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Abstract

Introduction: Over 500,000 bone grafting procedures are performed every year in the United 

States for neoplastic and traumatic lesions of the craniofacial skeleton, costing $585 million in 

medical care. Current bone grafting procedures are limited, and full-thickness critical-sized defects 

(CSDs) of the adult human skull thus pose a substantial reconstructive challenge for the 

craniofacial surgeon. Cell-based strategies have been shown to safely and efficaciously accelerate 

the rate of bone formation in CSDs in animals. The authors recently demonstrated that 

supraphysiological transplantation of macrophages seeded in pullalan–collagen composite 

hydrogels significantly accelerated wound healing in wild type and diabetic mice, an effect 

mediated in part by enhancing angiogenesis. In this study, the authors investigated the bone 

healing effects of macrophage transplantation into CSDs of mice.

Methods: CD1 athymic nude mice (60 days of age) were anesthetized, and unilateral full-

thickness critical-sized (4 mm in diameter) cranial defects were created in the right parietal bone, 

avoiding cranial sutures. Macrophages were isolated from FVB-L2G mice and seeded onto 

hydroxyapatite-poly (lactic-co-glycolic acid) (HA-PLGA) scaffolds (1.0 × 106 cells per CSD). 

Scaffolds were incubated for 24 hours before they were placed into the CSDs. Macrophage 

survival was assessed using three-dimensional in vivo imaging system (3D IVIS)/micro-CT. 

Micro-CT at 0, 2, 4, 6, and 8 weeks was performed to evaluate gross bone formation, which was 

quantified using Adobe Photoshop. Microscopic evidence of bone regeneration was assessed at 8 
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weeks by histology. Bone formation and macrophage survival were compared at each time point 

using independent samples t tests.

Results: Transplantation of macrophages at supraphysiological concentration had no effect on 

the formation of bones in CSDs as assessed by either micro-CT data at any time point analyzed 

(all P > 0.05). These results were corroborated by histology. 3D IVIS/ micro-CT demonstrated 

survival of macrophages through 8 weeks.

Conclusion: Supraphysiologic delivery of macrophages to CSDs of mice had no effect on bone 

formation despite survival of transplanted macrophages through to 8 weeks posttransplantation. 

Further research into the physiological effects of macrophages on bone regeneration is needed to 

assess whether recapitulation of these conditions in macrophage-based therapy can promote the 

healing of large cranial defects.
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Bone has an exceptional capacity to spontaneously regenerate following injury. When bone 

loss is excessive, following cancer, trauma, or osteomyelitis, or in certain comorbid states, 

including osteoporosis, infection, diabetes, and smoking, this capacity for regeneration is 

exceeded. Large boney defects of the adult craniofacial skeleton thus represent a substantial 

reconstructive challenge, and can result in dramatic deformities in aesthetically, functionally, 

and anatomically complex areas.1 Over 500,000 bone grafting procedures are performed 

every year in the United States, costing $585 million in medical care.2,3 Bone grafting 

procedures are the gold standard surgical approach to repair large boney defects but are 

limited by the availability of donor tissue and the morbidity associated with harvesting.

Tissue engineering (TE) techniques are emerging as new and promising therapies able to 

facilitate bone regeneration.4 Bone TE involves transplanting cells, scaffolding materials, 

and growth factors (GFs), in specific combinations to support regenerative repair, replace the 

missing bone tissue, and restore tissue function. Cells are isolated, cultivated ex vivo, and 

seeded into functional anatomically shaped bone scaffolds. In preclinical studies, scaffolds 

are placed into critical-sized bone defects (CSDs) to explore their osteogenic capability. A 

CSD is the smallest intraosseous wound size in a particular bone and species of animal that 

will not heal spontaneously during the lifetime of the animal or within the time period of 

scientific investigation.5 In standard mice models, a circular 4 mm CSD in the suture-free 

parietal bone is the most commonly used model.6 Numerous animal studies have shown that 

mesenchymal stromal cells (MSCs) derived from bone marrow (BMSCs),7–14 adipose tissue 

(ADSCs),15–19 and peripheral blood (BD-MSCs)20 can effectively and efficiently generate 

functional bone tissue in CSDs. Similar results have been found using stromal cells isolated 

from skeletal muscle,21 endometrial tissue,22 umbilical cord blood,23,24 umbilical cord 

Wharton jelly,25 dental pulp,26 and periosteal tissue.27 Preliminary results in humans suggest 

that autologous BMSCs28,29 and bone marrow30 can improve repair of large skeletal defects, 

but few clinical trials have been published and clinical success remains to be confirmed in a 

larger population of patients.4,31 In this original study, we aimed to investigate the bone 

healing effects of macrophage transplantation into CSDs of mice.
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METHODS

Animals

FVB-L2G (FVB-Tg (CAG-luc,-GFP)L2G85Chco/J) and CD1 athymic nude mice were 

purchased from Charles River Laboratories. Mice were bred and maintained at the Stanford 

University Comparative Medicine Pavilion in accordance with Stanford University 

guidelines. All the animals were housed in light- and temperature-controlled facilities and 

given food and water ad libitum. All experiments followed the protocols approved by the 

Animal Facilities at Stanford University.

Cell Isolation and Culture

Adult mouse macrophages were generated using methods described previously.32 In brief, 

bone marrow cells were isolated from FVB-L2G mice and differentiated in IMDM + 

GlutaMax (Life Technologies, Waltham, MA) supplemented with 10% fetal bovine serum 

(FBS, HyClone), 100 U/mL penicillin, 100 mg/mL streptomycin (Life Technologies), and 

10 ng/mL mouse macrophage-colony stimulating factor (M-CSF) (Peprotech). Cells were 

cultured on 10 cm3 plates and incubated (37°C, 5% carbon dioxide) for 10 days, at which 

point the plated cells exhibited morphological changes characteristic of macrophages.33,34 

Cells were then lifted by first washing the plates twice with phosphate-buffered saline (PBS) 

and incubating for 10 minutes with TrypLE (Life Technologies) at 37°C. The cells were then 

removed with cell lifters (Corning), and excess TrypLE was removed by the addition of 

serum-containing culture media and centrifugation. The macrophages were then counted and 

diluted to appropriate concentrations with PBS for transplantation. Macrophages were then 

seeded in PBS onto hydroxyapatite-poly (lactic-co-glycolic acid) (HA-PLGA) scaffolds (1.0 

× 106 cells per CSD) and incubated for 24 hours before placement into the CSD (Fig. 1A).

Calvarial Defect Model

CD1 athymic nude mice, 60 days of age, were randomly divided into 2 groups: scaffolds 

with macrophages (experimental group, n = 15), and unseeded hydrogels (control group, n = 

15) (Fig. 1B). Mice were anesthetized (isoflurane, 1–2%) and the skin overlying the parietal 

bone was sterilized with 70% alcohol. A midline longitudinal incision over the calvaria was 

used to expose the skull and cranial skin flaps were elevated. The subcutaneous fascia was 

divided, and periosteal flaps were reflected bilaterally. A single full-thickness critical-sized 

(4 mm) calvarial defect was created on the right suture-free parietal bone using a 4-mm drill. 

Defects were rinsed with PBS solution to clear debris, and care was taken not to damage the 

dura mater. The defects were immediately filled with the scaffolds. The skin flaps were 

closed with interrupted sutures (nylon 6–0, Ethicon). Warm saline boluses (100 cc/kg) were 

injected subcutaneously at the end of the procedure to maintain hydration. The day of 

surgery was designated as day 0. Mice in each group were euthanized at 0, 2, 4, 6, and 8 

weeks (n = 2 mice per time point) via exposure to hyperbaric carbon dioxide.

Microcomputed Tomography

At weeks 0, 2, 4, 6, and 8 (n = 3 mice per group per time point), the whole calvarium was 

dissected and fixed in 2% paraformaldehyde (PFA) at 4°C for 12 to 16 hours. Skulls were 
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scanned using calibrated X-ray micro-computerized tomography (micro-CT) equipment to 

assess bone formation (Micro XCT, Xradia Inc, Pleasanton, CA) at 4 magnification, 10 μm 

resolution with a peak voltage of 40 kVp, an LE #2 source filter, and a beam hardening 

constant of 2. Bone volume in the regions of interest (ROI) was quantified using Adobe 

Photoshop (Adobe) determined as a ratio to the inner diameter of the original CSD (4 mm). 

Individual CT slices (200–300) within the 4 mm CSD were binarized for the determination 

of bone formation.

Histology and Staining

Following micro-CT, fixed skulls were decalcified in 0.4 M EDTA in PBS (pH 7.2) at 4°C 

for 2 weeks. EDTA was changed at 1 week. Specimens were then dehydrated in 30% 

sucrose (in PBS) at 4°C for 24 hours and embedded in Tissue Tek O.C.T. (Sakura Finetek) 

under dry ice. Frozen blocks were mounted on a MicroM HM550 cryostat (MICROM 

International GmbH) and 7 to 8 μm thick sections were transferred to Superfrost/Plus 

adhesive slides (Fisher Scientific). Representative sections were stained with hematoxylin 

and eosin (H&E) dye using a standardized protocol. Bright-field images were taken with a 

Leica DM4000B microscope (Leica Microsystems) and RETIGA 2000R camera (QImaging 

Scientific Cameras).

H&E-stained sections were used for quantification of bone formation at 3 standardized 

locations within the defect following methods described previously.17 Using Bioquant 

software (R&M Biometrics), we drew a line through the original defect from 1 edge to the 

other edge. We measured the length of the line as it passed through bone versus the length 

through scaffold for each sample.

Three-Dimensional In Vivo Imaging/ Microcomputerized Tomography

The survival and localization of transplanted macrophages in vivo in the CSD site was 

characterized using three-dimensional in vivo imaging (3D IVIS) Lumina Imaging System 

(Xenogen Corporation, Alameda, CA) and bioluminescence imaging (BLI) at 0, 2, 4, 6, and 

8 weeks.

Statistical Analysis

GraphPad Prism version 6.0c was used for analysis of data and generation of graphs.

Two-tailed unpaired Student t tests were used for comparisons of bone formation at 0, 2, 4, 

6, and 8 weeks between the 2 groups. Results are expressed as mean ± standard error of the 

mean (SEM). A *P value of ≤0.05 was considered statistically significant.

RESULTS

All animals survived the 8-week postoperative period. No complications, including wound 

infections, were noted.
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Microcomputerized Tomography Results

Defects treated with both PBS-scaffolds and macrophage-seeded scaffolds demonstrated 

minimal osseous healing over the 8-week course. Radiographical analysis of the calvarial 

defects revealed that no improvement in bone formation at any of the time points analyzed in 

mice treated with macrophage-seeded, compared with PBS-only scaffolds, all P > 0.05 

(Figs. 2 and 3).

Histology Results

Histology corroborated by the CT results and revealed no evidence of new bone formation 8 

weeks following the transplantation of the scaffold in either the experimental or the control 

group (Fig. 4A, B). Nuclei in the scaffolds indicated the presence of viable macrophages up 

to 8 weeks post transplantation.

Three-Dimensional In Vivo Imaging System/ Microcomputerized Tomography Imaging

Three-dimensional in vivo imaging system/microcomputerized tomography imaging 

demonstrated survival of macrophages through the 8-week study period (Fig. 4C, D).

DISCUSSION

The exact mechanisms responsible for bone formation in cell-based therapies are unknown. 

Living cells, regardless of tissue source, have greater bone regenerative capacity than cell-

free media and decellularized matrices.31 It is thought that enhancing cell survival, 

proliferation, and differentiation potential is desirable.35 The most commonly transplanted 

cells are MSCs which have long-term self-renewing and differentiation capabilities and may 

enable lasting therapeutic effects. These cells require appropriate conditions to direct their 

differentiation into the cell fates important in bone regeneration. It is interesting to explore 

whether the application of more differentiated cells normally involved in secondary bone 

healing may be of potential benefit in bone regeneration tissue engineering.

Macrophages are myeloid-derived innate immune cells which play an integral role in tissue 

homeostasis, repair, and regeneration. The primary function of macrophages is to 

phagocytose invading pathogens, and secondary functions including the release of growth 

factors, cytokines, interleukins, and nitric oxide to initiate inflammatory responses and repair 

damaged tissue.36,37 The bone tissue resident macrophages, “osteomacs,” reside in 

periosteal and end-osteal tissues in close association with osteoblasts38 and promote 

osteoblastogenesis in vivo and in vitro.39–41 Osteomacs mediate the anabolic effects of 

parathyroid hormone on bone,42 express proanabolic bone molecules including bone 

morphogenetic protein 2 (BMP2), BMP4, tumor growth factor beta-1 (TGF-ß1), Wnt 

proteins, and oncostatin M (OSM).43,44 Following fractures, osteomacs are activated and 

found in abundance in the healing callus.45,46 Bone marrow-derived recruited macrophages 

also mediate bone repair following fracture, and populate the fracture callus in the 

inflammatory phase of bone healing,47,48 and produce various osteoactive cytokines, 

including OSM, matrix metalloproteinases, and bone morphogenetic proteins.47,49–51 

Harnessing this bone regenerative potential of macrophages may be a promising strategy for 

enhancing bone repair therapeutically.
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Macrophage-based therapy has been long described in the cancer field.52 The exceptional 

ability of transplanted monocytes or macrophages to adopt the functions of local tissue-

specific macrophages makes them promising candidates for cell-based therapies.53 

Macrophages “activated” ex vivo by culture with either peripheral nerves54,55 or excised 

skin,56 and injected locally to the area of nerve or spinal cord damage induced partial motor 

recovery in animals. Injection of incubated autologous macrophages mediated clinically 

significant recovery of motor and sensory function in patients with acute complete spinal 

cord injury,57,58 however, a follow-up study failed to confirm these findings.59 Pulmonary 

macrophage transplantation therapy has been shown to correct lung disease in mice with 

results and macrophage survival persisting for at least 1 year.60,61 Cutaneous wound healing 

is another process highly dependent upon the coordinated interplay between macrophages 

along with resident dermal and infiltrating immune cells.36,62 We recently demonstrated that 

supraphysiological transplantation of macrophages seeded onto pullulan–collagen hydrogels 

and placed into splinted wounds in diabetic and non-diabetic mice significantly increased the 

rate of wound healing, with effects thought to be mediated by increased angiogenesis.33

The potential of macrophage-based therapy to promote bone regeneration has not been 

previously shown. Following our previous work33 we explored the potential of macrophage-

based therapy to heal CSDs of mice. Monocytes were isolated from EGFP-luciferase mice to 

allow for cell tracking, as these mice express firefly luciferase and cytoplasmic EGFP 

constitutively in all cells.63 After 10 days in culture with macrophage colony stimulating 

factor (M-CSF), adherent cells exhibit the characteristic morphology of macrophage 

differentiation.33,34 Differentiated macrophages were seeded onto hydroxyapatite-poly 

(lactic-co-glycolic acid) (HA-PLGA) scaffolds and transplanted into CSDs of 

immunodeficient mice. The survival, localization, and behavior of transplanted macrophages 

in the wound site were characterized using 3D IVIS and histologic analysis.

This study demonstrates that allogenic monocytes, differentiated into macrophages ex vivo 

with M-CSF and seeded onto HA-PLGA scaffolds, did not promote de novo bone formation 

when transplanted into CSDs of immunodeficient mice. These results were found despite the 

transplanted macrophages surviving the 8-week postoperative study period. Although the 

sample sizes and observation period used here are comparable to those used in previous 

studies investigating the osteogenic potential of cell-based therapy in calvarial CSDs,17 bone 

healing effects of MSF-cultured macrophages were not seen as they are after transplantation 

of stem and progenitor cells.

An important question is whether the conditions used in the present study were able to 

provide an environment capable of promoting the bone-forming action of the transplanted 

macrophages. Bone TE involves the combination of cells, growth factors, and the 

biodegradable scaffolds used, which together recreate the necessary environmental cues and 

the suitable niche for bone regeneration.64 The monocytes used here were simply cultured in 

M-CSF and no attempt was made to bias macrophage differentiation along specific 

phenotypes through the use of additional culture media. When macrophages were used to 

treat nerve damage in animal models they were “educated” ex vivo by culturing with 

peripheral nerves54,55 or excised skin56 toward the wound healing phenotype before topical 

injection to areas of nerve injury. In our previous cutaneous wound healing model, the 
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transplanted macrophages were only cultured in M-CSF prior to transplantation and it was 

thought the injured skin provided sufficient cues to activate the desired regenerative 

phenotypes of the transplanted macrophages.33 Following these findings, it was 

hypothesized that the injured bone environment would provide sufficient cues to activate the 

desired regenerative phenotypes of the transplanted macrophages. However, perhaps the 

environment inside the calvarial defect is less inflammatory and therefore unable to 

efficiently direct differentiation of the transplanted macrophages. Macrophage therapy for 

healing calvarial defects may require the addition of suitable growth factors and cytokines, 

such as macrophage chemotactic factor-1 and transforming growth factor which are made by 

osteocytes, to effectively exploit their bone regenerative potential.

Additionally, bone formation is known to be highly dependent upon adequate blood supply, 

and perhaps scaffolds seeded with factors that promote neovascularization, such as with 

vascular endothelial growth factor, may be necessary in addition to transplanted 

macrophages. The HA-based scaffold was used in this study because of its known beneficial 

effects in bone healing.65–67 HA belongs to a family of compounds known as apatites that 

closely resemble the mineral component of bone, and mimics natural bone at the nanoscale.
68 HA-based scaffolds have promising results in bone regeneration due to their 

osteoconductive properties, unlimited availability, and absence of immune response and risk 

of virus transmission.65–67 HA scaffolds, however, may not be the most conducive material 

to macrophage function and future work may consider exploring different scaffolds 

materials. “Immuno-informed” biomaterials, for example, can induce macrophage 

polarization toward the M2 phenotype, or the “alternatively activated” anti-inflammatory 

macrophage type, to enable them to fulfil a regeneration function.69 For example, high 

surface wettability materials, such as titanium surfaces, can promote the M2 phenotype of 

macrophages in vitro.70 Future work should explore the effects of using different culture 

conditions, scaffolds, growth factors, and cytokines, to more definitively determine the 

therapeutic potential of macrophage-based therapy in the skeleton.

A second modification to the described protocol which may be of potential benefit is the 

cotransplantation of macrophages with other cells involved in bone healing. Unlike stem/

progenitor cells, macrophages are terminally differentiated and are unable to give rise to 

other cell types. Although they are integral to bone healing it may be that the regenerative 

potential of macrophages is only realized upon the presence of cells, such as other immune 

or tissue-resident cells, which in turn may also provide the necessary supportive factors. 

Alternatively, the addition of macrophages may enhance MSC-based therapies, as M2 

macrophages can promote the osteoblast differentiation of MSCs.71 Multicellular therapy is 

gaining popularity in medicine, and recent clinical trials have shown promising effects of the 

delivery of macrophages along with other mesenchymal cell types in reducing pathology and 

symptomatology of both critical limb ischemia72 and ischemic cardiomyopathy.73 Future 

work should consider the cotransplantation of macrophages with other cells such as MSCs.

CONCLUSIONS

Importantly, transplanted macrophages survive in scaffolds within CSD for at least 8 weeks, 

highlighting longevity that could ultimately be of clinical importance. This suggests that if 
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their bone-forming potential can be enhanced, then similar pipelines can be used as 

described here. Macrophage-based therapies in cancer treatment suggest that outcomes are 

exquisitely sensitive to factors such as cell source and the methods used to collect, isolate, 

culture, and prepare the macrophages for transplantation.74 It is therefore essential that in 

future macrophage-based therapeutic investigations researchers are transparent in reporting 

the methodology concerning the collection of differentiation techniques, including the 

animal strain, any pretreatments, age, anatomic source of precursor cells/ monocytes/

macrophages, culture conditions, and cytokine treatment.74

The versatility and plasticity of macrophages represent both an opportunity and a research 

challenge for the future development of macrophage-based therapy. Current understanding 

of macrophage biology and their role in bone homeostasis, repair, and regeneration is 

expanding. Macrophages are increasingly recognized to be an extremely heterogeneous 

population, and it is likely that recruited and resident tissue macrophages biased toward 

more pro- or anti-inflammatory states may have different functional roles, at distinct time 

points in the bone healing process. Increased understanding of the cellular and molecular 

mechanisms by which endogenous macrophages regulate bone metabolism is essential to 

exploit this knowledge therapeutically.
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FIGURE 1. 
(A) To prepare the macrophages for transplantation, bone marrow was extracted from FVB-

L2G mice and cultured for 2 d using a serum supplemented with macrophage-colony 

stimulating factor (M-CSF) to differentiate the cells into macrophages. This was confirmed 

histologically after 10 d in culture. The differentiated cells were then seeded onto 

hydroxyapatite-poly (lactic-co-glycolic acid) (HA-PLGA) scaffolds and incubated for 24 h. 

(B) Critical-sized defects (CSDs) were created in the suture-free parietal bone of CD1 

athymic mice, 60 d of age. Into this defect the mice either received: Experimental group: A 

macrophage-seeded scaffold (n = 10); or Control group: A PBS soaked scaffold (n = 10)
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FIGURE 2. 
Microcomputerized tomography images of representative mouse in the treatment and control 

group.
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FIGURE 3. 
The calvarial defect healing curve showing the percent of original defect that remained at 0, 

2, 4, 6, and 8 wk following scaffold transplantation.
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FIGURE 4. 
(A, B) Representative histological sections of the critical-sized defect in a mouse in the 

experimental group (A) and the control group (B). Both images show a sharp demarcation 

between the bone tissue and the scaffold with no evidence of new bone formation. Histology 

sections shown here were imaged at ×10 magnification. (C, D) A representative micro-CT 

(C) and corresponding IVIS/micro-CT image (D) of a mouse 8-wk posttransplantation. The 

green coloring indicates luciferase activity and therefore the presence of viable transplanted 

macrophages from EGFP-luciferase mice in the calvarial defect. CT, computerized 

tomography; IVIS, in vivo imaging system.
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