject to the same force of infection (λL ) as the local Thai residents. Assuming a
negligible dengue mortality and using the same parameters from Fig. 3 for λL in Eq.
(19), the model gives an estimated relative morbidity of around 3 individuals per 1000
travelers returning infected to their home country. This is in close agreement with the
results obtained by Massad and Wilder-Smith (2009).

Assuming the travelers home country has a sufficiently high density of Aedes
mosquitoes, an outbreak can occur. If the dengue Basic Reproduction Number, R0
is approximately 0.3 for that country and the number of travelers visiting Thailand
during summer is 10,000, the expected number of individuals returning still infectious
is 30 and they will generate 9 autochthonous secondary dengue cases. “Appendix 1”
shows a more detailed description of this analysis.

Remark 6 The above calculation assumed that all returning infectious travelers arrive
at their home country homogeneously distributed, that is, all the susceptible local
inhabitants had the same probability of being infected by them.

2.2 Exportation of Infection

This section considers the case of travelers from an endemic country visiting a disease-
free country, some of them arriving to the visited country possibly infective (exporting
the infection). Once arriving to the visited disease-free country, those infective visitors
may trigger an outbreak that can or cannot establish itself depending on the value of
the Basic Reproduction Number R0 of the infection being greater or lesser than one.

The case of disease exportation is simpler, from the modeling point of view, than
the infection importation explained above. The basic difference is that in the latter,
visitors return infective to their home country, whereas in the former, visitors depart
from their endemic home country in a latent state. This latter assumption is based on
the conjecture that infective and symptomatic individuals do not travel. Their disease
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will manifest itself either during the voyage or after arrival to the visited disease-free
country.

Another important difference between the disease importation and exportationmod-
els is that in the former, the key parameterwas the force of infection of the disease in the
visited endemic country, whereas in the latter the key parameter is the latency duration
of the disease. In terms of the modeling, in the disease importation case, latency is not
too important and the model considers only susceptible, infected and removed indi-
viduals. Hence, the number of new cases per unit of time corresponds to the infection
incidence, denoted λL(t)SH (t). In the case of disease exportation, however, latency is
important because it is assumed that infected and symptomatic individuals are either
so sick that they do not manage to travel or are prohibited of doing so. In a SE I R
(Susceptible-Exposed-Infective-Recovered) type of model (Anderson andMay 1991),
the disease dynamics is described by the following set of equations:

dSH (t)

dt
= −βSH

IH
NH

− μH SH + ΛH

dEH (t)

dt
= βSH

IH
NH

− (μH + δH )EH

dIH (t)

dt
= δH EH − (μH + αH + γH )IH

dRH (t)

dt
= γH IH − μH RH (t), (20)

where β is the potentially infective contact rate, δH is the inverse of the incubation
(or latency) period, γH is the duration of infectiousness and μH and αH as above. For
exportations, our interest is the prevalence of latent infections in the local population,
from which, some individuals will travel already infected but not yet symptomatic.

Integration of the third equation of system (20) gives the disease prevalence in the
population:

IH (t) = IH (0)e−(μH+αH+γH )t +
∫ t

0
δH EH (t ′)e(μH+αH+γH )t ′dt ′. (21)

Dividing IH (t) by the size of the local population, NH , gives the relative prevalence
of infectious individuals, pI (t):

pI (t) = IH (t)

NH
= pI (0)e

−(μH+αH+γH )t + 1

NH

∫ t

0
δH EH (t ′)e(μH+αH+γH )t ′dt ′.

(22)
Integrating the second equationof (20) yields the followingquantity EH (t), exposed

or latent individuals:

EH (t) = EH (0)e−(μH+δH )t +
∫ t

0
βSH

IH (t ′)
NH

e(μH+δH )t ′dt ′. (23)
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Dividing EH (t) by the total population NH yields the prevalence of infected but
not yet infectious individuals in the home country as follows:

pE (t) = EH (t)

NH
= pE (0)e−(μH+δH )t + 1

NH

∫ t

0
βSH

IH (t ′)
NH

e(μH+δH )t ′dt ′. (24)

Multiplying the number of visitors to a given disease-free country by the preva-
lence of latent individuals, pE (t) and by the prevalence of infected individuals, pI (t),
generates the number of infected visitors or of infections exportation.

To obtain this prevalence, the force of infection of the disease in this endemic
region is a necessary input variable. Unfortunately, the best information normally
available is the notification rate of infectious individuals δH EH , provided by disease
surveillance systems. Next section shows one possible way out to circumvent this
limitation and illustrates an actual case of a recent disease outbreak that is spreading
itself for previously disease-free countries, namely, the Ebola epidemic inWest Africa.

2.2.1 Exemplifying the Theory with Ebola Exportation to Disease-Free Countries

As of December 17, 2014, the Ebola outbreak had already affected 18,603 people
in some countries of West Africa, with 6,915 confirmed fatalities (WHO 2014). A
few cases have already reached previously unaffected countries, like the USA and
Spain. A few cases have already reached previously unaffected countries outside of
the African continent, including the USA and Spain. Although some West African
countries with infections early this year have already been declared free of disease,
the Ebola epidemic continues to wreak havoc in Liberia, Guinea, and Sierra Leone.

The current Ebola outbreak in West Africa is used to illustrate the exportation
model. The theory is applied in Liberia, one of the worst affected countries in terms
of number of cases and deaths.

Figure 6 shows the fitting of a continuous function to the weekly incidence of
symptomatic cases in Liberia. It is again assumed that this corresponds to the number
of new symptomatic cases per week, which in terms of model (20) is denoted δH EH .
The fitted equation takes the following form:

δH EH (t) = κ1sech
2(κ2t + κ3), (25)

where κi (i = 1, 2, 3) are the fitting parameters. Figure 6 shows the fitted curve (con-
tinuous line) with the observed cases reported in Liberia each week in 2014 (dots).

Note that Eq. (25) fits the Liberian Ebola cases very well. If Eq. (25) is inserted into
Eq. (21), the Ebola prevalence at each instant of time IH (t) is obtained. Figure 7, shows
plots of the incidence and the prevalence of Ebola in Liberia in 2014 as generated by
the model.

It is possible, in principle, to fit the parameters of system (20) in order to retrieve
the prevalence curve (blue line) of Fig. 8. The parameters then can be used to estimate
the number and the prevalence of latents (Eqs. (23) and (24)). Alternatively, taken
the Ebola latency period of three weeks (that is δH � 1

3 weeks−1), EH (t) can be
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Fig. 6 Quality of the fitting of the model (continuous line) with the observed cases reported in Liberia each
week in 2014 (dots). Data from WHO (2014)

Fig. 7 Incidence (new cases per week, red line, the same as in Fig. 6) and the prevalence (blue line) of
Ebola in Liberia in 2014 as generated by the disease exportation model (Color figure online)

calculated by simply dividing Eq. (25) by δH , that is,

EH (t) = κ1sech2(κ2t + κ3)

δH
, (26)

from which it is possible to estimate the prevalence of latents in the population:

pE (t) = κ1sech2(κ2t + κ3)

δH NH
. (27)

The result for the case of Ebola in Liberia is shown in Fig. 8.
In an example cohort of travelers that depart from Liberia at week 15, the relative

number of latent individuals carrying the Ebola virus is of 0.3 individuals per 1000
travelers.
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Fig. 8 Result of the numerical simulation based on Eq. (25) showing the expected number of latent
individuals per 1000 travelers from Liberia. Data from WHO (2014) (Color figure online)

3 Discussion

This paper is an attempt to calculate the exact risk of infections importation and expor-
tation by travelers. It proposes a model taking into account the force of infection of the
disease in the endemic country, which can either be a visited country (source of infec-
tion importation) or a country from where local residents export the infection when
traveling in the latent condition to disease-free countries. The model is deterministic
but a preliminary stochastic formulation is presented in “Appendix 2”. It assumes that,
in the case of disease importation, travelers are subject to the same risk of infection as
local residents. In the case of disease exportation, the model considers the probability
that a latent individual travels to a disease-free country. The model is exemplified
by two distinct situations, namely, the risk of dengue importation from Thailand to
Europe and the risk of Ebola exportation from Liberia to the USA. The model can
also be applied to other cases as, for instance, that of Yellow Fever in Brazil (Massad
et al. 2005b).

Since themodel considers the key components of the natural history of the infections
and the risk of disease importation/exportation, it differs from previous attempts to
estimate the risk of disease introduction into infection-free countries by travelers. The
latter attempts take into account only the volume of airline travel to and from source
countries, without considering the risk of acquiring the infection (e.g. Khan et al.
2009). A recent exception is the model by Gomes et al. (2014) which considers the
disease dynamics for estimating the spreading risk of Ebola by international travel.

Although the main purpose of this paper is to provide a theoretical framework
for the estimation of the spreading risk of infectious diseases, the examples provided
demonstrate that the model can be applied for real setting of eminent risk of diseases
importation/exportation. This is encouraging in the sense that the model may repre-
sent a significant step forward in the readiness for disease-free countries to deal with
infections previously exotic to their environment. It is important, however, to point
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out some limitations of the model. Firstly, and mostly, the model heavily depends
on the estimation of local dynamics of the infections at risk of being spread to other
parts of the world. Secondly, it depends on the estimation of the parameters related to
transmission in the host country. For instance, in the case of a vector-borne infection,
it is central to know (or at least to have a reasonable estimate) of the vectors’ density
and biting habits in the host country. Thirdly, the deterministic nature of the main
models does not allow estimation of many uncertainties related to parameter estima-
tion among others. As shown in “Appendix 2” a stochastic framework would allow the
calculation of the probability of a given number of infected travelers returning infected
to their home-countries. The simple model presented in the appendix was intended
to exemplify an alternative approach. Finally, the sheer number of people traveling to
and from endemic areas, which have been the priority of previous works on this area,
is also a necessary component to be included in the calculation of the risk of spreading
of exotic infections.

Much work still remains to be done in this area, and we hope that this paper may
represent an initial step into the desired direction of reliable estimations of spreading
risk of infections by travelers to and from source countries. The development of a fully
stochastic model, in the line of the one presented in the appendix, should be a priority
in the development of risk assessment models for diseases spread by travelers around
the world (Leder et al. 2008).
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Appendix 1

This appendix explains the steps taken to estimate the risk of dengue infection for trav-
elers visiting Thailand. Table 2 shows the monthly average of dengue cases reported
in Thailand in the period from 1999–2006, as described in Massad et al. (2013).

A continuous curve con be fitted to the above data, for instance:

λ(t)S(t) = κ1 sec h
2(κ2t + κ3) (28)

The parameters that best fitted the above data are:

κ1 = 11417.60

κ2 = 0.35

κ3 = 2.47

Figure 3 in the main text shows the resulting fit. The average force of infection, λ(t)
for the period considered is obtained by dividing Eq. 28 by the estimated number of
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Table 2 Dengue in Thailand
1999–2006

Month Average number of cases

January 1897

February 1863

March 2732

April 3386

May 6373

June 10592

July 11886

August 10005

September 6804

October 4476

November 3096

December 1895

Fig. 9 The average force of infection, λ(t), for Thailand in the period considered

susceptible individuals, S(t), in Thailand, namely 40 million people (approximately
60% of the entire population Massad et al. (2013)), shown in Fig. 9.

The individual risk of dengue infection for travelers visiting Thailand is calculated
with equation:

∗∗
I T (t) = σ ′ST (0)e−(γ+μ+α)t

×
∫ t

0
dt ′e−σ ′t

∫ t ′

0
dτλL(τ )e− ∫ τ

0 λL (s)ds−(σ−σ ′−γ−α)τ . (29)
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Table 3 Parameters used for
the above calculations

Parameter Value

a 1.15 days−1

b 0.09

c 0.09

μH 6.08 × 10−5 days−1

α 0.01 days−1

τ 7 days

γ 0.14 days−1

μM 0.1 days−1

which is equation 19 of the main text.
Assuming a cohort of Europeans visiting Thailand in August (holiday month in

much of Europe and summer in Thailand) and remaining there an average of 15days,
the individual risk of acquiring dengue and returning still infectious to their home
country is equal to 0.0023 (roughly 2–3 cases per one thousand travelers). If the
travelers home country has a sufficiently high density of aedes mosquitoes an outbreak
is expected. Assuming 10,000 travelers visiting Thailand during summer, a Basic
Reproductive Number, R0, of 0.3 for their home country, and using models (1) and
(15) of the main text, with parameters as in Table 3, results in an expected number of
30 individuals returning infected and generating 9 autochthonous secondary dengue
cases.

Appendix 2

In this appendix it is derived a stochastic formulation of the disease importation model
to calculate the average number of visitors from a disease-free country that visit an
endemic country and returns infective. In order to avoid extremely complex equations,
this stochastic model is a simplified version of the complete problem, takingμ = α =
γ = 0, ST (0) = NT and σ = σ ′.

As in the deterministic model, susceptible travelers SH (t) arrive at the visited
country at time t = 0. These individuals can either get the infection, with rate λL , or
return to their home country with rate σ . In the stochastic formulation, the number
of individuals in the susceptible state are denoted x ; those in the infective state are
denoted y; and those that return infected are denoted z. Finally, it is assumed that
transitions between the states occur one at a time. The transitions between the states
are assumed to occur according to:

x, y, z → x, y, z : [1 − σ xΔt − λL xΔt−
σ yΔt]

x + 1, y, z → x, y, z σ(x + 1)Δt
x + 1, y − 1, z → x, y, z λL(x + 1)Δt
x, y + 1, z − 1 → x, y, z σ(y + 1)Δt

(30)
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The joint probability of having x susceptible, y infective and z infected that returned
home individuals in the period between t and t + Δt is:

Px,y,z (t + Δt) = [1 − σ xΔt − λL xΔt − σ yΔt] Px,y,z (t)

+σ(x + 1)Δt Px+1,y,z (t) + λL(x + 1)Δt Px+1,y−1,z (t)

+σ(y + 1)Δt Px,y+1,z (t) (31)

Remark 7 It is important to note that Eq. (31) is linear. This is so because the force
of infection in the visited country does not depend on the visitors. They are in small
number and remain in the visited country for a very short period of time.

From Eq. (31), it is possible to derive a Kolmogorov Forward equation for the model:

dPx,y,z (t)

dt
= −(σ + λL)x Px,y,z (t) − σ yPx,y,z (t) −

+ σ(x + 1)Px+1,y,z (t) + λL(x + 1)Px+1,y−1,z (t)

+ σ(y + 1)Px,y−1,z (t) . (32)

The general expression for the Probability Generating Function (PGF), G(u, v,

w, t), is given by:

G(u, v, w, t) =
N∑

x=0

N∑

y=0

N∑

z=0

uxvyzwPx,y,z (t) . (33)

Taking the first derivative of (33) with respect to time gives:

∂G(u, v, w, t)

∂t
= −(σ + λL)

∑

x,y,z

xuxvyzwPx,y,z (t)

−σ
∑

x,y,z

yuxvyzwPx,y,z (t)

+ σ
∑

x,y,z

(x + 1)uxvyzwPx+1,y,z (t)

+ λL

∑

x,y,z

(x + 1)uxvyzwPx+1,y−1,z (t)

+ σ
∑

x,y,z

(y + 1)uxvyzwPx,y+1,z+1 (t) (34)
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which is equal to:

∂G(u, v, w, t)

∂t
= −(σ + λL)u

∂G(u, v, w, t)

∂u

−σv
∂G(u, v, w, t)

∂v

+ σ
∂G(u, v, w, t)

∂u

+ λLv
∂G(u, v, w, t)

∂u

+ σw
∂G(u, v, w, t)

∂v
(35)

or:

∂G(u, v, w, t)

∂t
= [σ(1 − u) + λL(v − u)]

∂G(u, v, w, t)

∂u

+ [σ(w − v)]
∂G(u, v, w, t)

∂v
(36)

Using the method of Lagrange (Cox and Miller 1965):

1© 2© 3© 4©
dt
1 = du

[σ(u−1) + λL (u−v)]
dv

[σ(v−w)]
dG(u,v,w)

0
(37)

Now, from 4©: G = α1 = constant;
from 1© = 3©: v = 1 + α2 exp(σ t), α3 = constant; and
from 1© = 2©:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = 1 + λLα2
σ+λL

+ α3 exp(σ t)+
α4 exp [(σ + λL)t] ,

where

α4 =
[
u − 1 − (w−1)λL

σ+λL
− λL (v−w)

λL

]
exp [−(σ + λL)t]

(38)

Therefore,

G(u, v, w, t) =
{
1 + λL

σ + λL
(w − 1)

+ (v − w) exp(−σ t)

+
[
u − 1 − (w − 1)λL

σ + λL
− (v − w)

]

× exp [−(σ + λL)t]}NT (39)

The average number of travelers that return to their home country infective is〈∗
I H (t)

〉
, which is the first derivative of the PGF (39) with respect to w, calculated at
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u = v = w = 1, ∂G(u,v,w,t)
∂w

∣
∣∣
u=1,v=1,w=1

, that is,

〈∗
I H (t)

〉
= NT

{[
1 − e−σ t ] − λL

σ + λL

[
1 − e−(λL+σ)t

]}
, (40)

which is the stochastic equivalent to Eq. (14) of the main text when μ = α = γ = 0,
ST (0) = NT and σ = σ ′.

Alternatively it can be asked: what is the probability that at least one infected indi-
vidual return infected to her/his home country at time t . The answer is 1 -Px,y,z=0 (t),
the complement to the probability that no individual return infected, where

∑

x,y

Px,NT −x,o(t) = G(u = 1, v = 1, w = 0, t). (41)

From Eq. (39), with u = 1, v = 1, w = 0,

Px,NT −x,o(t) =
{
1 − λL

λL + σ
+ e−σ t

[
1 − σ

λL + σ
e−λL t

]}NT

. (42)

Then 1 − Px,y,z=0 (t), the probability of at least one individual returning infected
to her home country at time t , is:

1 − Px,y,z=0 (t) = 1 −
{
1 − λL

λL + σ
+ e−σ t

[
1 − σ

λL + σ
e−λL t

]}NT

. (43)

When t → ∞, the above equation converges to

1 − Px,y,z=0 (∞) = 1 −
{
1 − λL

λL + σ

}NT

(44)

Note that, when t = 0 the probability that at least one infected traveller returns
infected to her/his home country is zero.

A more complete version of this simple stochastic model, equivalent to the deter-
ministic model for disease importation will be presented in a future work.
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