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Abstract Outbreaks of infectious diseases, such as pandemics, can result in adverse

consequences and major economic losses across various economic sectors. Based on

findings from the 2009 A H1N1 pandemic in the National Capital Region (NCR), this

paper presents a recovery analysis for workforce disruptions using economic input–output

modeling. The model formulation takes into consideration the dynamic interdependencies

across sectors in an economic system in addition to the inherent characteristics of the

economic sectors. From a macroeconomic perspective, the risk of the influenza disaster can

be modeled using two risk metrics. First, there is the level of inoperability, which repre-

sents the percentage difference between the ideal production level and the degraded pro-

duction level. Second, the economic loss metric represents the financial value associated

with the reduced output. The contribution of this work revolves around the modeling of

uncertainties triggered by new perturbations to interdependent economic sectors within an

influenza pandemic timeline. We model the level of inoperability of economic sectors

throughout their recovery horizon from the initial outbreak of the disaster using a dynamic

model. Moreover, we use the level of inoperability values to quantify the cumulative

economic losses incurred by the sectors within the recovery horizon. Finally, we revisit the

2009 NCR pandemic scenario to demonstrate the use of uncertainty analysis in modeling

the inoperability and economic loss behaviors due to time-varying perturbations and their

associated ripple effects to interdependent economic sectors.
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1 Introduction and background

Disasters can have devastating effects on physical and economic systems. Specifically,

infectious biological disasters, whether they are natural (e.g., SARS, influenza pandemics,

and other recent disease outbreaks) or man-made (e.g., bioterrorism), can have devastating

consequences if not managed properly (Hawryluck et al. 2005; Bartlett 2006). Seasonal

disease outbreaks are considered natural hazards that occur periodically based on data from

the Centers for Disease Control and Prevention (CDC 2014). In more severe cases, an

influenza pandemic disaster may render significant damage to the sectors of a given

regional economic network. In the wake of an influenza pandemic, workforce productivity

is highly impacted since employees are unable to come to work and opt to stay at home

either because they are sick or because they take care of other family members. Such

situation creates a state of dysfunctionality of economic systems since workforce is a

critical component to the creation of output for practically all economic sectors. The extent

of the impact of workforce disruption depends on the level of availability on the workforce.

Moreover, the inherent interdependencies may generate ripple effects across the economic

sectors. In an interdependent economic setting, some sectors rely on the output of other

sectors for ideal production. Therefore, a given sector in a dysfunctional state means that it

cannot meet its ideal production level and will fail to provide the necessary resources for

other sectors to meet their ideal production. Thus, the cascading effect of the influenza

pandemic will reduce the production of goods and services within the general economy.

Pandemic disaster risk analysis has gained increasing attention lately especially with the

recent outbreaks of infectious diseases, which resulted in significant disruptions and

considerable economic losses.

This research traces the impacts of influenza pandemic on economic sector workforce

by modeling and quantifying the level of dysfunctionality of workforce and associated

economic consequences. The current paper also tackles the modeling of new perturbations

within the recovery horizon of economic sectors. Any new disruptions may lead to either

the deterioration or improvement of the production levels of the economic sectors. Sector-

specific data and historical data on the influenza pandemic are utilized in an input–output-

based workforce recovery model to assess the different consequences of influenza across

the different economic sectors.

The study of disasters has been gaining a lot of attention and merit in recent years.

Several policies related to disaster risk management and emergency response have been

adopted to help avoid the devastating consequences from extreme events (Department of

Homeland Security 2008, 2009; President of the United States 2003, 2011). A disaster such

as influenza pandemic may have devastating effects on interdependent workforce sectors.

Therefore, it is important to understand the scope of the effects of pandemic on critical

economic systems. Influenza pandemics can be characterized using two parameters: attack

rate and basic reproduction number R0. The attack rate measures the proportion of people

who have contracted the virus in a given population. The basic reproduction number R0

measures the expected number of new individuals who contract the virus given their

contact with one infected individual (Germann et al. 2006). An influenza pandemic could

cause substantial reductions in the availability of workforce sectors due to their illness or

the necessity of providing care for other family members. Such scenario may lead to

economic disruptions across many regions and economic sectors. The extent of disruptions

depends on factors such as the percentage dependence of a sector on the workforce, as well

as the resilience of that sector. Also, sectors may be ranked differently in light of the two

risk metrics to be explored in subsequent sections of this paper, namely the level of
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inoperability and economic loss. It is also possible to encounter unexpected perturbations

throughout the recovery trajectory of the economic sectors. Therefore, it is essential to

model the adverse effects of pandemics given the significant losses that may be incurred by

such disasters. Results from such modeling effort serve to provide insights for developing

preparedness plans and risk mitigation strategies.

Several studies have explored the effect of disasters on interdependent economic sys-

tems. Akhtar and Santos (2013) studied workforce disruptions in the case of hurricanes.

Kujawski (2006) analyzed different phases of a disaster timeline and their relevance to

modeling the consequences to interdependent economic sectors. Resurreccion and Santos

(2011) investigated the efficacy of inventory policies on economic sectors using a dynamic

cross-prioritization plot (DCPP). Xu et al. (2011) implemented a supply-based dynamic

model to study the effect of disruptions to various economic sectors.

The number of individuals infected and the rate of infection depend on the severity of

the pandemic and the frequency of interactions across the affected population. Therefore, it

is difficult to model the trajectory of influenza infection in social settings. For a moderate

influenza epidemic, the urban area attack rate is estimated to be around 33 % (Chao et al.

2010). Ferguson et al. (2006) estimate that a moderate influenza with an attack rate of 28 %

would cause 55 % of the population to be infected, with a peak occurring after 60 days

after the onset of infection. Also, Ferguson et al. (2006) estimate that in the aftermath of an

influenza epidemic, more than a third of the infection is transmitted within the workplace

or the school. Other forms of transmission occur in the households or the community. Also,

a percentage workforce absenteeism of 9 % is reported with an average of 7 workdays lost

in the case of a moderate influenza. For a severe influenza pandemic, the worker absen-

teeism rate could vary from 10 to 40 % depending on the transmission rate and suscep-

tibility of the population (Ferguson et al. 2006). According to FluWorkLoss, a program

designed to estimate the workdays lost, a 35 % attack rate would likely result in 3.4 % total

workdays lost in a timespan of 56 days.

The H1N1 pandemic in 2009 affected many regions in the world, starting from North

America and spreading globally. It turned out to be more aggressive than the typical

seasonal influenza and caused hospitalizations of children and adults as well as people with

chronic conditions (World Health Organization 2010; Centers for Disease Control and

Prevention 2010; Centers for Disease Control and Prevention 2012). Halder et al. (2010)

estimate that the H1N1 influenza had an attack rate between 27 and 37 % with an average

of 32.5 %. Also, the influenza pandemic reached its peak within 45 days and caused an

illness rate of 6.6 % of the total population. The 2009 H1N1 was estimated to have a value

of R0 ranging from 1.4 to 1.6 (Fraser et al. 2009). As far as the estimated consequences of

the 2009 H1N1 influenza on the workforce, the Canadian Labor Statistics Center reported

in November 2009, 9 % of total national workforce lost almost 20 work hours for the

month of November (Statistics Canada 2013). Many researchers have studied the differ-

ence between H1N1 pandemic and seasonal influenza in terms of the number of workdays

lost and absenteeism rates. The number of workdays lost varies with age and susceptibility

to the infection. Specifically, a person who is younger and more illness prone will have a

higher likelihood of contracting the virus. It has been estimated that the absenteeism rate

and the total workdays missed due to the 2009 H1N1 pandemic are significantly higher

than due to seasonal influenza. This suggests that influenza pandemics pose higher risks to

the workforce and economic systems. The 2009 H1N1 pandemic resulted in 0.2 % of total

workdays lost per year, compared to the seasonal influenza that usually causes a loss of

0.08 % of total annual workdays (Schanzer et al. 2011). On the average, the H1N1 pan-

demic caused a loss of 25 work hours, whereas the seasonal influenza work hours lost are
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about 14. Moreover, the absenteeism rate due to the H1N1 pandemic was estimated to be

around 13 % of total workers, while the seasonal influenza absenteeism rate is around

12 % (Schanzer et al. 2011). The most impacted sector in the aftermath of the H1N1

pandemic was the medical and nursing services. Specifically, 56.6 % of the medical staff

estimated having lost more than 1 day of work. Also, 8 % of total workforce reported

having lost at least 5 days of work (Considine et al. 2011).

El Haimar and Santos (2013) introduced a stochastic model of influenza pandemic

effects on interdependent workforce sectors using the input–output (I–O) model based on

the H1N1 influenza data in the National Capital Region (NCR). The study used two metrics

to assess the consequences associated with influenza pandemic, namely the level of ino-

perability and economic loss. Inoperability is a dimensionless metric ranging from 0 (ideal

scenario) to 1 (total failure), which measures the extent to which an economic sector is

underperforming relative to the ideal scenario. In contrast, economic loss evaluates the

actual financial consequence associated with the degraded production level of the sector.

The findings show that values of the inoperability level for the peak time period range from

0.3 to 12.66 %, while the cumulative economic loss for all sectors ranges from $5.2b to

$9.4b. These results have been found to be compatible with independent estimates made by

the World Health Organization (2003).

Germann et al. (2006) studied influenza propagation in the USA through modeling

simulation based on several values of R0, the basic reproductive number, measuring the

expected number of individuals who contract the virus by getting in contact with an

infected individual. The simulation was carried for different levels and combinations of

mitigation strategies such as vaccines, antivirals, and social restrictions. Results show that

for relatively mild pandemics, large implementation of vaccination can decrease the

number of ill people to \10 %. Alternatively, the large deployment of antivirals can

significantly help contain the pandemic. A highly aggressive influenza pandemic requires

social procedures as well as vaccines and antivirals to halt the spread of the influenza

pandemic.

2 Research goals

The present work investigates the uncertainties surrounding the ripple effects triggered by

an influenza pandemic to interdependent workforce systems. In the aftermath of an

influenza pandemic, there is a high level of workforce absenteeism due to their own

sickness or caring for others. This absenteeism leads to a reduction in the productivity of

economic sectors. To quantify the magnitude of the reduction in productivity of the eco-

nomic sectors, we use the inoperability level and economic loss metrics. The modeling and

simulation incorporated in this work are aimed at tracking the level of inoperability values

throughout the recovery period by taking into account the economic resilience of sectors,

or their ability to react to the disaster and recover back to their initial level of functionality.

The level of inoperability is assumed to diminish as time progresses due to the economic

resilience of the sectors. However, the occurrence of some unexpected event may alter the

decreasing trend in the level of inoperability. For instance, in the event of a second wave of

infection, more people will likely contract the disease, hence increasing the level of ino-

perability across various economic sectors.

The focus of the present research is to develop a methodological framework to evaluate

the consequences of a pandemic disaster in the NCR, which represents the metropolitan

area comprised of Washington–Arlington–Alexandria DC–VA–MD–WV. The modeling
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and simulation encompassed in this work could provide insights in modeling different

geographical areas and other types of workforce-debilitating disasters.

This research explores how the progression of inoperability across time can be modeled

for interdependent sectors. Specifically, the study models and simulates the time-varying

level of inoperability of economic sectors due to an influenza pandemic. This research

takes into account the uncertainties in the level of inoperability and how they may be

dynamically updated throughout the recovery period. The level of inoperability measure

could be modeled using a probability distribution, which could be updated every time there

is a new observed event. The new event could either bring an improvement to the level of

inoperability, such as may occur when implementing risk mitigation strategies against the

influenza pandemic (e.g., vaccines, antivirals, or social distancing measures). On the other

hand, another event could exacerbate the degradation in the functionality of the system,

hence leading to increased levels of inoperability. This could be the case when there is a

new wave of influenza that could result in a spike in the number of infected people.

3 Research methodology

3.1 Supporting models

The study developed in this work is centered on Leontief’s economic model, known as the

I–O model. This model divides the economy into a set of interdependent sectors that

produce goods and services and also consume products and services from other sectors

(Leontief 1936). Therefore, under such model assumptions, these sectors depend on each

other to meet their ideal production requirements. Developing an effective risk mitigation

plan requires exploring the complexity of the interdependencies between sectors in an

economy (The Infrastructure Security Partnership 2006). The complexity of interdependent

economic sectors has been featured in many studies (Santos et al. 2012; Orsi and Santos

2010; Santos et al. 2009). Table 1 illustrates the economic sectors classification used in the

modeling of this research.

The I–O model enables the modeling of the interconnectedness between sectors in a

given economic context (Miller and Blair 2009; Isard 1960). Also, it has been used in

modeling interdependencies in international trade (Jung et al. 2009). The I–O model takes

into account the cascading effect generated by an initial perturbation across a set of

interconnected sectors. There has been an increasing trend in the flow of humans and

capital across different regions and economic sectors. This has developed the complexity

of economic systems and added more interdependencies across economic sectors. Jiang

and Haimes (2004) have studied reducing the overall loss in an interdependent set of

economic sectors given an initial perturbation. The I–O model has been extended in

different ways to model the impact of disasters on various workforce sectors (Ruiz-Juri and

Kockelman 2006). The I–O model has been extended to the dynamic input–output model

(DIIM), which accounts for the time-dependent level of inoperability and its relationship

with economic resilience, which measures the capability of a sector to cope up with

degraded production.

3.2 Data collection process

To support the structure of Leontief’s model, the Bureau of Economic Analysis (BEA) and

the Regional Input–Output Modeling System (RIMS II) have available economic data sets
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Table 1 Economic sectors classification

Sector Description Sector Description

S1 Farms S34 Pipeline transportation

S2 Forestry, fishing, and related
activities

S35 Other transportation and support activities

S3 Oil and gas extraction S36 Warehousing and storage

S4 Mining, except oil and gas S37 Publishing industries (including software)

S5 Support activities for mining S38 Motion picture and sound recording industries

S6 Utilities S39 Broadcasting and telecommunications

S7 Construction S40 Information and data processing services

S8 Wood products S41 Federal Reserve banks, credit intermediation, and
related activities

S9 Nonmetallic mineral products S42 Securities, commodity contracts, and investments

S10 Primary metals S43 Insurance carriers and related activities

S11 Fabricated metal products S44 Funds, trusts, and other financial vehicles

S12 Machinery S45 Real estate

S13 Computer and electronic products S46 Rental and leasing services and lessors of
intangible assets

S14 Electrical equipment, appliances, and
components

S47 Legal services

S15 Motor vehicles, bodies and trailers,
and parts

S48 Computer systems design and related services

S16 Other transportation equipment S49 Miscellaneous professional, scientific, and
technical services

S17 Furniture and related products S50 Management of companies and enterprises

S18 Miscellaneous manufacturing S51 Administrative and support services

S19 Food and beverage and tobacco
products

S52 Waste management and remediation services

S20 Textile mills and textile product
mills

S53 Educational services

S21 Apparel and leather and allied
products

S54 Ambulatory health-care services

S22 Paper products S55 Hospitals and nursing and residential care
facilities

S23 Printing and related support activities S56 Social assistance

S24 Petroleum and coal products S57 Performing arts, spectator sports, museums, and
related activities

S25 Chemical products S58 Amusements, gambling, and recreation industries

S26 Plastics and rubber products S59 Accommodation

S27 Wholesale trade S60 Food services and drinking places

S28 Retail trade S61 Other services, except government

S29 Air transportation S62 Federal general government

S30 Rail transportation S63 Federal government enterprises

S31 Water transportation S64 State and local general government

S32 Truck transportation S65 State and local government enterprises

S33 Transit and ground passenger
transportation

Source: Bureau of Economic Analysis
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that could be used to quantitatively model the interdependencies of the sectors and generate

the technical coefficients matrix (Miller and Blair 2009; US Department of Commerce

1997). The BEA data cover the entire nation, states, counties, and various metropolitan

regions in the USA.

To model the trajectory of worker unavailability, we rely on data generated by Flu-

WorkLoss, which is a spreadsheet-based tool developed by the CDC (Dhankhar et al.

2006). It is used to measure the proportion of workforce that is unavailable in the aftermath

of influenza. Moreover, to convert the level of inoperability measure into monetary values,

we use sector employment statistics and economic data (e.g., production inputs, income

statistics, production outputs, among others) to represent the workforce contribution to the

sector output. The level of inoperability measure is centered on the workforce contribution

into the production level of economic sectors. The present work uses employment statistics

for the NCR region based on BEA data. The data collection is configured based on the

North American Industry Classification System (NAICS) and Regional Input–Output

Modeling System (RIMS II), which model the economy as a set of interdependent eco-

nomic sectors.

3.3 Modeling the level of inoperability

The model implemented in this work extends the DIIM (Haimes et al. 2005) by incor-

porating an updating mechanism that computes the level of inoperability given a new

perturbation during the course of the sector recovery. This is expressed as follows:

E½qðtÞjp� ¼ qNEWðtÞ � pðtÞ þ qDIIMðtÞ � ð1� pðtÞÞ ð1Þ

where E½q tð Þjp� is the expected inoperability level. The quantity q(t) is the updated level of

inoperability based on the average of both the new level of inoperability and DIIM level of

inoperability weighted with p(t) and 1 - p(t), respectively. The term qNEWðtÞ is the level

of inoperability at time t given a new perturbation. The term p(t) is the probability of a new

perturbation occurring at time t. In contrast, qDIIMðtÞ is the level of inoperability at time t

given no new perturbation, which is formulated further in Sect. 3.4 (see Eq. 3). Further-

more, the term qDIIMðtÞ represents the trajectory resulting from the DIIM model if the level

of inoperability would follow the ‘‘as-planned’’ course. On the other hand, 1 - p(t) is the

probability that there will be no new perturbation at time t. In this regard, we can dis-

tinguish two main cases:

3.3.1 Case 1: A new perturbation occurs and increases the level of inoperability

Such case corresponds to the outbreak of a new disaster or the aggravation of the same

disaster. For instance, a development of new wave of the pandemic may cause a higher

contagion leading to an increase in level of inoperability. Figure 1 illustrates such a

scenario.

We can see that the level of inoperability of sector 1 displays an upward trend at time

t = 2 weeks due a new perturbation then decays again following the DIIM trajectory. The

same applies to sector 2 at time t = 3 weeks, where its recovery trajectory undergoes an

increase then decays again following the inherent sector resilience trend.
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3.3.2 Case 2: A new perturbation occurs and decreases the level of inoperability

This case corresponds to the introduction of mitigation strategies such as vaccines or

antivirals. Such plans could alleviate the effect of influenza and reduce the level of ino-

perability. Figure 2 illustrates a new perturbation leading to a decrease in the level of

inoperability.

At time t = 2 weeks, the level of inoperability trajectory of sector 1 drops abruptly and

then reverts to the inherent path of recovery. On the other hand, the level of inoperability

trajectory of sector 2 decreases suddenly at time t = 3 weeks and then goes back to the

inherent path. The probability level p(t) is the factor that determines the weight given to the

level of inoperability generated by the new perturbation and the level of inoperability

generated by the DIIM model. In this work, the simulation is based on multiple phases of

increasing complexity depending on the value of the probability of the new perturbation.

3.4 Simulation procedure

In this research work, we model the inoperability level of economic sectors by combining

inoperability level resulting from both DIIM and the new perturbation. The overall ino-

perability level is calculated as an expected value of the inoperability level from DIIM and

inoperability from the new perturbation. This is expressed mathematically in Eq. (1).

Figure 3 illustrates how the DIIM inoperability and new perturbation inoperability are

combined into the computation of the overall inoperability of economic sectors.
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The inoperability from the DIIM is calculated using the dynamic model expressed as

follows (Haimes et al. 2005):

qðt þ 1Þ ¼ qðtÞ þ K½A�qðtÞ þ c�ðtÞ � qðtÞ� ð2Þ

where q(t) is the level of inoperability vector at time t, K is the resilience matrix, and c� tð Þ
is the demand perturbation at time t.

The DIIM model computes the inoperability level at time t ? 1 based on the inoper-

ability level at time t plus the inoperability resulting from the resilience of the economic

sector and the interdependencies with other economic sectors. The term K½A�q tð Þ þ
c� tð Þ � q tð Þ� is usually zero or negative, reducing the level of inoperability q(t) as mea-

sured at time t. The impact of the sector resilience is captured by the diagonal matrix K,

whose elements measure the tendency of economic sectors to recover to their pre-disaster

state after a given perturbation. To capture the effect of indirect inoperability and resilience

effect, the matrix K is multiplied by the indirect impact caused by other sectors, A�q tð Þ,
plus the reduced final demand, c� tð Þ, minus the inoperability level at time t, q(t). Multi-

plying the economic sector resilience coefficient in the matrix K by A�q tð Þ generates a joint

measure of resilience based on the level of interdependencies with other economic sectors

as captured by the matrix, A�. Such approach enables the measurement of the inoperability

level of a sector given its inherent resilience and also taking into consideration its

dependence on other economic sectors. For instance, an economic sector might be very

resilient to the disaster, but its high dependence on other inoperable sectors will cause its

productivity to suffer at a much higher rate. As such, the DIIM model provides a measure

of the time-varying inoperability levels of economic sectors resulting from both the direct

impact from the disaster and the indirect impact from its dependence on other sectors.

The entries in the resilience matrix K are computed as follows:

ki ¼
�lnðsiÞ

Tið1� a�iiÞ
ð3Þ

where si is a sector characteristic that depends on the initial inoperability level, Ti is the

recovery period for sector i, and aii
* are the diagonal elements of the interdependency
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Fig. 3 Inoperability level computation
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matrix A�. Note that the inherent resilience coefficient ki is inversely proportional to

recovery period Ti and to the sector’s dependence on other sectors (1 - aii
*). This means

that the shorter the recovery period and the lesser the dependence on other sectors, the

higher the resilience coefficient ki. The detailed formulation of the DIIM sector resilience

coefficient is provided by Lian and Haimes (2006).

Aside from the DIIM, another source of inoperability can be calculated based on the

trend of the new perturbation, whether it is leading to the deterioration or improvement of

economic sectors. In the case where the new perturbation leads to the deterioration of the

economic system, the inoperability level follows an increasing trend that could be modeled

using a wave function based on consolidated data from FluWorkLoss. A Matlab-based

simulation formulates the wave function through a time-dependent base function fbase(t)

defined over the time horizon [a,b] that describes the time range of the new perturbation,

where t represents week time increments. At time t = a weeks, a new perturbation occurs

leading to the deterioration of the economic sectors. Due to the new perturbation, the

inoperability level increases and the inoperability trajectory follows an upward trend,

which is modeled using a base function based on consolidated data from FluWorkLoss.

The base function is defined by two wave functions, which are assumed to be triangularly

distributed. The first wave spans over the weekly time interval [0,28] and is defined as a

triangular distribution between 0 and 28 weeks, with a peak inoperability level of 0.045 at

week 20. Similarly, the second wave spans over the time interval [28,42] and is described

as a triangular distribution between 28 and 42 weeks, with a peak inoperability level of

0.09 at week 35.

Therefore, the inoperability at time t = a week is computed as follows:

qðaÞ ¼ pðaÞ � qNEWðaÞ þ 1� pðaÞð Þ � qDIIMðaÞ ð4Þ

where

qDIIMðaÞ ¼ qða� 1Þ þ KðA�qða� 1Þ þ c�ða� 1Þ � qða� 1ÞÞ ð5Þ

qNEWðaÞ ¼ fbaseðaÞ � w ð6Þ

The quantity qDIIMðaÞ represents the inoperability level as computed by the DIIM

modeling, and qNEWðaÞ represents the inoperability level resulting from the new pertur-

bation. The value of qNEWðaÞ is calculated by multiplying the value from the base function

fbase(a) and the workers’ contribution vector w, which gives a vector of inoperability level

for the 65 sectors due to the occurrence of the new perturbation. Both quantities qDIIMðaÞ
and qNEWðaÞ are combined into a weighted average using the probability of a new per-

turbation occurring p(a), which is drawn from a beta distribution with a specified mode

value. We draw a finite number of probability values p(a) from the beta distribution to

perform our Monte Carlo simulation. Therefore, we obtained a set of inoperability values

for the 65 economic sectors at time t = a weeks. The computed inoperability values are

stored in a three-dimensional matrix with dimensions representing economic sectors, time,

and simulation iterations.

For time t = a ? 1 week and subsequent times, the inoperability level is computed in

the same manner until time t = b week when the effect of the new perturbation is over. At

time t = b ? 1 week, the effect of the new perturbation dissipates, and the subsequent

inoperability path follows a decaying trend as sectors regain progressively their pre-

disaster state. Then, from time t = b ? 1 week and subsequent time increments, inoper-

ability level is calculated using DIIM as follows:
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qDIIMðbþ 1Þ ¼ qðbÞ þ KðA�qðbÞ þ c�ðbÞ � qðbÞÞ ð7Þ

In the case where the new perturbation leads to the improvement of the economic

sectors, the inoperability level follows a decreasing trend that could be modeled by linking

the inoperability at time t to the inoperability level at time t - 1. This could be constructed

mathematically as follows:

qNEWðt þ 1Þ ¼ kqNEWðtÞ ð8Þ

where k is a scaling factor between 0 and 1 that depends on the intensity and the spread of

the new perturbation leading to inoperability level decrease. The coefficient k is deter-

mined based on expert judgment given the nature of the influenza pandemic, the type of

risk mitigation strategies used, and their deployment. For example, for medium intensity

influenza pandemic with a probability of occurrence of 0.25, the large deployment of a

portfolio of strategies comprising of vaccines, social distancing, and antivirals would

correspond to a coefficient value of 0.2.

Therefore, at time t = a week, the inoperability level is computed by integrating the

new perturbation inoperability and the DIIM inoperability as follows:

qðaþ 1Þ ¼ pðaþ 1Þ � qNEWðaþ 1Þ þ 1� pðaþ 1Þð Þ � qDIIMðaþ 1Þ ð9Þ

where

qNEWðaþ 1Þ ¼ kqNEWðaÞ ð10Þ

qDIIMðaþ 1Þ ¼ qðaÞ þ KðA�qðaÞ þ c�ðaÞ � qðaÞÞ ð11Þ

After time t = b week, the inoperability level is calculated based on only DIIM,

showing a decaying trend until sectors regain their initial state. Based on the Monte Carlo

simulation, we obtained a large data set that could be used to build distributions of

inoperability for each economic sector throughout the recovery horizon. Moreover, we

could compute the cumulative economic loss and their probability distributions at every

increment of time. This is illustrated in Fig. 4.
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3.5 Beta distribution modeling

In this research work, we model the probability of the occurrence of a new perturbation

through a beta distribution over the range [0,1]. We develop a simulation algorithm for beta

distributions with a given mode value that serves as a calibration of the contribution of the

impacts of both DIIM and the new disruption on economic sectors. The simulation in this

research is based on Monte Carlo simulation through random number generation from a

given probability distribution (Gentle 1998). Therefore, the probability p(t) could be

considered as a random variable that follows a beta distribution. The beta distribution is

used to model probabilities and proportions. It is defined between 0 and 1, and the shape of

the distribution is determined by two parameters. The beta distribution has the property of

modeling a set of symmetric or skewed points. The beta distribution is a candidate dis-

tribution to use since it has the capability to model bounded random variables such as

probability values with support of [0,1]. Many studies have used the beta distribution in

modeling proportions and subjective beliefs of individuals (Alvarez and Brehm 1995,

1997; Brehm and Scott 1993; Mebane 2000; Paolino 1998). The beta distribution is par-

ticularly suitable for modeling the level of perturbation (as well as the resulting inoper-

ability), which is known to have a lower limit of 0 and an upper limit of 1. The bounded

interval of the beta distribution provides an alternative to describe the uncertainty in

probability of occurrence of a new perturbation. The beta distribution could be described

by shape parameters a and b, which could be set to generate a distribution with a desired

mode (or most likely value).

3.6 Economic loss modeling

Economic loss measure gives the monetary value of the degraded output of sectors. It is a

different but complementary metric to assess the consequences of a disaster, such as a

disease pandemic. In contrast to the level of inoperability, it is a more intuitive way to

convey how critically a sector has been impacted by the pandemic. Measuring economic

loss allows generating a different ranking for critically impacted sectors. Also, the results

will help identify the sector that incurs the highest monetary losses following the pan-

demic. More importantly, we can evaluate that the sector losses exceed a criticality

threshold that may lead to an irrecoverable collapse of the economic sector. Economic loss

equals multiplying the level of inoperability and the planned output level. Multiplying the

percentage of output degradation by the normal output of the sector in dollar amount gives

the monetary value of the loss incurred by the sector. Our analysis considers 1-week

increments; hence, economic loss is mathematically expressed as follows:

lossiðtÞ ¼
1

52
� Xi � qiðtÞ ð12Þ

where lossi(t) represents the cumulative monetary loss at time t, Xi represents the output of

sector i during a given year, and qi(t) denotes time t level of inoperability for sector i. Note

that the number 52 denotes the number of weeks per year since the sector production is

measured on a yearly basis.

3.7 Research simulation focus

In this work, we build the simulation based on previously published work by El Haimar

and Santos (2013), which considered a baseline scenario to assess and prioritize the risk of
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a pandemic disaster through two risk metrics. In the present study, we considered the

critical sectors in light of both risk metrics, namely inoperability level and economic loss.

Figure 5 illustrates the operational framework used in the present research study.

In particular, we examine the effect of a new perturbation on the most critical sector in

terms of inoperability level, S56 (social assistance), as well as the sector with the highest

economic loss value, S62 (federal government enterprises). We explore how the new

perturbation could lead to the deterioration or improvement of inoperability level of sector

S56, while taking into consideration the uncertainty in the probability of the occurrence of

the new perturbation. In both cases, we capture the distribution of inoperability level at a

given time for sector S56. On the other hand, we study how the new perturbation could

lead to the deterioration in economic loss of critical sector S62, while modeling the

probability of the new disruption using a beta distribution. Then, we look at how the new

perturbation could lead to the improvement of the state of sector S62 by reducing economic

loss.

4 Results and analysis

4.1 New perturbation leading to system deterioration

The first case developed in this research study is the examination of a new perturbation

leading to economic sectors deterioration (i.e., a new surge of the pandemic or the evo-

lution of the influenza virus).

4.1.1 Inoperability level

Figure 6 illustrates the inoperability simulation for sector S56. The top left graph illustrates

the deterministic trajectory of the inoperability level for sector S56. We introduce the

modeling of the new disruption by assuming a probability of occurrence that could be

modeled using a beta distribution.

The graph on the right panel of Fig. 6 illustrates the different inoperability level per-

centiles trajectories. At time t = 28 weeks when the new perturbation occurs, there is a

jump in the inoperability level. The inoperability level is calculated as an expected value of

the inoperability level derived from the DIIM and the inoperability level resulting from the

new disruption. The modeling of the probability of the new perturbation occurrence

through a beta distribution gives a set of inoperability trajectories depending on the dif-

ferent values assigned to that probability. At time t = 42 weeks, when the new disruption

starts to vanish, the inoperability level follows the DIIM’s decaying trend. The DIIM

modeling incorporates economic sector resilience, which is assumed to reduce the effect of

the disaster until it reverts to the pre-disaster state.

We look at the probability density function and the cumulative density function of

inoperability level of sector S56 at time t = 35 weeks. Numerically, the inoperability level

at time t = 35 weeks ranges from 3.84 to 19.98 % with a mean value of 13.45 %. Figure 7

displays the distribution of inoperability level for sector S56 at time t = 35 weeks. The

graph at the top section of Fig. 7 displays the probability density of the inoperability level.

We can see that the inoperability level follows a bell-shaped curve with an approximate

average value of 13.45 % and a standard deviation of 2.65 %. Furthermore, the graph at

the bottom right panel of Fig. 7 illustrates the cumulative density function of the
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Fig. 5 Disaster risk modeling framework
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Fig. 6 Inoperability simulation for sector S56
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inoperability level. The 90th percentile shows 17 % inoperability level, meaning that there

is approximately 10 % probability that the inoperability level will be more than 17 %.

4.1.2 Economic loss

Figure 8 illustrates the trajectory simulation of economic loss for sector S62 throughout the

recovery horizon. We can see that the economic loss of sector S62 sharply increases

starting from time t = 28 weeks due to the occurrence of the new perturbation leading to

the deterioration of the state of sectors.

Fig. 7 Inoperability distribution for sector S56

Fig. 8 Economic loss simulation for sector S62
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The plot shows various percentile trajectories of economic loss based on the modeling

of the probability of occurrence of a new perturbation using a beta distribution. This trend

creates an economic loss density function at each given point of time. To have a deeper

understanding of the spread of economic loss scores, we investigated the distribution of

economic loss of sector S62 at the end of the recovery period. Numerically, the simulation

results generate economic loss values ranging from 922.42 ($M) to 2,359.6 ($M) with a

mean value of 1,790.2 ($M). Figure 9 shows the distribution of economic loss for sector

S62. The graph at the top right panel of Fig. 9 illustrates that the distribution of the

economic loss has a bell-shaped curve that is nearly symmetric and centered around the

mean value of 1,790.2 ($M) with a standard deviation value of 258.02 ($M). The graph at

the bottom right panel of Fig. 9 illustrates the economic loss cumulative density for sector

S62. Based on the results, there is a 90 % chance that the economic loss is going to exceed

2,100 ($M), while the median value is 1,812.1 ($M).

4.2 New perturbation leading to system improvement

The second case developed in this research study is the examination of a new perturbation

leading to sector improvements in the case of mitigation strategies (e.g., vaccines, antiv-

irals, social distancing). We examine the effect of system improvement on the critical

sector in terms of inoperability (S56) and in terms of economic loss (S62).

4.2.1 Inoperability level

Figure 10 illustrates the inoperability simulation for sector S56 in the case of system

improvement. We can see that the inoperability decreases starting from time t = 5 weeks,

when the new disruption occurs. The new perturbation leads to reducing the inoperability

Fig. 9 Economic loss distribution for sector S62
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level of economic sectors. This scenario is depicted as a sharp decrease in inoperability

level values until the sectors regain their pre-disaster state.

To closely examine the simulated inoperability level at the time of the new perturbation

for sector S56, we inspected the probability density function of the inoperability level and

the cumulative density function at time t = 8 weeks. Numerically, the inoperability level

at time t = 8 weeks ranges from 7.70 9 10-7 % to 7.45 9 10-6 % with a mean value of

3.77 9 10-6 %. Figure 11 shows the distribution of the inoperability level of sector S56 at

time t = 8 weeks. The top right graph shows that inoperability values are almost

Baseline (no mitigation strategy)

Social measures

Vaccination

Antivirals

Portfolio of mitigation strategies

Fig. 10 Inoperability simulation for sector S56

Fig. 11 Inoperability distribution for sector S56
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symmetrically spread around the average value of 3.77 9 10-6 %, with a calculated

standard deviation of 1.25 9 10-6 %. The bottom right graph in Fig. 11 illustrates the

cumulative density function of inoperability level for sector S56 at time t = 8 weeks with

a median value of almost 3.75 9 10-6 %.

4.2.2 Economic loss

Figure 12 illustrates the economic loss trajectory simulation for sector S62 throughout the

recovery period. We can see that the economic loss increases from t = 5 weeks, the time

of occurrence of the new perturbation. Then, the cumulative economic loss stabilizes

quickly due to the improvement generated in the economic system by the new perturbation.

We also look at the economic loss density function and cumulative density for sector S62

at the end of the recovery. Numerically, the cumulative economic loss of sector S62 ranges

from 0.7257 ($M) to 0.8795 ($M) with a mean value of 0.7837 ($M). Figure 13 shows the

inoperability level distribution of sector S62 at the end of the recovery period. The eco-

nomic loss has an approximately symmetric shape centered at the average value of 0.7837

($M) with a standard deviation of 0.0245 ($M) and a median value of 0.7822 ($M).

4.3 Analysis of results

The results developed in this study illustrate the inoperability level of sectors as a spectrum

of trajectories that could be used to draw the probability distributions of inoperability level.

Moreover, the uncertainty modeling of the probability of occurrence of a new perturbation

also generates a spectrum of economic loss values that can be fitted into probability

distributions. These new findings are attributable to various modeling complexities as

explained below.

4.3.1 Integration of DIIM and new disruption modeling in creating inoperability level

trajectories

The DIIM modeling takes into consideration the sector resilience factor in computing the

inoperability of sectors. Economic resilience reflects the ability of a sector to regain

Baseline (no mitigation strategy)

Social measures

Vaccination

Antivirals

Portfolio of mitigation strategies

Fig. 12 Economic loss simulation for sector S62
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momentum following a pandemic disaster and therefore determines the rate with which

sectors go back to their pre-disaster state. Thus, the inoperability level due to the DIIM

computation follows a decaying trend in the aftermath of the pandemic disaster. On the

other hand, the new disruption modeling tries to capture the effect of any sudden pertur-

bation to the path of the inoperability. Such perturbation could lead to either the

improvement or the deterioration of the economic sectors. The combination of sector

resilience modeling with new perturbations generates a more robust approach in devel-

oping the inoperability paths for the sectors. Moreover, the economic loss modeling is also

subject to the effect of integrating both the DIIM and a new disruption. The new pertur-

bation either amplifies the economic loss in the case of previously unforeseen system

deterioration, or reduces the economic losses when risk management strategies are

implemented.

4.3.2 Uncertainty modeling of the probability of occurrence of a new perturbation

In the present work, inoperability level is computed as an expected value of the inoper-

ability from the DIIM and the inoperability from the new disruption. The weighting factor

is the probability of occurrence of a new disruption, which is modeled as a beta distri-

bution. The simulation algorithm generates samples from the probability distribution that

give a set of inoperability trajectories. Modeling the probability of occurrence as a beta

distribution is also reflected in the simulation of various economic loss trajectories.

According to the results developed in this research work, there are various phases in

simulating the trajectory of inoperability.

Fig. 13 Economic loss distribution for sector S62
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4.3.3 Inoperability follows a path created using a combination of both DIIM and new

disruption

When a new perturbation occurs, the inoperability levels of the economic sectors will

become a function of both the DIIM and the new disruption. The DIIM incorporates the

effect of resilience and sector interdependencies. Notably, the resilience parameter in the

DIIM has the tendency to create a downward trend for the inoperability of a sector. On the

other hand, the new perturbation has a certain trend that also influences the trajectory of

inoperability of economic sectors. This new perturbation could have two possible trends:

• Upward trend of inoperability in modeling the new perturbation leading to the

deterioration of the system. Such disruption could be due to a new wave of influenza

pandemic or the evolution of the virus. For instance, in the H1N1 pandemic of 2009,

there were two consecutive waves of influenza that increased the inoperability level of

economic sectors as modeled by FluWorkLoss. Specifically, as the first wave vanished,

the sectors gained productivity momentum as workforce availability improved.

However, another wave of influenza hit the workforce, and absenteeism rate further

increased, which drives up the inoperability. An increase in inoperability level values

leads to the deterioration of the economic system. Moreover, the degree of increase in

the inoperability level depends on the level of criticality of the new disruption. For

example, if the influenza virus mutates into a stronger type that spreads very quickly

through humans, workforce availability will deteriorate leading to a significant increase

in inoperability levels.

• Downward pattern in inoperability when modeling the new disruption leading to the

improvement of the system. Such perturbation could be due to the deployment of risk

mitigation strategies such as vaccines, antivirals, or social distancing. Each risk

mitigation strategy has its own effectiveness in reducing the impact of the disaster. The

level of effectiveness of the risk mitigation strategy depends on the portfolio of

measures taken and the intensity of their application. For instance, a portfolio of

strategies could include a large deployment of both vaccines and social distancing

measures in a community of sick individuals. Such measures can substantially curtail

the impact of the influenza, therefore limiting the spread of the influenza virus. This

implies that the absenteeism rate will tend to decrease, leading to higher productivity of

economic sectors. This is reflected in a significant decay in the trajectory of

inoperability.

4.3.4 Inoperability follows a decaying trend after the end of the new perturbation

The inoperability trajectory reverts to the DIIM trend when the effect of the perturbation

ceases. Therefore, the inoperability level follows a decaying trajectory due to the resilience

of economic sectors. Again, the rate of decay of inoperability level depends on the

workforce dependence level and interdependencies across the sectors. However, the

starting point of the decaying trend is dependent on the last value of inoperability observed

after the new disruption is introduced. In the case of the deterioration of the system, the

inoperability level at the end of the disruption is higher compared with the inoperability

level at the beginning of the disruption. This means that the inoperability level of economic

sectors will take longer to vanish due to the effect of the new perturbation. Therefore, we

can see an apparent decaying trend of inoperability trajectory after the end of the new

perturbation until the economic sector regains its pre-disaster state. In the case of the
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improvement of the system, the inoperability level will have significantly lower values at

the end of the disruption. Hence, for such scenario, the inoperability level vanishes more

quickly due to the resilience factor, and economic sectors regain their pre-disaster state

more rapidly.

On the other hand, the simulation results have also exposed various phases associated

with the trajectory of cumulative economic loss.

4.3.5 Economic loss trajectory follows an upward trend due to new disruption

When the new perturbation happens, the evolution trend of the cumulative economic loss

changes depending on the nature of the new perturbation. Specifically, we distinguish two

evolution trends:

• The rate of increase in cumulative economic loss is steeper in the case of system

deterioration. When the new perturbation suddenly occurs, leading to an increase in

inoperability level, the productivity state of economic sectors worsens. The increase in

inoperability level translates into an intensifying effect that drives economic loss to

higher levels. This explains the abrupt jump in the economic loss trajectory.

• The rate of increase in cumulative economic loss is slower in the case of system

improvement. When the new disruption occurs, leading to inoperability level decay, the

productivity state of sectors improves. The decay in inoperability level translates into a

mitigating effect that reduces economic losses. Therefore, the economic loss trajectory

increases slowly because of the mitigating impact of the new disruption.

4.3.6 Economic loss stabilizes in a steady state

At the end of the new disruption, the inoperability level of economic sectors decays slowly

until it vanishes. Therefore, the inoperability level is insignificant to generate additional

economic loss. Thus, the economic loss trajectory maintains a constant value throughout

the rest of the recovery period.

A primary contribution of this research is the incorporation of the beta distribution to

simulate the probability of a new perturbation occurring, which generates a spectrum of

inoperability level and economic loss trajectories. Moreover, we create the probability

distribution of inoperability level for the critical sector in terms of inoperability level,

namely S56 (social assistance). Therefore, we could highlight the effect of any new dis-

ruption on the course of development of inoperability for the highly inoperable sectors. We

also create the distribution of cumulative economic loss at the end of the recovery period,

for the sector with the highest economic loss value, namely S62 (federal government

enterprises), to focus on the overall economic impact of the pandemic on sectors.

In addition to the modeling of exogenous new perturbations, there is also the possibility

of endogenous disruptions that could constitute a potential secondary perturbation. An

example of this would be the inoperability emanating from dysfunctionality of health-care

service sectors. This explains the ranking of sectors S56 (social assistance) and S55

(health-care facilities) as the two most adversely impacted sectors in terms of inoperability

level (El Haimar and Santos 2013). First, the personnel in these sectors come into a direct

contact with the sick individuals; therefore, they have a much higher probability of con-

tracting the influenza virus. Second, these sectors experience a state of being overwhelmed

due to the higher number of cases they receive. Thus, it is important to highlight that a new
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disruption leading to the deterioration of the economic system could be also due to

endogenously generated secondary perturbations.

5 Conclusions and areas for future research

This paper analyzes the impacts of influenza disasters through consideration of two risk

metrics, namely level of inoperability and economic loss. Also, the prioritization plans and

critical sector identification were based on one of the two dimensions, meaning that we

rank either the criticality of sectors through their level of inoperability values or their

economic loss scores. One potential addition to the present study would be the evaluation

of the efficacy of risk mitigation strategies (vaccines, antivirals, social distancing, etc.) in

light of the findings of this stochastic analysis. A rigorous study of the effectiveness of the

different risk mitigation strategies given the uncertainty of occurrence of a new pertur-

bation would give realistic insights on the recovery trajectory of economic sectors.

Therefore, the evaluation of risk mitigation strategies should take into consideration the

eventual outcome of the new disruption as well as the probability of its occurrence. For

instance, in the case where several risk mitigation strategies are deployed, the inoperability

level of economic sectors is expected to decrease. Hence, the appropriate combination of

risk mitigation strategies as well as the intensity of the application becomes an important

issue to address. Another important feature that should be scrutinized is the combination

effect of a perturbation leading to system deterioration and a perturbation leading to system

improvement. Specifically, a new disruption leading to system deterioration would tend to

increase inoperability level of economic sectors, while a new disruption leading to system

improvement would tend to decrease inoperability level of the economic sectors. The

recovery trajectory of economic sectors would then be subject to two competing effects.

Therefore, to have a holistic analysis of the recovery behavior of sectors, it is imperative to

study the effects collectively and generate risk management policies accordingly.

A primary objective of this research is the development of a practical framework for

establishing public health policies particularly in terms of prioritizing limited medical

personnel or resources. The results of such modeling framework would provide insights

into the behavior of critically affected sectors in the event of unprecedented perturbations

within the recovery timeline. For instance, sector S56 (social assistance) was the most

affected sector in terms of the inoperability level. Further deterioration in the state of

critical sectors, such as S56, could further escalate the public health crisis. Hence, critical

sectors should be identified and given priority in the event of major disaster such as a

pandemic to enable effective deployment of essential personnel and allocation of scarce

resources. Furthermore, a novel contribution of this research is the integration of DIIM as a

tool for risk analysis, coupled with the modeling a potential stochastic perturbations that

could lead to either the deterioration or improvement of economic sectors. Such stochastic

analysis would help describe the state of economic sectors and how they react when they

are exposed to different scenarios and outcomes. The case studies we demonstrated in this

paper can be extended to perform supplementary sensitivity analyses (e.g., by varying

recovery times, levels of inoperability, and probability assumptions), which will eventually

result in the formulation of robust disaster risk management strategies for health policy

making.

In the present research, we extended the base case scenario developed by El Haimar and

Santos (2013) to account for a new perturbation occurring and to incorporate uncertainty

analysis in the modeling of the recovery behavior of economic sectors. In the baseline
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scenario for the NCR sectors, federal services and legal services incurred the highest

economic losses given their significant output in the region. These sectors have a high GDP

due to their huge presence in the region and the large number of employees that work in

those sectors. On the other hand, medical service sectors were the ones to report the highest

level of inoperability. This is due to the fact that medical service workforce attends to a

large population of sick individuals and causes strain to the sector’s already limited

capacity. Also, due to their constant interaction with infected individuals, medical per-

sonnel tend to have a high susceptibility to contract the influenza virus and therefore incur

a high rate of workforce absenteeism. Therefore, we highlighted the effect of any new

disruption happening on the critically classified sectors in light of the inoperability level

and economic loss metrics, which are S56 (social assistance) and S62 (federal government

enterprises), respectively. We modeled the impact of a new perturbation leading to dete-

rioration in terms of both risk metrics for the respective economic sectors. The inoper-

ability level was computed as a weighted average of the inoperability level derived from

the DIIM and the inoperability level triggered by the new perturbation.

The results obtained from the simulation exhibit various phases in terms of both risk

metrics, namely inoperability level and economic loss. The first phase is determined by the

combined effect of both DIIM and new perturbation. When the new perturbation leads to

system deterioration, there is a significant increase in inoperability level and therefore a

significant increase in economic loss. When the new disruption causes system improve-

ment, there is a significant decline in inoperability level and therefore an insignificant

change in economic loss. The second phase is a stabilization phase in which the inoper-

ability level calculation is determined solely by DIIM. The inoperability level trajectory

decays slowly until it vanishes, and the economic loss trajectory follows a steady state,

indicating that the sector has recovered to the pre-disaster state. Using the beta distribution,

the recovery behavior of economic sectors was modeled through a spectrum of trajectories

that reflect percentiles.
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