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Draft genomes of two Atlantic 
bay scallop subspecies Argopecten 
irradians irradians and A. i. 
concentricus
Xiao Liu1, Chao Li2, Min Chen3, Bo Liu2, Xiaojun Yan1, Junhao Ning3, Bin Ma4, Guilong Liu4, 
Zhaoshan Zhong5, Yanglei Jia1, Qiong Shi   6 & Chunde Wang2,3 ✉

The two subspecies of Atlantic bay scallop (Argopecten irradians), A. i. irradians and A. i. concentricus, 
are economically important aquacultural species in northern and southern China. Here, we performed 
the whole-genome sequencing, assembly, and gene annotation and produced draft genomes for both 
subspecies. In total, 253.17 and 272.97 gigabases (Gb) of raw reads were generated from Illumina 
Hiseq and PacBio platforms for A. i. irradians and A. i. concentricus, respectively. Draft genomes of 
835.7 Mb and 874.82 Mb were assembled for the two subspecies, accounting for 83.9% and 89.79% of 
the estimated sizes of their corresponding genomes, respectively. The contig N50 and scaffold N50 
were 78.54 kb and 1.53 Mb for the A. i. irradians genome, and those for the A. i. concentricus genome 
were 63.73 kb and 1.25 Mb. Moreover, 26,777 and 25,979 protein-coding genes were predicted for A. i. 
irradians and A. i. concentricus, respectively. These valuable genome assemblies lay a solid foundation 
for future theoretical studies and provide guidance for practical scallop breeding.

Background & Summary
Two subspecies of the Atlantic bay scallop, the northern subspecies Argopecten irradians irradians (Lamarck, 
1819) and the southern subspecies A. i. concentricus (Say, 1822), are widely cultured in China. The northern 
subspecies A. i. irradians is mainly cultured in northern waters, while the southern subspecies A. i. concentricus 
is generally cultured in southern waters1. Both subspecies were introduced from the USA between the 1980s and 
1990s. In general, these bay scallops grow fast but have short life spans (i.e. <24 months)2. These two subspecies 
are morphologically similar, although the ratio of shell width (W) to shell height (H) or shell length (L) of A. i. 
concentricus is remarkably higher than that of A. i. irradians—the average W/L ratio of adult A. i. concentricus and 
A. i. irradians are 0.59 and 0.45, respectively3. Although both subspecies are adapted to their natural habitats with 
wide temperature ranges, A. i. irradians is more tolerant to the cold northern waters but cannot survive in the 
southern warm waters, whereas A. i. concentricus is better adapted to the warm southern waters but stops growing 
at a temperature of 12 °C or lower.

Successful diallel crossbreeding has been performed between the two subspecies, as well as between the 
Peruvian scallop (Argopecten purpuratus) and both of the two bay scallop subspecies4,5. In addition to high ferti-
lization and hatching rates, the resulting F1 hybrids exhibited excellent performance in production traits such as 
growth and survival, indicating a great potential in stock improvement via inter- or intra-specific hybridization 
between different subspecies or populations. To date, three high-performance strains, ‘Bohai Red’, ‘QN-2’ and 
‘QN Orange’, with increases in average whole body weight of over 38% compared to unselected bay scallops, have 
been selected from the F1 hybrids between the Peruvian scallop and A. i. irradians6,7. Recently, a new strain was 
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obtained by further crossing the ‘Bohai Red’ strain with A. i. concentricus. Interestingly, this strain exhibited a 
better tolerance to high temperature than the ‘Bohai Red’ strain and had a longer life span than A. i. concentricus 
(Zhigang Liu, personal communication). In addition, the selection of a genetically stable strain in bivalves by 
traditional breeding methods could take six to ten years, but marker-assisted selection based on genomic data can 
greatly reduce breeding duration.

In addition to its application in breeding, genomic data can also be immediately employed in studies of evolu-
tion, adaptation, longevity, gonad development, and sex determination in bivalves8–11. To date, several genomes 
have been sequenced and assembled in bivalves. For example, assembly of the Pacific oyster (Crassostrea gigas) 
genome provided insights into how sessile oysters adapt to adverse environments8. Analyses of the Japanese scal-
lop (Patinopecten yessoensis) genome, the first sequenced scallop genome, revealed that scallops may have a con-
served primitive karyotype close to that of the ancestral bilaterian9. Comparison of the genome sequences of a 
deep-sea mussel (Bathymodiolus platifrons) and a shallow-water mussel (Modiolus philippinarum) deepened our 
understanding of how deep-sea organisms adapt to extreme environments10.

In a previous study, we have sequenced and assembled the genome of the Peruvian scallop12. The genomic 
data of Argopecten scallops and their hybrids will allow us to investigate the evolutionary relationships among 
Argopecten scallop species and subspecies, to study the molecular mechanisms underlying scallop adaptations 
to diverse habitats and to understand their wide variation in life span as well as the development of male sterile 
gonads in their F1 hybrids.

In this study, we sequenced and assembled the genomes of the two bay scallop subspecies, A. i. irradians and 
A. i. concentricus. Together with the genomic data of the Peruvian scallop, the results of our present study and 
subsequent genome-wide association studies will eventually facilitate the breeding progress in these Argopecten 
scallops.

Methods
Sample collection and genomic DNA extraction.  Genomic DNA was extracted from the adductor 
muscle of a single specimen from a pure line of A. i. irradians (Fig. 1a) and A. i. concentricus (Fig. 1b), which have 
been bred by self-fertilization in a scallop farm in Laizhou, Shandong Province, China. The quality of the DNA 
samples was checked by electrophoresis on 1% agarose gels. The purity of the DNA was also checked using a 
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). DNA concentration was measured using a Qubit® 
DNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, CA, USA). A total of 1.5 μg DNA per sample was 
used for subsequent sample preparations.

DNA library preparation and whole genome sequencing.  Sequencing libraries were generated using 
the Truseq Nano DNA HT Sample Preparation Kit (Illumina, USA) following the manufacturer’s instructions. 
Index codes were used to cross-index the sequences and samples, that is, the DNA samples were fragmented by 
sonication and then end-polished, A-tailed, and ligated with the full-length adapter for Illumina sequencing fol-
lowed by PCR amplification. The resulting PCR products were purified (AMPure XP system) and the sequence 
libraries were analyzed for size distribution by Agilent2100 Bioanalyzer and quantified using real-time PCR.

These libraries were sequenced on an Illumina HiSeq4000 platform using a 150-bp paired-end sequencing 
protocol. Additional sequencing was performed on a PacBio Sequel instrument with a SequelTM Sequencing Kit 
1.2.1 (Pacific Biosciences, USA) for both subspecies. Raw reads in the FASTQ format were first processed using 
Trimmomatic. In this step, clean reads were obtained by removing reads containing adapter sequences, poly-N 
repeats, and low-quality sequences. In addition, the Q20, Q30, and GC content of the clean reads was determined 
for quality control. All downstream analyses were based on the high quality, clean reads identified here.

Genome assembly.  To estimate the genome size of both subspecies, a routine 17-mer frequency distribution 
analysis13 was performed according to the following formula: genome size = k-mer number/peak depth (Table 1). 
A routine assembly strategy was applied for the genome assemblies of both scallops. Briefly, all high-quality reads 
were assembled into scaffolds using Platanus v1.2.414, and the gaps were filled using GapCloser15. Subsequently, 
PBJelly v14.1 was applied for additional gap filling with Pacbio reads16. Finally, all Illumina reads were employed 
to correct the genome assemblies in Pilon v1.18 for two rounds17 (Table 1).

Genome assessment.  Following the initial assembly, the integrity of both genome assemblies was assessed 
by mapping the reads from short-insert libraries onto the assembled genomes using Burrows-Wheeler Aligner 

Fig. 1  Pictures of the representative bay scallop in China. (a) The northern subspecies (A. i. irradians). (b) The 
southern subspecies (A. i. concentricus).
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(BWA)18, which can align the clean reads from multiple samples against the reference genomes (settings: bwa 
mem –t 4 –k 32 –M –R). Alignment files were converted to BAM files using SAMtools19. In addition, potential 
PCR duplications were removed using the SAMtools with command “rmdup”. If multiple read pairs had iden-
tical external coordinates, only the pair with the highest mapping quality was retained. Subsequently, the Core 
Eukaryotic Genes Mapping Approach (CEGMA) was employed to evaluate the completeness of both genome 
assemblies20. Among the 248 ultraconserved core eukaryotic genes (CEGs), we identified 231 (93.15%, com-
plete + partial) and 227 (91.53%, complete + partial) CEGs in the genomes of northern and southern subspe-
cies, respectively. Benchmarking Universal Single-Copy Orthologues (BUSCO) was used to quantitatively assess 
the completeness of genome assembly based on evolutionarily-informed expectations of gene content from 
near-universal single-copy orthologues21. The assessment demonstrated that 91% of the 843 single-copy genes 
were identified in both genome assemblies, containing C: 91% [D: 4.3%], F: 6.1%, M: 2.4%, n: 843 (C: complete 
[D: duplicated], F: fragmented, M: missed, n: groups) for the northern bay scallop subspecies, and containing C: 
91% [D: 3.9%], F: 5.3%, M: 3.4%, n: 843 (C: complete [D: duplicated], F: fragmented, M: missed, n: groups) for the 
southern bay scallop subspecies. These data indicated high integrity of both genome assemblies.

Repeat annotation.  Two methods were employed to identify transposable elements (TEs) in the assem-
bled genomes. When using the ab-initio method, RepeatModeler was used to build a species-specific repeat 
database (parameters set as ‘–engine_db wublast’)22. When using a homology-based method, RepeatMasker23 
was employed to identify repeats with known repeat libraries (Repbase)24 using the following parameters: ‘-a 
-nolow -no_is -norna -parallel 3 -e wublast–pvalue 0.0001’, along with RepeatProteinMask (the parameter set 
as ‘-noLowSimple -pvalue 0.0001 -engine wublast’)23, and the repbase data were collected from a comprehen-
sive database of undifferentiated species (RepBase Metadata Database RELEASE 20170127). In addition, tan-
dem repeats were identified using Tandem Repeats Finder (TRF) with the parameters setting as ‘Match = 2, 
Mismatching penalty = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50, MaxPeriod = 2,000’25 (Table 2).

Gene annotation.  de novo prediction.  Protein-coding genes in the assembled genomes were annotated 
using de novo prediction by homology with transcriptome data-based evidence. Four programs were employed 
for the de novo prediction of genes, including Augustus v3.2.1 (with the following parameters: ‘-uniqueGeneId 
true –noInFrameStop = true –gff3 on –genemodel complete –strand both’)26, Genscan (using default parame-
ters)27, GlimmerHMM (with the following parameters: ‘ -f -g’)28, and SNAP (using default parameters)29.

Homology-based annotation.  Protein sequences from mosquito (Anopheles gambiae), Amphioxus 
(Branchiostoma floridae), nematode (Caenorhabditis elegans), Ascidian (Ciona intestinalis), Pacific oyster (C. 
gigas, also known as Magallana gigas), fruit fly (Drosophila melanogaster), leech (Helobdella robusta), human 
(Homo sapiens), owl limpet (Lottia gigantean), octopus (Octopus bimaculoides), and sea urchin (Strongylocentrotus 

Genome assembly A i. irradians A i. concentricus

Contig N50 size (kb) 78.54 63.73

Scaffold N50 size (Mb) 1.53 1.25

Estimated genome size (Mb) 996.07 974.3

Assembled genome size (Mb) 835.7 874.82

Genome coverage for Illumina reads (×) 254.17 259.6

Genome coverage for Pacbio reads (×) 20.15 20.57

The longest scaffold (bp) 8,652,007 5,002,087

Genome annotation i. irradians i. concentricus

Protein-coding gene number 26,777 25,979

Average transcript length (kb) 11.86 12.17

Average CDS length (bp) 1,443.63 1,460.6

Average intron length (bp) 1,704.92 1,722.22

Average exon length (bp) 203.09 202.42

Average exons per gene 7.11 7.22

Table 1.  Summary of the genome assemblies and annotations for both subspecies.

Type

Repeat Size (bp) % of genome

A. i. irradians A. i. concentricus A. i. irradians A. i. concentricus

TRF 126,153,959 135,900,220 15.10 15.53

RepeatMasker 309,417,572 326,918,089 37.02 37.37

RepeatProteinMask 31,422,581 30,821,540 3.76 3.52

Total 389,681,429 412,788,948 46.63 47.19

Table 2.  Prediction of repeat elements in the two genome assemblies of bay scallop.
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purpuratus) were used for homology-based searches against the two genome assemblies using TBLASTn 
(e-value ≤ 10−5)30. The final gene structures were predicted using GeneWise (with the following parameters: 
‘-genesf ’)31.

Transcriptome-based annotation.  Transcriptome data from different tissues including kidney, hepatopancreas, 
and haemolymph were mapped onto each genome assembly using Tophat (with the following parameters: ‘–
max-intron-length 500000 -m 2–library-type fr-unstranded’)32, and used for gene modeling using Cufflinks 
(with the following parameters: ‘–multi-read-correct’)33 according to the pair-end relationships and the overlaps 
between aligned reads.

Gene set integration.  Following de novo prediction, homology-based annotation, and transcriptome-based 
prediction, we integrated the gene models using EvidenceModeler (EVM)30 to generate a comprehensive and 
non-redundant gene set (Table 1).

Functional assignment.  Gene function annotation was performed by aligning the predicted protein 
sequences against various protein databases—including the SwissProt34 and NCBI non-redundant (Nr) databases—
using BLASTP (e-value ≤ 10−5). Gene domain annotation was performed by searching the InterPro database35. All 
genes were aligned against the Kyoto Encyclopedia of Genes and Genomes (KEGG)36 database to identify gene 
pathways. Gene Ontology (GO) terms of the genes were obtained from the corresponding InterPro entry37.

Ortholog and gene family expansion analysis.  The protein-coding genes from both scallop genome 
assemblies and seventeen other sequenced species including Pacific oyster, owl limpet, Amphioxus, nematode, 
fruit fly, leech, human, octopus, red flour beetle (Tribolium castaneum), polychaete (Capitella teleta), brachio-
pod (Lingula anatina), sea slug (Aplysia californica), abalone (Haliotis discus), pearl oyster (Pinctada fucata), 
Yesso scallop (P. yessoensis), deep-sea vent mussel (B. platifrons) and shallow-water mussel (M. philippinarum) 
were analyzed. All data were downloaded from the Ensembl38 or NCBI39 databases. Gene family analysis was 
performed based on the homologs of the protein-coding genes in the related species, which was initially imple-
mented by the alignment of an “all against all” BLASTP. Subsequently, alignments with high-scoring segment 
pairs (HSPs) were conjoined for each gene pair by Solar40 to process the mapping results. To identify homologous 
gene-pairs, more than 30% coverage of the aligned regions in both homologous genes was required. Finally, 
homologous genes were clustered into gene families by OrthoMCL41. A p-value cut-off of 1e-5 was chosen for 
putative orthologues or paralogs, which were converted into a graph for the nodes of representative protein 
sequences. The resulting graph is represented by a symmetric similarity matrix to which an MCL algorithm was 
applied (with the following parameters: “-inflation 1.5”) to regulate cluster tightness (Fig. 2a,b).

Genome evolution analysis.  Phylogenetic analysis.  To trace the evolutionary position of A. i. irradians 
and A. i. concentricus, a dataset containing 107 single-copy protein-coding genes retrieved from the 19 species 
mentioned above was used for phylogenetic tree construction and divergence time estimation. Protein sequences 
for these single-copy genes were aligned by MUSCLE42 one by one, and then were concatenated to the final data-
set. ProtTest43 was used to select the best-fit model for this dataset. Then, the phylogenetic tree was reconstructed 
using the RAxML method (version 7.2.3)44 with LG + G + I + F model with the proportion of invariable sites 0.07 
and Gamma shape parameter 0.83. The clade containing H. sapiens and B. floridae was set as outgroup. Clade 
support was assessed using the bootstrapping algorithm in the RAxML with 1000 alignment replicates.

Estimation of divergence time.  Species divergence time was inferred based on the same dataset containing 107 
single-copy protein-coding genes from the 19 species using the MCMCTree function included in PAML v4.7a45 
with the following parameters: ‘–model 0–rootage 1200 -clock 3’. For their divergence time estimation, reference 
divergence times obtained from TimeTree database46 were used as time scales to calibrate the divergence time 
of A. i. irradians and A. i. concentricus. These include the divergence times between T. castaneum and D. mela-
nogaster (307–414 Mya), between P. yessoensis and C. gigas (>330 Mya), between C. teleta and D. melanogaster 
(531–581 Mya), between C. teleta and L. gigantean (531–581 Mya), between C. gigas and L. gigantean (500–550 
Mya), between H. robusta and C. teleta (450–602 Mya), between P. fucata and C. gigas (>330 Mya), and between 
B. platifrons and M. philippinarum (39–132 Mya).

Data Records
The whole genome sequences of A. i. irradians and A. i. concentricus were deposited in public repositories. 
The raw sequencing and transcriptomic data were deposited in NCBI Sequence Read Archive, under the SRA 
study accession SRP17452647. This whole-genome project including the assembly fasta, annotation and protein 
sequencing was uploaded to Dryad (https://doi.org/10.5061/dryad.hdr7sqvdr)48. All genome annotation and 
phylogenetic tree files were uploaded to Figshare (https://doi.org/10.6084/m9.figshare.c.4356239)49. The genome 
assemblies are also available at the NCBI Assembly website50,51.

Technical Validation
To produce high-quality draft genome assemblies, we applied whole-genome sequencing, assembly, and annota-
tion of the two bay scallop subspecies. The whole genome shotgun sequencing strategy was used for both bay scal-
lop subspecies. We constructed six sequencing libraries including two short-insert libraries (250 bp and 450 bp) 
and four long-insert libraries (2, 5, 10, and 20 kb) for A. i. irradians and A. i. concentricus, respectively. For A. i. 
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irradians, a total of 253.17 gigabases (Gb) of raw reads were generated while a total of 272.97 Gb of raw reads were 
generated for A. i. concentricus. For A. i. irradians, a total of 3.86 × 1010 k-mers with a peak k-mer depth of 38 were 
employed to obtain an estimated genome size of 996.07 Mb (Table 1). In A. i. concentricus, a total of 4.97 × 1010 
k-mers and a peak k-mer depth of 50 were employed to obtain the estimated genome size of 974.3 Mb. Finally, 
draft genomes of 835.7 Mb and 874.82 Mb were assembled for A. i. irradians and A. i. concentricus, respectively 
(Table 1), which accounted for 83.9% and 89.79% of their corresponding estimated genome size (Table 1). For the 
genome assembly of A. i. irradians, the contig N50 was 78.54 kb and the scaffold N50 was 1.53 Mb; meanwhile, 
the contig and scaffold N50s of the A. i. concentricus genome assembly were 63.73 kb and 1.25 Mb, respectively 
(Table 1). 99.46% of all short reads could be mapped onto the assembled genome of A. i. irradians with a coverage 
of 90.46%. Similarly, in A. i. concentricus, 99.4% of all short reads could be mapped onto the assembled genome 

Fig. 2  Comparative genome analysis between the bay scallops and the other 19 species. (a) Orthologue 
clustering analysis of the protein-coding genes in the bay scallop genomes. The horizontal axis shows 19 species 
and the vertical axis shows the corresponding number of genes. Pink represents the number of single-copy gene 
families, yellow represents the number of multiple-copy gene families, dark yellow represents the number of 
unique gene families of the corresponding species, and green represents the number of other gene families not 
mentioned above. (b) Venn diagram showing the shared and unique gene families among the five compared 
species. The total number of each gene family in the unique or shared regions is indicated. Abbreviations of 
the species are as follow: Aic, A. i. concentricus; Aii, A. i. irradians; Aca, A. californica; Bfl, B. floridae; Bpl, B. 
platifrons; Cel, Caenorhabditis elegans; Cgi, C. gigas; Cte, C. teleta; Dme, D. melanogaster; Hdi, H. discus; Hro, H. 
robusta; Hsa, H. sapiens; Lan, Lingula anatine; Lgi, L. gigantean; Mph, M. philippinarum; Obi, O. bimaculoides; 
Pfu, P. fucata; Pye, P. yessoensis; Tca, T. castaneum.

Fig. 3  Phylogenetic position of the sequenced species. The phylogenetic tree was constructed based on a 
dataset from 107 single-copy orthologues using the RAxML method. Clade support was assessed using the 
bootstrapping algorithm with 1,000 alignment replicates. (a) The phylogenetic tree was reconstructed using the 
RAxML method with LG + G + I + F model. The tree is drawn to scale, with branch lengths proportional to the 
number of amino acid substitutions. Bootstrap values are presented above the nodes. (b) Species divergence 
time was estimated using the MCMCTree function in the PAML with the parameter of ‘–model 0–rootage 1200 
-clock 3’. Red nodes in the phylogenetic tree represented the reference divergence times, which were applied to 
calibrate the divergence dates of these examined species.
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with a coverage of 86.41%. These mapping results suggest good reliability for both genome assemblies, which are 
close to the assembly of the Peruvian scallop genome in our previous study but better than those of other related 
bivalve species12.

A protein is classified as complete if the alignment of the predicted protein to the HMM profile represents at 
least 70% of the original KOG domain, otherwise, it is classified as partial. Our evaluation results demonstrated 
that both genome assemblies covered 231 (93.15%) of the 248 Core Eukaryotic Gene sequences, indicating a 
high level of completeness within the two genome assemblies. A related assessment identified 91% of the 843 
single-copy genes in both genome assemblies. These data indicate the high integrity of both genome assemblies. A 
total of 389,681,429 and 412,788,948 bp of repeat sequences were predicted in the A. i. irradians and the A. i. con-
centricus genomes, respectively. These repeat sequences accounted for 46.43% and 47.17% of the corresponding 
genome assemblies (Table 2). A total of 26,777 protein-coding genes were predicted in A. i. irradians with an aver-
age transcript length of 11.86 kb. The public functional databases Swissport, interpro and NR were used for gene 
prediction and annotation. Similarly, a total of 25,979 protein-coding genes were predicted in A. i. concentricus 
with an average transcript length of 12.17 kb (Table 1). In total, 24,943 (93.2%) and 24,428 (94%) predicted pro-
teins could be functionally annotated in A. i. irradians and A. i. concentricus, respectively, using public databases. 
In total, the protein-coding genes were classified into 48,052 gene families and 107 strict single-copy orthologs 
(Fig. 2a). Compared to other examined species, 1,949 and 1,769 gene families were exclusively presented in A. i. 
irradians and A. i. concentricus, respectively (Fig. 2b).

The evolutionary position and divergence time of A. i. irradians and A. i. concentricus were elucidated in 
this study. The results of the phylogenetic tree showed that outgroup clade containing H. sapiens and B. floridae 
located in the basal position of the whole tree with high confidence (bootstrap value = 100%). Meanwhile, we 
found that A. i. irradians and A. i. concentricus clustered together with the 100% bootstrap value (Fig. 3a), and 
then merged as a sister group to P. yessoensis, as it did in the divergence time tree (Fig. 3b). It shows that this 
clade has a close relationship with the other two clades containing C. gigas, P. fucata and M. philippinarum, B. 
platifrons. Besides, we estimated the divergence times of A. i. irradians and A. i. concentricus using single-copy 
protein-coding genes from the 19 examined species (Fig. 3b). The result showed that the divergence time between 
the Northern subspecies (A. i. irradians) and the Southern subspecies (A. i. concentricus) happened at ~26.4 Mya 
ago, and the analysis suggested that the ancestor of A. i. irradians, A. i. concentricus and P. yessoensis originated 
~85.9 Mya.

Code availability
In the study, we did not use any custom specific code. The command line for each step is executed as indicated for 
each step of all bioinformatics procedures.
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