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Abstract Based upon the simulation of the stochastic
process of infection, onset and spreading of each SARS pl­

tient, a system dynamic model of SRAS spreading is con­
structed. Data from Vietnam is taken as an example for
Monte Carlo test. The preliminary results indicate that the
time-dependent infection rate is the most inportant control
factor for SARS spreading. The model can be applied to
prediction of the course with fluctuations of the epidemics, if
the previous history of the epidemics and the future infection
rate under control measures are known.
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It is an important topic for the research to establish
the dynamic model of SARS spreading, to understand the
characteristics and control factors, and to make predic­
tions of the course of the epidemics. Most dynamic epi­
demic models in Chinese study are following the classic
work of Anderson and Mal], by construction and analy­
sis of the epidemic differential equations[2-11]. Interna­
tionally, in addition to this kind of deterministic mod­
els[12-14], stochastic models[15] consist of another kind of
work, either by consideration of random processes in the
corresponding differential equations[16-18], or by perform­
ing Markov chain and Monte Carlo simulation[19]. For
epidemics of SARS, which has only a small number of
tens to thousands patients in a region, and consists of a
very small percentage of the entire susceptible population,
a stochastic model is probably more appropriate[15,18]. So
far, two epidemic models on SARS have been pub­
lished[2o,21], which all adopted the stochastic approach
with a benefit recognized that the modeling parameters
can be easily adjusted during the evolution of epidem­
ics[22] .

On one hand, epidemic equations can be applied not
only to epidemics study itself, but also to other kind of
social and natural scientific problems, such as biological
group distribution, spreading of new technology, spread­
ing of rumors in society, etc.[23,24]. On the other hand, sci­
entific methods from other research areas can be made use
of for epidemiology. A suggestive case comes from fluid
dynamics: the fluid motion can be studied macroscopi­
cally by the partial differential equations of conservation
of mass, moment and energy; it can also be studied by
tracing the motion, collision, and interaction of all the
molecules, and approach the overall behavior by averag­
ing their effects. The latter method as molecular dynamics
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became tractable only after the development of advanced
computers, which provide the technique possibility of
calculating and tracing the motion of a large amount of
molecules. In this study, we propose a stochastic model
for SARS spreading by tracing the chain of infection of
each patient and analyze the Vietnam case as an example.
The methodology is similar to the molecular dynamics
tracing every molecule to understand the macroscopic
system, and the mathematic tools used is the point process
similar to the stochastic model we used in the earthquake
sequence analysis[25].

1 Model

In a preliminary form of SARS model, the spatial
spreading and distribution can be neglected. We firstly
focused on the temporal epidemic evolution within a spe­
cific area. Assuming that a SARS patient is imported, he
will become infectious after the latent period. The latent
period is believed to range within 1-12 d. In the model, a
random parameter is assumed following the Poisson dis­
tribution. After the latent period, the patient becomes in­
fectious, the number of people infected is determined in
the computer by chance. Some infections may be traced
as a result of close one-to-one contact, some may be in­
fected in an indirect way (such as at the clinic of hospital,
or flaws in the sewage system like the Amoy Garden case
in Hong Kong). In any case, an averaged rate of direct or
indirect infection per patient per day can be obtained, and
their summation is the average infection rate for each pa­
tient. Because the distribution of infection rate is not yet
well known for SARS as a new disease, we assume it to
obey the Poisson distribution. The average infection rate
may change at different stages of sickness for patient, and
may change with social control measures taken. The
length of the infectious period and prognosis of patients

are all random variables. The infectious period may vary,
and recover or die according to the mortality rate. The
infection rate can be reduced by isolation measures. Some
patients may become infectious first and then be isolated,
some others may be quarantined first before they develop
the symptoms, both can be produced stochastically in the
model by computer. In summary, the latent period, date of
infectious unset, date of isolation, and date of recovery or
death, how many people newly infected each day for each
patient, all these can be produced by the computer sto­
chastically, stored in files, and updated every day of the
epidemics. Therefore, with the four parameters ( infection
rate, latent period, infectious period, and nmality rate)
known, it is possible to construct a simple dynamic model
of SARS spreading. If spatial spreading of SARS is to be
studied, it is necessary to add information on the spatial
structure of the model, the probability of flow of people
among different regions, and situation related infection
rate at different regions. The flow chart for computation is
shown in Fig. 1.

Among the four parameters, the latent period is not
affected by mankind, while the infection rate, length of
infectious period, and morality rate are all subjected to
changes produced by human measures. The morality rate
does not affect the spreading of SARS in the model. la­
tent period, as a parameter not affected by human beings,
does not vary significantly, and small changes of latent
period do not make significant effects on the results. In
Vietnam case, a one-day increase in the averaged latent
period can produce a 2% decrease of duration of epidem­
ics and 5% decrease in total number of patients. The dura­
tion of infectious period is reported to be about 10-14 d;
change of one day can produce less than 5% changes in
the results. Infection rate is the most important factor to
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Input initial values

DO 100 I~ I ,Im= (Cycle by day)

DO 200 J ~ I N total sick (Scan each infected oerson)

In infectious period or not?
No Yes

Compute number of newly infected person N will sick
DO 300K~I,N will sick

Construct infection file for each newly infected person, including
infonnation of region, infected by whom, infection date, latent
period, recover or death date, isolation date, etc. All these pro-
duced by computer stochastically.

Update N total sick

DO 400 J~ I, N total sick

Dailv statistics for oatients

DO 500J~ I, Nzone

Daily statistics for regions

DO 600I~ I Nzone

Final statistics

Fig. 1. Computational flow chart ofthe stochastic model ofSARS spreading.
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affect SARS spreading. Infection rate is influenced by
many factors. It is related to the course of the disease, for
example, it is reported that the patient is more infectious
from the 3rd to the 5th day of onset, and extremely infec­
tious to medical workers during the operation of trache­
otomia, but non-infectious in the latent period. The infec­
tion rate is also related to the population characteristics,
such as population of the susceptible group, type of con­
fluence as residential area, school and university, building
set, village, etc. Each type may have different infection
rates and control measures should be adjusted to fit the
local conditions. There are some factors which people can
control effectively to reduce the infection rate, such as
early detection of SARS patients, isolation of patients and
quarantine of close contactors to SARS patients, im­
provement of clinics to reduce cross infection, protection
of medical workers, etc. All these will be embodied in one
parameter: reduction of the infection rate.

Of course, in more realistic models, many other fac­
tors should be included, such as the susceptible people
may be divided into different groups, and each group may
have different infection rates[18], the recovered people may
get immunity for life or just temporarily. There may be
cases that the infected people do not become sick (or only
have very light symptoms), and they mayor may not be
infectious. To consider the spatial spreading of SARS, it is
necessary to construct a spatial structure of the model, to
include the rate of flow or mixing of population between
different regions, and the flow probability may vary re­
tween different types ofregions (such as city-city, city­
village), distances, means of transportation, time of sea­
sons, holidays, or panic run away people after announce­
ment of epidemics, etc. Although these factors are not
included in the present modeling, it is not difficult to con­
sider them in the future modeling.

2 Results

In the real world, mother nature produces a conse-
quence randomly by her own rules: in the model, com-
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9

8
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puter produces a result based on our understanding of the
natural rules.

Two points should be noted: first, a good model or
bad model is determined by the understanding of natural
rules, we can trust the model more if we know the rules
better. Second, even if the model is perfect in replication
of the natural rules, it does not mean that we can exactly
repeat the natural results. In the stochastic modeling, each
run only produces one of the possible results randomly.
The evaluation and use of the model should be based on
the average results of a large amount runs, i.e. the Monte
Carlo experiment. Only the average results can be com­
pared with observation quantitatively.

Taking the example of Hanoi, Vietnam (data from
WHO) as an example, Fig. 2 shows the actual daily re­
ports of new patients evolves with time by day. The dura­
tion of the epidemics lasted 45 d, and the total number of
patients infected is 62. Based on the present knowledge
on SARS, the parameters chosen in our stochastic model
are: the average latent period is 6.5 d, the average infec­
tious period is 12 d. The infection rate r is defined as the
number of people being infected per patient per day (unit:
d-1). It is found that the infection rate and its variation
with time are the major factor to affect the epidemics. In
this work, we made a great number of numerical tests, and
by try and error, we found out the best model parameters
to fit the constraints of duration of 45 d and accumulated
number of 62 patients. The infection rate chosen in the
final model is: before any control measures are taken, ro =

1.8 cr1, and among the 3rd to 5th days of sickness of the
patient, the rate is 5 times higher than the base value; after
control measures are taken, the average infection rate r is
chosen as 0.01 d-1, and between the 3rd and 5th days, the
rate is also 5 times higher as 0.05 d-1. The isolation meas­
ures are taken 7 d after the first patient is discovered.
Small changes in the infection rate may produce signifi­
cant changes in the results of modeling. In Vietnam case,
an increase of r from 0.01 to 0.015 after control measures
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Fig. 2. Daily variation of reported SARS cases in Hanoi, Vietnam (from WHO). n ~ 62.
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(49±15) d, and total number of patients is (6l±22), the peak
of daily reported cases appears on the (11 th ± 3) day, and
with a peak value of (8±2) cases, accumulated patients
reach (28±13) at this peak day. Fig. 4 shows the frequency
distribution of duration of epidemics and total cases re­
ported.

It is a problem of special interest that if such kind of
model can provide predictions on the epidemics while it is
going on. Assuming that on the 13th d, it is already known
that the peak of daily reported cases occurred on the 10th
day of 9 cases that day and accumulated cases of 16 up to
that day, considering the random fluctuations, we take
parts of the results of Monte Carlo tests, which satisfies the
constraints that the peak appears on the 9th to 12th my,
number of cases reported on the peak day is from 7 to 10
cases, and accumulated cases to the peak day ranges from
15 to 31 cases. Then we observe the subsequent evolution
of these series by Monte Carlo modeling. It is found that in
the circumstance that the first 12th days' data are known,
the conditional probability of subsequent devel- opment of
epidemics can be obtained. It is expected that the duration
of the epidemics would be (48 ± 13) d, and total number of
patients would reach (58±13). Comparing corresponding
predictions without knowing the 12th days' data: duration
of (49 ± 15) d and total pltients of (6l± 22). It is found
that there are only slight changes in the predicted value, but
the estimation of fluctuations has been improved, especially
the mean square deviation in the number of total patients
reduces significantly. Frequency distribution is shown in Fig.
5, for comparison, the scale of axes is the same as in Fig. 4.
The results suggest that as
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were taken can result in an increase of 25% or more in the
duration of epidemics and total number of patients.

Fig. 3 shows some typical results as examples of the
model. The abscissa is time in day, the ordinate is the
number of cases reported each day. Fig. 3(a)-(c) are some
typical results similar to the actual case. Fig. 3(a) lasts 44 d
of epidemics, infected 59 patients in total; Fig. 3(b) and
(c) both last 44 d, and totally infected 67 patients. However,
both the duration and the total number of patients may
fluctuate significantly. In Fig. 3(d), the duration is 58 d and
total number of patients reaches 105. In Fig. 3(e), total
number of patients is only 34 within a duration of 31 d. Fig.
3(f) has a duration as long as 102 d, although the total in­
fection is only 42 patients.

All these cases indicate some common features: i)
Infected patients increase dramatically without control
measures; ii) control measures show their effect not
immediately, but with delays, the cases of SARS patients
still increase and reach a peak a few days later because of
onset of previously infected patients after the latent period;
iii) effect of control measures will show up a few days
later, and reported cases of SARS can reduce rapidly; iv )
random fluctuations are likely to appear in the final stage,
and keep the duration ofepidemics longer.

These figures also show that fluctuations among dif­
ferent runs of the model can be significant, therefore, in
order to understand the overall feature, a lot of test runs
have to be carried on, and the averaged results should be
used for comparison with observations. We made Monte
Carlo tests, and based on 1000 times experiments, it is ob­
tained from the model that duration of the epidemics is
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Fig. 3. Some typical examples ofthe stochastic SARS model.
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Fig. 4. Results of Monte Carlo tests. (a) Frequency distribution of duration ofthe epidemics; (b) frequency distribution of number of to­
tal SARS patients.
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Fig. 5. Monte Carlo tests in condition ofthe first 12 days' data is similar to the actual case ofVietnam. (a) Frequency distribution of du­
ration of the epidemics; (b) frequency distribution of the number of total SARS patients.

long as the infection rate at different stages can be esti­
mated reasonably, it is possible to make predictions on the
duration and total number of patients of the epidemics,
providing not only the mean values and most probable
values, but also the worst or best situations and the prob­
ability of appearance of these extremes. These can playa
significant role in fighting against SARS and taking social
and economical measures.

3 Discussions and conclusions

In epidemic models, a parameter called reproduction
index R, the average number of people being infected by a
patient, is considered to be critical. If it is greater than I at
the beginning of epidemics without precaution measures,
denoted as Ro > I, the epidemics will develop in determi­
nistic models, and develop at a non-zero probability in
stochastic models. If control measures are taken to reduce
R, and make R < I, the epidemics then can be controlled to
decalS]. In this study, the infection rate r, the number of
people infected per patient per day, provides detailed in­
formation of daily infection, and the summation of r for all
infectious days produces index R. In the discussion of Ri­
ley et al.[20], the infected people were divided into two

Chinese Science Bulletin Vol. 48 No. 13 July 2003

categories: the normal part of infection, and the su­
per-spreading event (SSE). A typical example of SSE was
that a SARS patient from Hong Kong infected 25 staff
members among the entire 26 staff members in the private
French Hospital in Hanoi, Vietnam[26]. Dye and Gay22]

suggested that it is immature to conclude either infections
can be divided into two categories as normal events and
SSEs, or the so called SSE is just the long tail of a skewed
distribution of infection. In this study, it is shown that a
unified distribution including both normal events and the
so-called SSEs can work well. The so-called su­
per-spreaders just make the average infection rate higher.
However, it is worthwhile to try more complex models in
future study.

Reducing the infection rate is most important for
stopping the spreading of SARS. Early control to reduce
infection rate is of top priority. Numerical experiments
indicate that the total case in Vietnam is only 62 because
they took strict control measures to reduce the infection
rate 7 d after the first case of SARS. If the measures are
taken one month after the first case of SARS, at reasonable
similar parameters, the total cases would be increased to
about 1000; if measures are taken 45 d after the first case,
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the total cases would reach nearly 3000; and if measures
are taken 60 d after the first case, the total number of pa­
tients would jump to nearly 9000.

This report is just to provide a test of the suggested
methodology of our SARS model, which emphasizes the
use of the state of art computation ability to trace infection
of each patient and construct a stochastic model for SARS
spreading. This model is somehow similar to the Markov
chain and Monte Carlo method in the previous studies[19],
but it is more flexible to model various complexities. The
preliminary test of the example of Vietnam shows the fea­
sibility of this attempt. The model can simulate not only
the different stages of SARS spreading (the accelerating
stage at first, the delayed appearance of peak infection, the
rapid but fluctuated decay under effective control), but also
provide quantitative estimation of the duration of epidem­
ics and total number of patients under given model pa­
rameters. During the epidemics, if the leading part has
become known, it is possible to apply the model for pre­
diction of subsequent evolution of the epidemics. In prac­
tical forecast, it is noted that an oversimplified model has
no practical values, while an over complex model cannot
obtain enough epidemic data to constrain the parameters.
Therefore, a trade-off has to be made[19]. This work is pre­
liminary, it needs to collect the detailed data of SARS epi­
demics and make use of the special capability of tracing
every patient in this model, with in-depth comparison of the
observation and stochastic modeling, it is possible to ce­
velop the present model to contain new findings and details
on SARS research as well as the spatial spreading process.
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