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Abstract
When a bistable visual image, such as the Necker cube, is continuously viewed, the percept of the image endogenously

alternates between one possible percept and the other. However, perceptual alternation can also be induced by an

exogenous perturbation. For example, a typical external perturbation is the flashlight, which is expected to pervasively

activate many brain regions. Therefore, the neural mechanism related to exogenous perceptual alternation remains to be

clarified. As a cue to solving this problem, our recent psychophysiological experiment reported a positive correlation

between the enhancement of visual mismatch negativity evoked by breaks in the sequential regularity of the visual stimuli

and the proportion of perceptual alternation. To elucidate the mechanism underlying exogenous perceptual alternation

induced by visual mismatch negativity, the present study attempted to construct a neural network model for

bistable perception of the Necker cube, whose perceptual alternation is facilitated by an increase in visual mismatch

negativity. The model consists of both a prediction layer and a prediction error layer, following the predictive coding

framework for biologically plausible relationships between the change detection process and the perceptual alternation

mechanism. Computer simulations showed that the mean duration of perception decreased as the response increased, which

is in concordance with the experimental data. This result suggested that the excitatory feedforward and inhibitory feedback

connections play an important role. Additionally, the validity of this model suggests that the visual mismatch signal

propagates in the neural systems and affects the visual perceptual mechanism as a prediction error signal.
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Introduction

When a bistable visual stimulus, such as binocular rivalry

and the Necker cube, is continuously viewed, the percept of

the image endogenously alternates between one possible

percept and the other (Leopold and Logothetis 1999;

Sterzer et al. 2009). In particular, the perceptual alternation

in binocular rivalry was examined vigorously (Brascamp

et al. 2015). For example, the distribution of the duration of

a percept showed a long-tail, like the gamma distribution

(Levelt 1968), whereas the coefficient of variation (CV) of

the duration was between 0.4 and 0.6 (Shpiro et al. 2009).

Since the strength of the stimulus from each eye can be

manipulated independently in binocular rivalry, many

experimental results were reported under various condi-

tions. For example, increase of the stimulus strength in one

eye reduces the perceptual duration of the other eye and

increases the perceptual alternation rate, which are known

as Levelt’s Propositions 2 and 3 (Levelt 1968), respec-

tively. However, recent findings suggested that such

prepositions should be revised (Moreno-Bote et al. 2010;

Brascamp et al. 2015; Wilson 2007; Levelt 1968; Platonov

and Goossens 2013). These revised propositions appear to

be more general than the original ones as they account for

the recent findings and the previous data obtained in the

early experiments.

Many computational models assuming dynamics or

stochastic process were proposed to elucidate the mecha-

nism underlying binocular rivalry (Curtu et al. 2008; Laing

and Chow 2002; Lehky 1988; Matsuoka 1984; Moreno-

Bote et al. 2007; Pisarchik et al. 2014; Runnova et al.
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2016; Shpiro et al. 2007, 2009; Stollenwerk and Bode

2003; Panagiotaropoulos et al. 2013; Wilson 2007; Bues-

ing et al. 2011; Gershman et al. 2012; Dayan 1998). The

models reproducing the experimental data share the fol-

lowing common assumptions (Brascamp et al. 2015;

Shpiro et al. 2007): (1) the perception corresponds to the

high activity of a different neuronal population, (2) these

populations inhibit each other, (3) the populations and/or

the inhibitory connections gradually reduce efficacy, and

(4) their activities are subject to random fluctuations.

Notably, the models predicted the revised Levelt’s propo-

sitions (Wilson 2007; Moreno-Bote et al. 2010; Shpiro

et al. 2007; Curtu et al. 2008; Platonov and Goossens

2013) before each phenomenon was experimentally

reported. Consequently, a neural population model with

slow adaptation and mutual inhibition may satisfy the

fundamental characteristics of perceptual alternation.

In contrast, the stimulus is identical for both eyes in the

Necker cube. Therefore, an experiment with different

visual stimuli to the left and right eye is not possible.

Computational models on perceptual alternations of the

Necker cube have been also proposed as those for binoc-

ular rivalry (Sundareswars and Schrater 2008; Grossber

and Swaminathan 2004). In contrast to endogenous alter-

nation, the perceptual alternation induced by a perturbation

outside the brain is referred to as ‘‘exogenous perceptual

alternation’’. Although such perturbations are external,

such as a flashlight, they were reported to cause perceptual

alternation (Kanai et al. 2005) and such strong stimuli

pervasively activate many brain regions. Therefore, the

mechanism of exogenous perceptual alternation remains to

be clarified.

As a breakthrough in this problem, a psychophysiolog-

ical experiment recently reported that the facilitation of

perceptual alternation induced by the detection of visual

change in a temporal sequence was correlated to the visual

mismatch negativity amplitude (vMMN) (Urakawa et al.

2017a). Generally, the vMMN represents an electroen-

cephalographic brain response which is evoked by a visual

change. In this previous study (Urakawa et al. 2017a),

electroencephalography (EEG) was measured during a

psychological task under a modified oddball paradigm. The

paradigm involved the intermittent presentation of eight

horizontal or vertical bars with the centered Necker cube

and participants were asked to report the percept of the

Necker cube (Fig. 1). In the deviant condition (DEV), the

sequential regularity was broken by a change in bars ori-

entation. In contrast, such orientations were kept constant

in the control condition (STD). As a result, the perceptual

alternation rate in the DEV was significantly larger than

that observed in the STD. In addition, a positive correlation

between the increase in perceptual alternation and the

vMMN amplitude (that reflects visual change detection)

was found. This implies that specific brain areas, which are

relevant to the automatic visual change detection process

reflected in vMMN, induce exogenous perceptual alterna-

tion (Urakawa et al. 2017b). Furthermore, this study sug-

gests that the prediction error contributes to inducing the

exploratory visual process in order to shape the upcoming

percept of the bistable image. This kind of task-irrelevant

stimuli was not considered in most of the previous models

of perceptual alternation, and clarifying the mechanism by

which visual change detection correlates with perception is

yet to be defined.

This finding appears to be closely related to predictive

coding theory (Friston 2003, 2005), where both internal

prediction and sensory stimuli are considered. In fact, the

predictive coding theory has been applied to similar neu-

rophysiological and psychophysical phenomena, including

endogenous perceptual alternation in binocular rivalry

(Hohwy et al. 2008), mismatch negativity (MMN) (Ste-

fanics et al. 2014; Wacongne et al. 2012; Lieder et al.

2013b), and categorization of visual stimuli (Spratling

2016). In this framework, the vMMN’s amplitude was

suggested to correspond to the strength of prediction error

in the temporal sequence (Urakawa et al. 2017a). There-

fore, the reported enhancement of perceptual alternations

evoked by the change detection may be uniformly inter-

preted by enhancement of the prediction error. On the other

hand, previous models for perceptual alternations do not

consider prediction errors by non-bistable visual images.

The purpose of this study was to construct a neural network

model for exogenous perceptual alternation for the Necker

cube, which explains the perceptual alternation promoted

by the vMMN’s enhancement. Considering visual change

detection as one of visual processes relevant to yield the

prediction error, we expect that a computational model

which minimizes the prediction error, i.e., vMMN ampli-

tude, will promote perceptual alternation, as the previous

experiment has reported. There are many implementation

strategies in predictive coding, from Bayes inferences to

neural network models (Friston 2003, 2005; Hohwy et al.

2008; Clark 2013; Chikkerur et al. 2010; Lieder et al.

2013a; Stefanics et al. 2014; Wacongne et al. 2012).

Besides the induction of perceptual alternation through the

vMMN, our model should retain the dynamical character-

istics of the established models to reproduce previous

experimental data. In the current study, we extended the

representative neural network model of perceptual alter-

nations following predictive coding theory and succeeded

in the simulation of previous experimental data. In addi-

tion, we showed that the simple addition of prediction error

to the previous model cannot reproduce the experimental

data, and we discussed the importance of the network

structure. Our theoretical study supported the hypothetical

mechanism suggested by our previous experiments.
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Model and methods

Neural network model

Following the framework of the predictive coding theory,

we constructed a neural network model comprised of two

layers, namely the Prediction Layer (P-Layer) and the

Prediction Error Layer (PE-Layer), as shown in Fig. 2.

Furthermore, the P-Layer includes two neurons (p1, p2),

and each neuron assumes to insist each percept for the

Necker cube with the strength of each firing rate. As in the

predictive coding theory, each neuron sends a prediction

signal to the PE-layer. To avoid simultaneous dual per-

ceptions, relatively strong mutual inhibitive projections are

assumed between the neurons in the P-Layer. In contrast,

the PE-Layer consists of seven neurons, three excitatory

neurons (e1–e3) and four inhibitory ones (e4–e7). Each

excitatory neuron (e1–e3) receives a response for a part of

the Necker cube, as shown in the circles displayed in

Fig. 2, and sends in turn signals to one or both neurons in

the P-Layer. In addition, they also receive negative feed-

back from the P-Layer neurons, by way of the rest

inhibitory neurons (e4–e7). The connections between the

PE-Layer and the P-Layer would be simply parallel if the

stimuli from the left and right eye remained independent in

the binocular rivalry (Hohwy et al. 2008). In the Necker

cube, however, a stimulus is common to both eyes and the

outer frame of the Necker cube commonly supports both

perceptions. Therefore, two neurons (e1, e3) were mini-

mally set in the PE-Layer, the first supporting a perception

and the second (e2) supporting both perceptions (Fig. 2).

The P-Layer neuron sends a negative feedback to the

neuron that supports itself with an excitatory projection,

which represents one of the features of the predictive

coding theory. The excitatory input to an excitatory neuron

in the PE-Layer symbolizes the response to bottom-up

visual stimuli, while the inhibitory one is the feedback

from the P-Layer. Therefore, the excitatory neuron in the

PE-Layer is strongly activated when the visual stimulus is

not correctly predicted. In contrast, when the prediction is

correct, the firing rate of the PE-Layer neuron will be

suppressed. In other words, the excitatory feedforward

signal from the PE-Layer to the P-Layer corresponds to a

prediction error. Therefore, the firing rate of a P-Layer

neuron increases immediately after the presentation of a

visual stimulus, but it gradually decreases as negative

feedback suppresses the PE-Layer. From another view-

point, the neural adaptation effect is implemented in the

relationship between the P-Layer and the PE-Layer.

To produce the slow adaptation effect, inhibitory neu-

rons are explicitly mediated between P-Layer and PE-

Layer neurons. Without considering the perceptual biases,

symmetric synaptic weights were assumed between neu-

rons for simplicity (Table 1). Furthermore, to prevent

multi-perceptions or non-perception, the weights were

adjusted ensuring that the e2 firing rate would be between

e1 and e3.

As a duration of a percet in the computer simulations,

we only count when the dominant neuron’s firing rate is 2

times higher than the other neuron to exclude momentary

alternations under the noisy conditions. Another way of

alternative perception does not affect the essential results.

To prevent the effect of initial fluctuations in the

Fig. 1 Exogenous perceptual alternation induced by breaks in sequential regularity (Urakawa et al. 2017a)

Prediction 
Error Layer

Prediction
Layer

e1 e2 e3

e4

p1

e5 e7
e6

p2

Fig. 2 Proposed Neural Network Model. The model consists of two

layers, namely the Prediction Layer and the Prediction Error Layer.

The layers include 2 and 7 neurons, respectively. The red arrows

indicate excitatory projections, while the blue arrows describe the

inhibitory ones
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simulation, the first 10 perceptual alternations were

excluded from the analysis. Additionally, the cases in

which perceptual duration was less than 100 time-steps

were also not included.

Model neuron

We assume a simple integrate-and-fire model. The firing

rate v of excitatory and inhibitory neurons in PE-Layer and

a P-Layer neuron are defined respectively as follows:

s
dv

dt
¼� vþ f WEvE �

X
WIvI þWI

� �
; ð1Þ

s
dv

dt
¼� vþ f ðWEvEÞ; ð2Þ

s
dv

dt
¼� vþ f

X
WEvE �WIvI

� �
; ð3Þ

where WE is the excitatory synaptic weight, vE represents

the firing rate of an excitatory neuron, WI indicates the

inhibitory synaptic weight, vI suggests the firing rate of an

inhibitory neuron, W is the weight for an input, s represents
the time constant, f indicates the sigmoidal function:

f ðxÞ ¼ 1=ð1þ exp ð�ðx� 0:2Þ=0:2ÞÞ, and I is assumed to

be the response in the lower visual cortex which is input to

the excitatory neurons e1–e3 in the PE-Layer. The time

constants are s ¼ 1 and s ¼ 10 in excitatory (p1, p2, e1–e3)

and inhibitory (e4–e7) neurons, respectively.

We assume two kinds of external inputs I to the model,

(1) Gaussian noise ? constant and (2) pulsed error signal

(PE) ? constant. These inputs are expected to induce

endogenous and exogenous perceptual alternations,

respectively, and are described in the next sections. The

fourth-order Runge–Kutta method with a 0.01 incremental

width was used in the numerical calculation of ordinary

differential equations.

Gaussian inputs

First, we confirmed whether our model showed endogenous

perceptual alternations, as observed in previous computa-

tional models. A constant Iv, correspondent to a response to

the Necker cube plus a fluctuation n imitating spontaneous

activity, I ¼ Iv þ n is input to every excitatory neuron e1-e3
in the PE-Layer. In other words, I is an external input to

this model, while n follows an Ornstein-Uhlenbeck process

(Risken 1996), as shown below.

dn

dt
¼ � n

sn
þ r

ffiffiffiffiffi
2

sn

r
g; ð4Þ

where sn is the time constant, g represents the Gaussian

noise with zero mean and unit variation, and r indicates its

strength. Figure 3 shows an example of external input.

Since this fluctuation successively changes, it is often used

in computer simulations of a neuron’s firing rate (Shpiro

et al. 2009, for example).

Experimentally, the distribution of perceptual durations

shows a right-skewed distribution, such as the Gaussian or

logarithmic normal distribution (Levelt 1968; Zhou et al.

2004), where the CV is known to be approximately 0.5

(Levelt68). In the present study, we would like to confirm

whether our model also shows the same characteristics for

Gaussian noises (Iv ¼ 0:7, sn ¼ 10).

Pulsed inputs

To reproduce exogenous perceptual alternations, as

achieved in previous experiments (Urakawa et al. 2017a),

determining the way of introduction of the vMMN into our

model is of great importance. Since the vMMN is thought

to reflect a prediction error for unpredictable brakes in

temporal irregularity (Stefanics et al. 2014), the external

input to the PE-Layer neurons was assumed to reflect the

Table 1 Synaptic weights of the network model

Role Connections Weights

Stimulus response NC ! e1, NC ! e3 0.75

NC ! e2 1.0

Bottom-up e1 ! p1, e3 ! p2 2.0

e2 ! p1, e2 ! p2 1.6

Mutual inhibition p1 ! p2, p2 ! p1 - 1.5

Top-down p1 ! e4, p2 ! e7 0.6

e4 ! e1, e7 ! e3 - 0.6

p1 ! e5, p2 ! e6 0.48

e5 ! e2, e6 ! e2 - 0.48

Fig. 3 An example of Gaussian inputs (Iv ¼ 0:7, r ¼ 0:5)
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vMMN. This hypothesis is supported by a previous

investigation which also used the predictive coding model,

as a deviant signal after regularity learning enables a pre-

diction error neuron to fire similarly to an actual MMN

(Wacongne et al. 2012). In this study, a constant response

to the Necker cube Iv and a response for the changes in the

surrounding bars reflecting vMMN (prediction error), i.e.

I ¼ Ivþ PE signal, was input to every excitatory neuron in

the PE-Layer, where Iv ¼ 0:7. In other words, we assume

that the prediction errors for the bars produced elsewhere

are broadly transmitted and reach the PE-Layer neurons for

the Necker cube. For simplicity, PE-Layer neurons for the

bars are not explicitly implemented in the model. The

duration of bar stimuli and the interstimulus interval are 25

time-steps each. Moreover, 99% of the stimuli are standard

while 1% are deviant. To clarify the effect of network

dynamics on perceptual alternation, noise was not added in

this simulation. Since the effect of noise, which is mainly

limited to the fluctuations of perceptual duration, is much

less than dynamics and diminished by averaging, major

results would not be affected. The present study set five

deviance magnitudes. The strength of the PE signal is 0.2

for the standard stimuli and 0.2, 0.3, 0.4, 0.6, 1.0 (5 con-

ditions: 0:2� 1, �1:5, �2, �3, �5) for the deviant stimuli.

An increase in the deviant to standard ratio suggests the

occurrence of more augmented vMMN. The mean per-

ceptual durations were compared assuming that the deviant

stimulus was given once in a percept. Each deviance was

added 475 times, where the timing was randomly chosen in

each trial.

Results

Endogenous perceptual alternation

Before trying the Gaussian inputs, the constant external

input Iv ¼ 0:7 was applied. Figure 4 shows the periodic

perceptual alternation observed when the constant is uni-

formly input to every excitatory neuron in the PE-Layer.

The percept duration was 1:11� 103. Spontaneous per-

ceptual alternation periodically occurred through two

neuronal activity phases as follows: (1) Increased firing

rate of the dominant P-Layer neuron and decreased rate of

the other neuron, (2) decreased firing rate of the dominant

P-Layer neuron and increased rate of the other neuron. In

the 2nd phase, the increase (decrease) of the firing rate of a

PE-Layer neuron underlies the increase (decrease) of the

corresponding P-Layer neuron. This reverse tendency over

these phases leads to perceptual alternation. In the pre-

dictive coding theory, perceptual alternation is considered

a result of the accumulation in prediction error neurons of

the prediction errors for unperceived stimulus (Hohwy

et al. 2008).

When the Gaussian fluctuation I ¼ Iv þ n is uniformly

input to every excitatory neuron in the PE-Layer, Fig. 5

shows the firing rates of excitatory neurons in both the P-

Layer and the PE-Layer. Briefly, the firing rates of p1 and

p2 increased alternatively and periodically, and the occur-

rence of endogenous perceptual alternation was confirmed.

Furthermore, perceptual duration showed a right-skewed

distribution, where the mean was 1:21� 103 and the CV

was 0.423 (Fig. 6). These are in concordance with the main

properties of the experimental data previously reported

(Shpiro et al. 2009; Brascamp et al. 2015). Since our per-

ceptual alternation model reports structural mutual

Fig. 4 Firing rates in response to a constant. The solid line indicates

the firing rate of a P-Layer neuron, whereas the dotted line represents

the firing rate of an excitatory neuron in the PE-Layer. Each blue

rectangle suggests the constant duration of a percept

Fig. 5 Firing rates in response to Gaussian fluctuations. The solid line

indicates the firing rate of a P-Layer neuron whereas the dotted line

represents the firing rate of an excitatory neuron in the PE-Layer.

Each blue rectangle suggests the duration of a percept
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inhibition and slow adaptation, as previous models do, such

a result is rather reasonable.

Exogenous perceptual alternation

To simulate exogenous perceptual alternation, a pulsed

signal, resembling the responses to the Necker cube and the

standard and deviant bars, was commonly input to every

excitatory neuron in the PE-Layer. Reflecting the vMMN,

the input pulse amplitude was larger in response to a 1%

deviant stimulus of bars, although it was smaller for the

99% standard ones. Figure 7 shows the firing rates of

excitatory neurons in both the P-Layer and the PE-Layer

following the pulsed signals. We compared the durations of

percept between the two conditions in various pulse

amplitudes, in the presence of standard pulses only and

when a deviant one was input among them. As a result, the

duration of percept decreased as the response to deviance

increased (Fig. 8). A repeated-measure one-way ANOVA

was conducted in the statistical analysis using software

SPSS (IBM). The main effect was significant

(Fð4; 1896Þ ¼ 1124:853, p\0:001), and all pairs in the

post-hoc test with Bonferroni corrections were significant

(overall a ¼ 0:05). This result is correspondent with the

experimental data in the previous study (Urakawa et al.

2017a, b).

Discussion

By constructing a neural network model using both the

prediction and the prediction error layers in the predictive

coding framework, we succeeded in the simulation of

previous experimental data related to exogenous perceptual

alternation induced by the vMMN. In the proposed model,

the vMMN effect was introduced into the volley of inputs,

assuming that the prediction error evoked by a deviant

stimulus would spread across visual processing areas. As a

result of the computer simulations, the duration of a per-

cept decreased, while the alternation was induced as the

strength of the PE signal increased. This is in concordance

with previous experimental results regarding the positive

correlation between the perceptual alternation rate and the

vMMN strength (Urakawa et al. 2017a, b). We also

demonstrated that the model follows the experimental

properties of endogenous perceptual alternation as well as

the exogenous one, as reported in previous models. This is

a result of presence of the typical dynamical characteristics

of mutual inhibition and slow adaptation for perception in

the present model, inherited from previous models (Shpiro

et al. 2007; Brascamp et al. 2015). If the neural mechanism

incorporated in our model is assumed, prediction errors

Fig. 6 Distribution of perceptual durations

Fig. 7 Firing rates in response to pulses. The solid line indicates the

firing rate of a P-Layer neuron, whereas the dotted line represents the

firing rate of an excitatory neuron in the PE-Layer. The yellow pulses

describe PE signals. Each blue rectangle suggests the duration of a

percept
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induced through the change detection system are suggested

to spread across visual perception areas.

Here, we show that a difference in the structure affects

whether the experimental data shown in Fig. 8 can be

reproduced or not. To show the difference clearly, we will

compare the behaviors of two simple models. The first

model is a representative model of conventional models

(Laing and Chow 2002; Shpiro et al. 2007) as follows. The

model consists of four model neurons as shown in Fig. 9a.

u1 and u2 represent the activities of opponent neurons for

percepts, while a1 and a2 indicate those of adaptation

neurons. The input to the model, I, represents visual

stimulus of the Necker cube. d is provided as a mismatch

detection signal for deviant stimuli. They obey the fol-

lowing equations:

du1

dt
¼� u1 þ f ð�bu2 � ga1 þ IÞ;

s
da1

dt
¼� a1 þ u1 þ d;

du2

dt
¼� u2 þ f ð�bu1 � ga2 þ IÞ;

s
da2

dt
¼� a2 þ u2 þ d;

ð5Þ

where b and g are connection strengths between percept

neurons and adaptation neurons, respectively. And f is a

sigmoid function f ðxÞ ¼ 1=ð1þ expð�ðx� hÞ=kÞÞ, where
h ¼ 0:2, and k ¼ 0:1. For the second model, we simplified

our model for comparability. The model consists of four

model neurons as shown in Fig. 9b. u1 and u2 represent the

activities of the percept neurons, while a1 and a2 indicate

those of prediction error neurons. They obey the following

equations:

du1

dt
¼� u1 þ f ð�bu2 þ ga1Þ;

s
da1

dt
¼� a1 � u1 þ I þ d;

du2

dt
¼� u2 þ f ð�bu1 þ ga2Þ;

s
da2

dt
¼� a2 � u2 þ I þ d;

ð6Þ

where I is an input reflecting the bistable image, and d is a

signal by the mismatch detection. b and g are connection

strengths between percept neurons and prediction error

neurons, respectively. f is the same sigmoid function as

shown above. The mismatch signal should be generated by

the change detection of orientation of the bars, that is

irrelevant to the task on the Necker cube. Thus, we assume

that d is given from the outside to mediate Necker cube

perception neurons, a1 and a2 as in Fig. 9b. In the previous

model, d is given to a1 and a2 for the same condition

(Fig. 9a).

Figure 10 shows the simulation results of dominant

durations for different d in the two models. The parameter

values were as follows: b = 1.1, g = 0.5, and s = 100.

The inputs were I ¼ 1:5 and 3.0 for previous and proposed

models, respectively. This difference is due to the range of

I for bistable oscillations. The input strength is assumed to

be relatively larger because it reflects the stimulus of a

bistable image. The result means that the conventional

model does not decrease as the fluctuation increases,

although the proposed model does, as in Fig. 8. This

indicates that the previous model (Fig. 9a) cannot repro-

duce the tendency shown in Fig. 8.

Furthermore, to intuitively understand these results, we

attempted to provide theoretical explanations. Actually, we

applied the analytical method of Curtu et al. (2008) to the

Fig. 9 A conventional model (a) and the simplified proposed model

based on predictive coding (b)
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simplified proposed model as follows. For simplicity, the

sigmoid function was approximated by the Heaviside

function h(x) with the threshold h, where hðxÞ ¼ 1 if x[ h,
otherwise hðxÞ ¼ 0. According to the dynamical system

Eq. (6), the nullclines are shown in Fig. 11a. Assuming that

u1 ¼ 1 and u2 ¼ 0, a1 is decreasing (u1-nullcline is sliding

down) and a2 is increasing (u2-nullcline is sliding right-

ward). If either of the thresholds cross 0 or 1, the equi-

librium point ðu1; u2Þ ¼ ð1; 0Þ disappears and the system

will be attracted to ðu1; u2Þ ¼ ð0; 1Þ. This drastic change

corresponds to perceptual alternation. At this moment,

a1 ¼ h
g
or a2 ¼ bþh

g
. From symmetricity, when a2 ¼ h

g
or

a1 ¼ bþh
g
, a perceptual alternation also occurs. The red and

blue boundaries where perceptual alternation occurs are

shown in Fig. 11b. On the other hand, a1 and a2 asymp-

totically change along the diagonal of the gray square in

Fig. 11 because they slowly approach to I þ d and I þ d �
1 alternately. Therefore, the red arrow indicates the central

pathway of ða1; a2Þ. If d increases, the gray square moves

toward the upper-right and the width of the arrow will

decrease. This means that the period of the percept

decreases as d increases as shown in Fig. 10. For the

conventional model, similar analysis (Curtu et al. 2008)

confirms the tendency in Fig. 10. It is clear that the ten-

dencies are so robust that they are not affected by small

changes in parameter values, but by the network structure.

These show that for the network structure of previous

models it is irrelevant to embed the mismatch signal to

explain the experimental data. Therefore, the analyses

indicate that the excitatory feedforward and inhibitory

feedback connections, before perception, play an important

role in reproducing the tendency. Besides, this structure fits

well with the predictive coding framework.

In contrast, the mean perceptual duration did not

decrease, in the case of the Gaussian inputs, implying

perceptual alternation suppression. This property was

attributed to the simple neural network dynamics with

mutual inhibition and slow adaptation of the typical per-

ceptual alternation models (Curtu et al. 2008; Shpiro et al.

2007). In summary, the perceptual duration increases as the

stimulus input increases for smaller inputs, considering that

the ‘‘release mechanism’’ (i.e., the input effect to a domi-

nant population is relatively stronger) is dominant, while

the duration decreases as the stimulus increases for larger

inputs, as a result of the ‘‘escape mechanism’’ (the input

effect to a suppressed population is relatively stronger).

Since the amount of change in Gaussian signals per unit

time is smaller than that of pulsed ones, the result of our

numerical experiments is consistent with these explana-

tions from the dynamical viewpoint. This confirms that our

computational model shares the same dynamical property

of the typical previous models. The model should repro-

duce Levelt’s prepositions as the previous models did. The

essential difference lies in the implementation method for

adaptation, which are represented by positive bottom-up

and negative top-down neural projections in the predictive

coding framework. In this structure, the vMMN signal can

be introduced as a prediction error in a reasonable way. In

the proposed model, inhibitory neurons with a larger time

constant slow down the feedback, which consequently

leads to slow adaptation.
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