
LETTER TO THE EDITOR
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Sir,

We read with great interest the article ‘Incidence and phe-

notypes of childhood-onset genetic epilepsies: a prospective

population-based national cohort’ (Symonds et al., 2019).

We have extrapolated from these data to estimate the pro-

portion of these epilepsies remaining active in adulthood:

between one-third and three-quarters of the cohort will need

the care of an adult neurologist.

Over recent years, studies of clinician-led (Helbig et al.,

2016; Berg et al., 2017; Lindy et al., 2018; Borlot et al.,

2019; Truty et al., 2019) and standardized gene panel test-

ing (Trump et al., 2016; Butler et al., 2017) have identified

the most commonly implicated genes amongst those patients

accessing the tests. However, ascertainment bias has

obscured the true population-based frequency of these disor-

ders. One previous study exploited a comprehensive health-

care system for population-based ascertainment but focused

on early-onset severe epilepsies performing non-standardized

genetic tests for 50 participants (Howell et al., 2018).

Symonds et al. (2019) must be commended on completing

the first prospective study applying molecular testing system-

atically across a broad range of seizure disorders of un-

known aetiology presenting before 3 years of age to

calculate the frequency of these individually rare disorders in

a population-based manner, neither biased by access to

healthcare or research centres, nor limited to a narrow

phenotypic group, and with their focus on genes, which al-

ready guide clinical management.

Whilst, the role of genetic testing is increasingly recognized

in paediatrics where the health economic yield is greatest

(Joshi et al., 2016; Howell et al., 2018; Oates et al., 2018),

less is known of the frequency at which adult neurologists

should expect to encounter these monogenic epilepsies.

Children grow into adults and with advances in paediatric

care it is becoming increasingly common for children with

even severe developmental and epileptic encephalopathies to

reach transition. The majority of adults with early-onset epi-

lepsies, however, will not have benefited from recent genetic

diagnostic discoveries (Catarino et al., 2011). With gradually

increasing evidence to inform genetically stratified clinical

management and increasing access to testing it is important

that neurologists caring for adults with epilepsy recognize

the frequency of these genetic disorders in their clinic popu-

lation. Symonds et al. were able to recruit comprehensively

from the limited number of centres likely to care for paediat-

ric patients in Scotland; however, obtaining such compre-

hensive, unbiased population-based data in adulthood

would be more challenging because of the greater number

and range of care settings in which patients are cared for.

Until our present analysis, the best estimates of population

prevalence in adults are actually diagnostic yields of genetic

tests in adults of various ages ascertained opportunistically

from specialist settings (Borlot et al., 2019; Truty et al.,
2019).

The International League Against Epilepsy emphasizes the

use of molecular diagnostics as well as electroclinical
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syndromes in clinical management (Scheffer et al., 2017).

Reviewing the natural histories and treatment responses

reported for the electroclinical syndromes and genetically

defined epilepsies identified by Symonds et al. we have esti-

mated the number that will remain active, requiring treat-

ment and neurology follow-up in adulthood. We have

conservatively reported lower and higher estimates at the

level of complete individuals because there is limited pub-

lished data on the long-term prognosis of many of these syn-

dromes and genetically defined epilepsies into adulthood.

Symonds et al. (2019) identified 76 individuals who had

early childhood-onset epilepsy with a variant in one of 104

genes from a birth cohort of 169 470. Of these, we predict

that 25–56 will continue to require neurological care in

adulthood (Table 1 and Supplementary Table 1). Applying a

95% exact Poisson confidence interval of 16.2–72.7, this

corresponds to a lifetime risk of 9.56–42.9/100 000. In 20–

44 individuals (11.8–26.0/100 000; 95% confidence interval

7.21–34.9/100 000) the implicated gene may already guide

treatment decisions.

In addition to the caveats discussed by Symonds et al.

(2019) there are several limitations to the interpretation of

these figures. First, to provide estimates that are easily gener-

alized to other populations, we have forecasted the lifetime

risk rather than cross-sectional prevalence at transition.

Were Scotland’s overall childhood mortality and migration

rates to remain fixed at the 2018 figures of 272 deaths,

30 271 immigrants and 26 048 emigrants amongst 972 972

individuals under 17 years of age (National Records of

Scotland, 2019), then overall childhood mortality would

have little effect on the denominator. However, the effect of

migration is harder to predict as little is known of the trends

in migration of children with early-onset epilepsies.

However, were the risk amongst the 55 826 17 year olds in

Scotland in 2018 (National Records of Scotland, 2019) to

be as predicted, one would expect 5–24 of them to have a

history of seizures prior to 3 years of age and also to require

neurological care in adulthood because of a variant detect-

able using the 104-gene panel.

Second, the estimates rely upon the very limited gene and

syndrome specific data for long-term prognosis because

most case series focused on childhood and those fewer stud-

ies of adults were biased to ascertain those with active epi-

lepsy. Beyond Dravet syndrome (Cooper et al., 2016) and

SCN8A-related epilepsies (Johannesen et al., 2018b) there is

little knowledge of the total childhood mortality of specific

genetic epilepsies. However, mortality is elevated in children

with epilepsy (Jennum et al., 2017), and this is likely to be

greatest in those with developmental and epileptic encepha-

lopathies (Berg et al., 2004). Whilst a significant proportion

of people with these early-onset epilepsies born over a dec-

ade ago will not have survived to transition, with advances

in paediatric neurological and supportive care this may be

pessimistic today. Similarly, most studies of long-term prog-

nosis did not include surgical care, but long-term remission

following surgery may occur in genetic epilepsies such as

those caused by DEPDC5 (Baulac et al., 2015; Stevelink

et al., 2018). We speculate that in the future disease-modify-

ing treatments may both ameliorate the phenotype and

increase the proportion of children who need neurology care

as adults because of their increased survival to transition

and beyond.

Third, whilst in some genes the molecular consequences of

variants may be associated with clinical features such as nat-

ural history and response to specific treatment (Wolff et al.,

2017), we have not been able to exploit genotype-phenotype

associations at variant level because many variants are ultra-

rare and the evidence of association between specific diag-

nostic variants and longitudinal phenotype is weak for many

epilepsy genes.

Fourth, these figures probably underestimate the total life-

time risk of currently demonstrable genetic epilepsies in adult-

hood because Symonds et al. used a 104-gene panel rather

than screening for all known genetic causes of epilepsy.

Testing for further epilepsy genes (Borlot et al., 2019), karyo-

type and copy number variants would yield additional diag-

noses in adults with intellectual disability (Borlot et al., 2017),

which may explain the phenotype and inform prognostic

counselling, despite currently having a lesser role in treatment

stratification. In particular, as acknowledged by the authors,

the panel did not include TSC1 or TSC2, which may contrib-

ute up to 10 cases per 100 000 live births (Ebrahimi-Fakhari

et al., 2018) potentially benefiting from everolimus (French

et al., 2016). Four participants with diagnostic variants were

not included in our calculations because they had not pro-

gressed to epilepsy during the study, but they remain at risk.

Similarly, as noted by the authors, some children from this

birth cohort may yet develop genetic epilepsies detectable by

this panel but will not have met the threshold for testing by

36 months of age. We would add CHD2 (Suls et al., 2013;

Thomas et al., 2015; Trivisano et al., 2015) to their list of

genes with later onset chronic epilepsies.

Finally, we have assumed generalizability between the

cohorts in the published studies of the various syndromic

and genetically defined epilepsies and the cohort in this

study. However, there may be biological differences, for ex-

ample due to ancestral stratification. Despite the limitations

of the additional analysis that we have performed, the fig-

ures we have extrapolated are the first population-based esti-

mates of the lifetime risk of early-onset genetic epilepsies

requiring neurological care in adulthood.

To understand the course of genetic epilepsies, we ana-

lysed longitudinal data from the Epilepsy Neurogenetics

Initiative, which follows individuals with genetic epilepsies,

including many individuals who are yet to reach adulthood

(Fig. 1A–C). Given that the relative novelty of comprehen-

sive gene panel testing implies that ‘catch-up’ testing is neces-

sary for older children and adults, the few diagnoses in

adolescence and adulthood suggest that many adults remain

undiagnosed despite carrying detectable diagnostic variants

(Fig. 1B). At least half of those individuals who have reached

18 years of age and attended clinics for any reason have ac-

tive prescriptions for antiepileptic medications: a proxy

measure for continuing neurological care (Fig. 1C and D).

e19 | BRAIN 2020: 143; 1–6 Letter to the Editor

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa029#supplementary-data


Table 1 Estimates of the number of children with genetic epilepsy onset before 3 years of age who will require adult

neurology care

Syndrome

Gene

n in Symonds et al. (2019) n estimated to

require adult

neurological

care, range

Supporting evidence

Total Therapy-

resistant

seizures

Neurological

development

Self-limited infantile epilepsy 15 0 2 0–3 Ebrahimi-Fakhari et al., 2015

PRRT2

Dravet syndrome 11 9 9 9–11 Jansen et al., 2006; Akiyama et al., 2010; Catarino et al., 2011;
Genton et al., 2011; Cooper et al., 2016SCN1A

GLUT1-deficiency syndrome 7 2a 3 1–7 Leen et al., 2014

SLC2A1

Self-limited neonatal epilepsy 6 0 0 0–1 Miceli et al., 2010; Grinton et al., 2015

KCNQ2

Early infantile-onset DEE 4b 4 4 3–4 Bahi-Buisson et al., 2008; Muller et al., 2016; Liang et al., 2019

CDKL5

Unclassified epilepsy 3 2 2 2–3 Carvill et al., 2015c; Johannesen et al., 2018a

SLC6A1

PCDH19-related epilepsy 3 3 2 1–3 van Harssel et al., 2013; Trivisano et al., 2018

PCDH19

Focal epilepsy 3 1 0 2–3 Baldassari et al., 2019

DEPDC5

Self-limited familial neonatal epilepsy 2 0 0 0–0 Miceli et al., 2014

KCNQ3

KCNQ2-related encephalopathy 2 1 2 0–2 Weckhuysen et al., 2013

KCNQ2

Self-limited infantile epilepsy 1 0 0 0–0 Miceli et al., 2010; Grinton et al., 2015

KCNQ2

Genetic epilepsy with febrile seizures plus 1 1 0 0–1 Zhang et al., 2017; de Lange et al., 2019

SCN1A

Absences with eyelid myoclonia 1 1 1 1–1 Caraballo et al., 2009; Carvill et al., 2015a

CHD2

Early infantile-onset DEE 1 1 1 1–1 Larsen et al., 2015; Gardella et al., 2018; Johannesen et al.,
2018bSCN8A

Early infantile-onset DEE 1 0 1 0–1 Stamberger et al., 2016

STXBP1

Epilepsy of infancy with migrating focal seizures 1 1 1 1–1 McTague et al., 2013, 2016; Johannesen et al., 2016

GABRA1

Epilepsy with myoclonic-atonic seizures 1 0 1 1–1 Carvill et al., 2015c; Johannesen et al., 2018a

SLC6A1

Epilepsy with myoclonic-atonic seizures 1 1 0 0–1 Wolking et al., 2019

STX1B

Ohtahara syndrome 1 1 1 1–1 Ohba et al., 2015; Gertler et al., 2018; McTague et al., 2018

KCNT1

Progressive myoclonus epilepsy 1 1 1 0–1 Wolf et al., 2009; Lamperti and Zeviani, 2016

POLG

Rett syndrome 1 0 1 0–1 Steffenburg et al., 2001; Glaze et al., 2010

MECP2

Unclassified epilepsy 1 1 1 0–1 Zagaglia et al., 2018

COL4A1

Unclassified epilepsy 1 1 0 0–1 van Harssel et al., 2013; Trivisano et al., 2018

PCDH19

Unclassified epilepsy 1 0 0 0–1 Ebrahimi-Fakhari et al., 2015

PRRT2

Unclassified focal epilepsy 1 0 0 0–1 Corbett et al., 2016

KCNA2

Unclassified focal epilepsy 1 1 1 0–1 Weckhuysen et al., 2013

KCNQ2

Unclassified focal epilepsy 1 0 1 0–1 Labate et al., 2013; Ebrahimi-Fakhari et al., 2015

PRRT2

Unclassified generalized epilepsy 1 0 1 0–1 Epi4K Consortium et al., 2013; Damaj et al., 2015; Epi4K
Consortium, 2016CACNA1A

West syndrome 1 1 1 1–1 Carvill et al., 2015b; Baldassari et al., 2019

DEPDC5

West syndrome 1 1 1 1–1 Wolff et al., 2017

SCN2A

Total 76 36 38 25–56 (33–74%)

See Supplementary Table 1 for a version of this table citing evidence for estimates. DEE = developmental and epileptic encephalopathy.
aMissing data = 2.
bOne male.
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We conclude that at least 10–50/100 000 individuals will

require the care of an adult neurologist because of a genetic

disorder originally presenting as early-onset epilepsy. We

hope that these extrapolated figures inform attitudes to gen-

etic testing amongst adult neurologists who must consider

the multitude of patients under their care who are too old to

have benefited from modern genetic investigation under

paediatric services, as well as researchers designing genetical-

ly stratified studies of the adult population.

Adult neurologists need to know that these conditions fre-

quently reach the adult clinic manifesting as seizures or

movement disorders, often but not always with associated

intellectual disability or psychopathology, and that the yield

of genetic testing in this group is 25%; in the majority of

these a genetic diagnosis may inform treatment decisions

(Borlot et al., 2019; Symonds et al., 2019). Testing with a

panel of validated epilepsy genes, a copy number variant

screen, and karyotyping should be strongly considered for

adults (as well as children) who have unexplained epilepsy,

intellectual disability or movement disorders originally pre-

senting with seizures prior to 3 years of age.

Data availability

Data used for the prognostic estimates were found in the pub-

lications cited in the tables, in the main articles or their supple-

ments. De-identified summaries of electronic medical record

data used to generate Fig. 1 are available upon request.
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