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Abstract
Working memory (WM) refers to a memory system with limited energy for short-term maintenance and plays an important

role in cognitive functions. At present, research regarding WM mostly focuses on the coordination between neural signals

in the signal microelectrode channel. However, how neural signals coordinate the coding of WM at the network level is

rarely studied. Cross-frequency coupling (CFC) reflects the coordinated effect between different frequency components

(e.g., theta and gamma) of local field potentials (LFPs) during WM. In this study, we try to map the changes that occur in

the brain networks during WM at the level of CFC between theta-gamma of LFPs. First, a 16-channel brain network by

using the CFC between theta-gamma of LFPs during WM was constructed. Then, the dynamic properties of the brain

network during WM were analyzed based on graph theory. Experimental results show that the LFPs power increased at the

WM state than at resting stat, but decreased across learning; the CFC between theta-gamma increased with learning days

and phase-amplitude coupling (PAC) in the WM state was higher than that in free choice state and rest state; the changes of

average degree, average shortest path length and global efficiency had significant difference on learning days. We can

indicate that the CFC between theta-gamma in the network plays an important role in the WM formation. Furthermore,

correct storage of WM information will not change local information transmission and the small-world attribute, while, it

can increase the network connection and efficiency of information transmission.

Keywords Working memory � Cross-frequency coupling � Brain network analysis � Complex network properties �
Graph theory

Introduction

Working memory (WM) refers to the memory system with

limited energy for short-term storage and processing of

information, and WM plays an important role in many

complex advanced cognitive activities, such as reading,

understanding, reasoning and learning (Funahashi 2017;

Christophel et al. 2017). Alzheimer’s disease (AD) is a

progressive neurodegenerative disease, whose main clini-

cal manifestation is WM impairment (Ateş et al. 2017;

Davis et al. 2017; Haj and Antoine 2017). Therefore, the

study of the WM mechanism is of great significance for

WM impairment in AD and its clinical treatment. An

investigation indicated that the medial prefrontal cortex

(mPFC) plays an important role in many cognitive func-

tions, especially in WM (Riga et al. 2016). Abnormal

signal activity patterns in the mPFC can be one of causes of

WM impairment (Bittner et al. 2015). Traditional research

on WM mostly focuses on the coordination between mul-

timode neural signals in the signal microelectrode channel

(Li et al. 2014; Bai et al. 2014). Recently, brain network

analysis method has become a novel method to explore the

mechanism underlying WM (Liu et al. 2016; Vatansever

et al. 2017). Research on WM mechanism at the network

level can better reflect the information interaction and

transmission, therefore, the network level storage of WM

has been extensively studied. Investigations have shown

the enhanced connection strength in mPFC network during

spatial working memory tasks (Xie et al. 2014; Ouyang

et al. 2014). Substantial evidence suggests that brain
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network properties can be used as biomarkers for predict-

ing the task performance during WM tasks (Dai et al.

2014). Besides, research on the low-dimensional spike

network based on sparse coding can reflect the information

transfer efficiency of the network and provide support for

quantitatively and effectively describing WM in the brain

network (Carver et al. 2019). Graph theory is a mathe-

matical approach to estimate the efficiency of information

flow and widely used in the brain network analysis

(Wheelock et al. 2018). For example, study based on the

graph theory has demonstrated that electroencephalograph

(EEG) networks during the encoding period of WM exhibit

a significantly higher small-world topology which can

promote the information flow between WM sub-networks

(Toppi et al. 2018).

At present, the study of the WM mechanism can be

divided into three levels: macrolevel, mesolevel and

microlevel. At the macrolevel, the nonimplantable EEG is

susceptible to external effects such as skin, hair, and motor

interference, which will reduce the signal-to-noise ratio of

the signals; at the microlevel, researches on the extracel-

lular recording in primates and rodents mainly focused on

the spiking activity of neurons during WM (Romo et al.

1999; Esmaeili and Diamond 2019). However, researches

on the spiking activity at the microlevel cannot reflect the

neural oscillations at different frequency bands in the brain

network. At the mesolevel, LFPs obtained by using in vivo

recording represent the linear sum of the postsynaptic

potentials of the neural ensembles. The spatial resolution of

LFPs is higher than that of EEGs, and the signal-to-noise

ratio of an LFP is better than that of an electrocorticogram

(ECoG) (Chen et al. 2018; Sorokin et al. 2017). Therefore,

the LFPs are used to analyze the neural rhythmic

oscillations.

Recently, studies have shown that theta (4–12 Hz) and

gamma (30–100 Hz) oscillations play an important func-

tional role in WM, respectively (Albouy et al. 2017;

Lundqvist et al. 2018; Esmaeili and Diamond 2019). Theta

rhythmic activity is thought to have a major function in

memory processing (Decoteau et al. 2007). Study has

shown that the synchronization of theta band can coordi-

nate neural communication between multiple brain regions

and contribute to the maintenance of short-term memories

(Liebe et al. 2012). Besides, gamma oscillations have also

been proved very important in memory processing. For

example, gamma power has been suggested to reflect the

spatial memory precision and involve in spatial memory

processing (Stevenson et al. 2018). Meanwhile, evidences

have been presented to demonstrate that cross-frequency

coupling (CFC) between theta and gamma oscillations

occurs frequently in WM (Nir et al. 2017; Zutshi et al.

2018; Wutz et al. 2018). Previous study has found that the

CFC between theta and gamma coordinates

communication between brain regions and is involved in

memory processes (Lisman and Jensen 2013). Besides, the

coupling of the theta and gamma will increase as a new

human short-term memory is formed (Graetz et al. 2019).

While the coupling of the theta and gamma in patients with

mild brain injury will be lower than that of healthy people

(Antonakakis et al. 2016).

CFC between theta and gamma oscillations can reflect

the information interaction between different regions and

different frequency band during WM. However, it still

remains unclear whether theta-gamma coupling has any

functional role during the learning and WM formation.

Brain network analysis based on the graph theory can

estimate the information transmission underlying WM and

reveal the dynamic changes that occur in the brain network

during learning of WM tasks. Therefore, combined the

CFC and brain network methods, we try to map the

changes that occur in the local mPFC networks during

learning of a WM task at the level of CFC between theta

and gamma oscillations. In this study, we recorded

16-channel LFPs in the mPFC of rats during WM in a T

maze by using microelectrode implantation and con-

structed the brain network based on the CFC algorithm.

The dynamic properties of the brain network during WM

were analyzed by using complex network theory. This

study provides a new method for exploring the WM

mechanism from the perspective of brain network analysis.

Results

Behavioral performance

16-channel LFPs were recorded from mPFC as rats

(n = 10) were trained to alternate two spatial locations to

obtain a food reward in a T maze (Fig. 1A). Each trial of

the spatial delayed alternation task consisted of a free

choice phase and a delayed alternation phase. Only when

the rats chose the different locations on the two runs can

they obtained the food reward and recorded as correct. The

change in the correct rate of the T maze training with

learning days is shown in Fig. 1B. The correct rate of

behavioral training increased gradually from 58.3 ± 10.8%

on the first day to 86.7 ± 5.2% on the eighth day and to

88.3 ± 6.8%8 on the ninth day. The correct rate for two

consecutive days reached more than 80%. This suggests

that WM is formed after 10 days of training.

Histology

Extracellular electrophysiological recordings were made

from the rat mPFC. The schematic of the recording method

is shown in Fig. 1C. In order to verify the location of the
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microelectrode array, the histological sections of the

recording sites from mPFC is shown in Fig. 1D.

Power changes in LFPs during the T maze task

16-channel LFPs activities were recorded in the mPFC as

rats performed the WM tasks on the T maze. The original

LFPs were preprocessed to remove baseline drift and

power–frequency interference to obtain zero-mean LFP

signals without power–frequency interference in the time-

domain and the frequency-domain (Fig. 2A, B). In Fig. 2A,

the mean value of the 16-channel LFPs was zero, without

baseline drift; in Fig. 2B, the frequency distribution of the

LFPs was concentrated at 0–50 Hz, and there was no

power–frequency interference at 50 Hz.

After preprocessing, the LFPs were analyzed by time–

frequency analysis (10 rats, 100 trials, 16 channels aver-

age). The changes in the LFP power with time during the

WM period were analyzed (Fig. 2C, D). Figure 2C showed

that the LFPs power at a low-frequency band during the

WM tasks was higher than that at a high-frequency band.

Meanwhile, the power of LFPs increased during the WM

period and decreased after the selection reference point.

Figure 2D represented the low frequency changes of power

spectrum more clearly. The power of the low frequency

LFPs also peaked near the reference point of selection.

Furthermore, we analyzed the changes of LFPs power

across learning (Fig. 2E). The LFPs power in first day was

significantly higher than in last day at the WM state,

however, there was no significant difference at the resting

state. In addition, the changes of LFPs power in different

learning days between the WM and resting state were

analyzed (Fig. 2F). The LFPs power at the WM state was

significantly higher than that at the resting state both in first

day and last day. Taken together, these findings indicated

that the LFPs power increased at the WM period than at

resting stat, however, the LFPs power decreased when

expert rats had learned the WM tasks.
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Fig. 1 Behavioral performances. A The schematic of the delayed-

alternation task on T maze. Rats were rewarded on the two goal

locations (Point B or C) and at the starting area (Point A) after a goal

choice. Each trial consisted of a sample run and a choice run. On the

sample run, the rats can get reward by entering into either of arms.

After a 5-s delay, the rats would have a choice run. Rats have to enter

into the opposite arm to get food reward. B The correct rate of T maze

training of 10 rats varied with time. The abscissa represents the

number of learning days, and the ordinate represents the correct rate

of T maze training. The correct rate increased significantly with an

increase in learning days. (one-way ANOVA: Fð9;50Þ ¼ 9:173,

****P\0:0001). C The schematic of the recording method. The

microelectrode array consists of 16 electrodes (2 9 8, 33 lm
diameter, 300 lm spacing, nickel–chromium, impedance \ 1 MX).
The number indicates the antero-posterior coordinates caudal to

bregma. D Histological verification of the recording sites in mPFC
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Fig. 2 Power changes of LFPs in rat mPFC during WM tasks. A LFP

signals in the time-domain after being preprocessed. B LFP signals in

the frequency-domain after being preprocessed; the abscissa repre-

sents the LFPs frequency, and the ordinate represents the power

spectrum of the LFPs. C Time–frequency power spectrum analysis of

LFPs during WM period (10 rats, 100 trials, 16 channels average).

The abscissa represents the time during the WM period (from 2 s

before the reference point to the rats’ selection action in T maze), and

the zero time is the selection reference point; the ordinate represents

the frequency of LFPs. The colorbar represents the power of LFPs.

D Low frequency power spectrum changes of the LFPs during WM

period. E Comparison of the changes of LFPs power across the day 1

and day 10 of learning (10 rats, 40 trials from day 1 and day 10). The

WM state were extracted from 2 s before the reference point to the

rats’ selection action in the delayed alternation phase; the resting state

was extracted from the 5-s delay between free choice and delayed

alternation phases. Group results showed that the LFPs power at the

WM state in the first day was significantly higher than in the last day,

but there was no significant difference between the power at the rest

state (independent sample t test, *P\0:05, n.s.: no significant).

F Comparisons of the changes of LFPs power in different learning

days between the WM and resting state (10 rats, 40 trials from day 1

and day 10). Expert rats had learned the WM tasks at day 10. Group

results showed the LFPs power at the WM state was significantly

higher than that at the resting state both in day 1 and day 10 (paired

sample t test, ****P\0:0001). (Color figure online)
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The construction of a brain network based
on the CFC algorithm

As the highly abstract of real systems, the complex network

can be described by a set of nodes and edges (Bullmore and

Sporns 2009). Graph theory is the most important mathe-

matical method in the complex network analysis (Zhang

et al. 2018). The construction and analysis of the complex

network based on graph theory can help to understand the

WM mechanism of the brain (Toppi et al. 2018). In this

study, theta (4–12 Hz) and gamma (30–100 Hz) frequency

band series were extracted from the preprocessed LFP

signals by band filtering firstly. And then 16-channel

electrodes were used as network nodes, and the CFC values

between theta and gamma components of the LFPs during

the WM were used as network edges. Based on the

weighted network (Zheng et al. 2018; Supriya et al. 2016),

the appropriate threshold was selected for the CFC edge

matrix of theta-gamma to construct the brain network. If

the CFC values of theta-gamma between the two nodes

were greater than the threshold value, then there was a

connection edge between the two nodes and the value of

the connection edge was the CFC value; otherwise, there

was no connection edge between the two nodes. We used

three CFC algorithms including amplitude–amplitude

coupling (AAC), phase–phase coupling (PPC), and phase

amplitude coupling (PAC) to construct the brain network

(Yeh et al. 2016; Tamburello and Mili 2015; Seymour et al.

2017). Taking the PAC algorithm as an example, the

topology of the brain network based on the PAC of the

theta phase and gamma amplitude is shown in Fig. 3A.

There were connections between the nodes in the brain

network, and no isolated nodes in the brain network. The

number of edges connected by each node was approxi-

mately the same. The connectivity matrices of the brain

network based on the CFC of theta-gamma during the WM

period is shown in Fig. 3B–D. The distribution of the PAC

and PPC values between the nodes in the brain network

was more uniform (Fig. 3B, C). The AAC values between

minority nodes were very strong, while the AAC values

between majority nodes in the brain network were weak

(Fig. 3D). The experimental results indicate that the nodes

in the brain network based on the PAC and PPC of theta-

gamma are closely related and each node has the same

status in the network. Most nodes in the brain network

based on the AAC of theta-gamma are sparsely connected

and individual nodes closely related, which indicates that

each node has a different status in the network.

The dynamic changes of the CFC

The changes in CFC values between the theta and the

gamma components of the LFPs with learning days are

shown in Fig. 4A–C. The AAC, PAC and PPC values

between theta and gamma components of LFP signals

increased significantly with an increase in learning days.

The PAC between theta phase and gamma amplitude

increased the fastest with an increase in learning days.

Statistical differences in the AAC, PPC and PAC of 10 rats

are shown in Table 1. The PAC values of theta phase and

gamma amplitude were significantly different from the

AAC and PPC values among the 10 rats. The average value

of PAC was the largest, and the average value of PPC was

the smallest. The results indicate that the coordination

effect between theta and gamma components of LFP sig-

nals is involved in the formation of WM. The PAC values

of theta and gamma increased the fastest in the process of

WM, and the overall value of PAC was the largest, which

means the modulation between the theta phase and the

gamma amplitude may play an important role in the for-

mation of WM.

To further verify the modulation between the theta phase

and the gamma amplitude during the WM formation, the

PAC values between theta phase and gamma amplitude of

the LFPs in the WM state, resting state and free choice

state were compared and analyzed (Fig. 4D). The PAC

values at the WM state and free choice state were signifi-

cantly higher than those in the resting state. In addition, the

PAC values in the WM state (WM need) were higher than

those in the free choice state (no WM). It indicates that the

PAC between the theta phase and the gamma amplitude of

the LFPs increases during the time windows of choice,

moreover, the PAC in the WM choice increases more

obviously than in the free choices. The modulation between

theta phase and gamma amplitude is involved in the for-

mation of WM. The brain network based on the PAC of

theta and gamma is used in the following analysis.

The dynamic changes of complex network
properties

Based on the complex network theory, the dynamic chan-

ges in the complex network properties including: average

degree, average clustering coefficient, average shortest

path length, global efficiency and small-world attribute of

the brain network based on the PAC algorithm during the

WM tasks were analyzed (Fig. 5).

The average degree is the average of the weights among

all the connected nodes. It represents the connection

strength of the network. The greater the average degree is,

the stronger the connection of the network is. Figure 5A

Cognitive Neurodynamics (2020) 14:215–228 219

123



showed that the average degree of the brain network

increased significantly during the period of the first to the

eighth days of learning, indicating that the connection of

the network is enhanced. During the period of the ninth to

the tenth days, the average degree of the brain network was

unchanged, indicating that the connection of the network

remains stable. The experimental results of the animal

behavioral training showed that the correct rate could reach

more than 80% for two consecutive days on the eighth day

of learning, which means that the rats learned WM tasks in

the T maze on the ninth day. Combining the results of the

behavioral experiments and the analysis of the dynamic

properties of the brain network, the average degree of the

brain network may be closely related to the WM process,

and the connection of the brain network during the process

of WM is enhanced.

The average clustering coefficient can measure the local

information transmission in the network and the ability of

the network to defend against random attacks. With an

increase in learning days, there was no significant differ-

ence in the average clustering coefficient of the network

(Fig. 5B). This suggests that the learning days will not

affect the local information transmission and the ability of

the network to defend against random attacks.

The average shortest path length and the global effi-

ciency represent the information transmission efficiency of

the brain network. The shorter the average shortest path

length is, the higher the information transmission efficiency

of the network is. In contrast, the greater the global effi-

ciency is, the higher the information transmission is. Fig-

ure 5C, D showed that the average shortest path length

increased and the global efficiency decreased significantly

with an increase in learning days, indicating that the

information transmission efficiency of the brain network

decreases with an increase in learning days. With an

increase in learning days, the PAC values of the brain

network increased significantly, which indicates that the

coupling strength of theta phase and the gamma amplitude

of the LFPs increases. WM may increase the amount of

information in the brain network and decrease the effi-

ciency of information transmission in the network.

The small-world attribute is the criterion for judging

whether a constructed network has small world properties

or not. Figure 5E showed that there was no significant

Channel

C
ha

nn
el

PAC

5 10 15

5

10

15

0

0.1

0.2

0.3

0.4

C D

A B

Channel

C
ha

nn
el

PPC

5 10 15

5

10

15

0

0.01

0.02

0.03

Channel
C

ha
nn

el

AAC

5 10 15

5

10

15

0

0.05

0.1

0.15

0.2

Fig. 3 The construction of the brain network based on the CFC of

theta-gamma during the WM period. A The topology of the brain

network based on the PAC of theta phase and gamma amplitude. The

nodes in the network were 16-channel electrodes in the brain network,

and the connections between the nodes were the PAC values of theta

phase and gamma amplitude between the multichannel electrodes in

the brain network. B The connectivity matrices of the brain network

based on the PAC of theta-gamma during the WM period (10 rats,

average over 100 trials). The WM period was chosen from 2 s before

the reference point to the rats’ selection action in the T maze. The

networks can show how much each node interacts with one another.

The horizontal and vertical coordinates represent the channel index

and the scaled color represents the connectivity strengths between

nodes. C The connectivity matrices of the brain network based on the

AAC of theta-gamma. D The connectivity matrices of the brain

network based on the PPC of theta-gamma
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difference in the small-world attribute of the network with

an increase of learning days and all values of the small-

world attribute were greater than 1. It suggests that the

constructed brain networks in different learning days have

the small-world attribute and learning days won’t affect the

network attribute.

Discussion

In this study, we constructed a 16-channel brain network

based on the CFC algorithm of theta and gamma compo-

nents of LFPs during WM tasks and analyzed the dynamic

properties of the brain network with learning days. The

experimental results showed that there were significant

differences of the CFC values and the complex network

properties on learning days (Figs. 4 and 5).

The CFC values between the theta-gamma components

of the LFPs increased significantly with an increase in

learning days. Previous study has found that the CFC

between theta and gamma is involved in memory processes

(Lisman and Jensen 2013). To identify if the increased

theta-gamma coupling is associated with WM formation,

we compared the CFC values in correct and error trials

during WM tasks (Fig. 6A–C). We described 168 correct

trials and 32 error trials from 10 expert rats which have

learned the WM tasks in last 2 days (the ninth day and

tenth day). Figure 6A–C showed that the CFC values in
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Fig. 4 The changes in CFC values of theta-gamma over the learning

days (10 rats, 100 trials, average over 16 channels). A The changes in

AAC between the theta amplitude and the gamma amplitude over the

learning days. The AAC values between the theta amplitude and the

gamma amplitude increased significantly with an increase in learning

days (one-way ANOVA: Fð9;589Þ ¼ 2:891, **P\0:01). B The

changes in PAC between the theta phase and the gamma amplitude

over the learning days. The learning days had a significant effect on

the PAC between the theta phase and the gamma amplitude. The PAC

values increased significantly with an increase in learning days (one-

way ANOVA: Fð9;588Þ ¼ 37:14, ****P\0:0001). C The changes in

PPC between the theta phase and the gamma phase over the learning

days. The PPC values increased significantly with an increase in

learning days (one-way ANOVA: Fð5;587Þ ¼ 30:08, ****P\0:0001).

D The comparison of PAC values of the brain network at the WM

state, resting state and free choice state (10 rats, average over 168

correct trials). The time windows of the WM state and free choice

state were extracted from 2 s before the reference point to the rats’

selection action in the delayed alternation phase and free choice phase

respectively; the time window of the resting state was extracted from

the 5-second delay between free choice and delayed alternation

phases. The PAC values at the WM state and free choice state were

both significantly higher than those in the resting state. In addition,

the PAC values in the WM state were significant higher than those in

the free choice state (one-way ANOVA: Fð2;27Þ ¼ 497:9,

****P\0:0001 and Bonferroni post hoc test: ****P\0:0001,
*P\0:05)
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Table 1 The comparisons of the

AAC, PPC and PAC values of

10 rats

ANOVA (one way)a AACb PACb PPCb

Rat1 0.119 ± 0.093** 0.161 ± 0.047 0.010 ± 0.008**

Rat2 0.121 ± 0.068** 0.156 ± 0.045 0.0011 ± 0.005**

Rat3 0.114 ± 0.0979** 0.164 ± 0.044 0.012 ± 0.003**

Rat 4 0.119 ± 0.0942** 0.178 ± 0.044 0.013 ± 0.003**

Rat 5 0.131 ± 0.10** 0.198 ± 0.045 0.015 ± 0.003**

Rat 6 0.110 ± 0378** 0.145 ± 0.045 0.011 ± 0.005**

Rat 7 0.109 ± 0.047** 0.188 ± 0.041 0.015 ± 0.050**

Rat 8 0.134 ± 0.079** 0.175 ± 047 0.020 ± 0.004**

Rat 9 0.116 ± 0.049** 0.206 ± 0438 0.017 ± 0.005**

Rat10 0.138 ± 0.064** 0.199 ± 0.051 0.015 ± 0.004**

Average value 0.116 ± 0.016** 0.174 ± 0.036 0.013 ± 0.005**

The values are the mean ± SD of AAC, PAC, PPC

**P\0:01, compared to the values of PAC
aOne-way ANOVA, comparisons of the AAC, PPC and PAC values of 10 rats
bPost hoc t test
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Fig. 5 The complex network properties of the brain network based on

the PAC algorithm during the WM tasks (10 rats, 100 trials).

A Dynamic changes in the average degree of the brain network based

on the PAC algorithm. The average degree of the brain network

during the WM process increased significantly with an increase in

learning days (one-way ANOVA: Fð9;149Þ ¼ 4:017, ***P\0:001).

B Dynamic changes in the average clustering coefficient of the brain

network based on the PAC algorithm. Learning days had no

significant effect on the average clustering coefficients of the brain

networks during WM. (one-way ANOVA: Fð9;149Þ ¼ 0:401,

P ¼ 0:9332) C Dynamic changes in average shortest path length of

the brain network based on the PAC algorithm. The average shortest

path length of the brain network during the WM process increased

significantly with an increase in learning days. (one-way ANOVA:

Fð9;149Þ ¼ 3:264, **P\0:01). D Dynamic changes in the global

efficiency of the brain network based on the PAC algorithm. The

global efficiency of the brain network during the WM process

decreased significantly with an increase in learning days. (one-way

ANOVA: Fð9;149Þ ¼ 2:752, **P\0:01). E Dynamic changes in the

small-world attribute of the brain network based on the PAC

algorithm. There was no significant difference of the small-world

attribute of the brain networks during WM in learning days (one-way

ANOVA: Fð9;149Þ ¼ 0:068, P[ 0:9999)
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correct trials were significantly higher than those in error

trials, which indicates that the CFC in the network con-

tributes to correct storage of WM information. The results

are in agreement with the previous reports.

In general, we try to map the changes that occur in the

local mPFC networks during learning of the WM task at

the level of CFC between theta and gamma components of

the LFPs. Graph theory is a mathematical approach to

estimate the efficiency of information flow and widely used

in the brain network analysis (Wheelock et al. 2018).

Evidence suggests that changes of the brain network

properties can be used as biomarkers for predicting the task

performance during WM tasks (Dai et al. 2014). In order to

identify if the changes in the network that occurred during

learning is associated with WM formation, the complex

network properties based on the graph theory during WM

tasks were compared in correct and error trials (Fig. 6D–

H). Figure 6D showed that the average degree in correct

trials were significantly higher than those in error trials.

Since the average degree represents the connection strength
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Fig. 6 The comparison of the CFC values and complex network

properties during WM tasks. We described 168 correct trials and 32

error trials from 10 expert rats in last two days. A The comparison of

the AAC values between theta phase and gamma amplitude of the

LFPs in correct and error trials. The AAC values in correct trials were

significantly higher than those in error trials (independent sample

t test, **P\0:01). B The comparison of the PAC values in the correct

and error trials. The PAC values were significantly higher than those

in error trials (independent sample t test, ****P\0:0001). C The

comparison of the PPC values in correct and error trials. The PPC

values were significantly higher than those in error trials (independent

sample t test, ****P\0:0001). D The comparison of the average

degree of the brain network based on the PAC algorithm in correct

and error trials. The average degree of the brain network in correct

trials was significantly higher than that in error trials (independent

sample t test, **P\0:01). E The comparison of the average

clustering coefficient in correct and error trials. The average

clustering coefficient in correct trials and error trials had no

significant difference (independent sample t test, P ¼ 0:6869, n.s.:
no significant). F The comparison of the average shortest path length

in correct and error trials. The average shortest path length in correct

trials was significantly lower than that in error trials (independent

sample t test, ****P\0:0001). G The comparison of the global

efficiency in correct and error trials. The global efficiency in correct

trials was significantly higher than that in error trials (independent

sample t test, ****P\0:0001). H The comparison of the small-world

attribute in correct and error trials. The small-world attribute in

correct trials and error trials had no significant difference (indepen-

dent sample t test, P ¼ 0:3457)
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of the network, we can indicate that the network connec-

tion is related to the correct storage of WM information.

The average clustering coefficient represents the local

information transmission in the network. Figure 6E showed

the average clustering coefficient had no significance in

correct and error trials, which indicates that the WM pro-

cess won’t affect the local information transmission in the

network. The average shortest path length and the global

efficiency both represent the global information transmis-

sion efficiency of the brain network. Figure 6F, G showed

that the average shortest path length in correct trials was

lower than that in error trials and global efficiency in

correct trials were significantly higher than those in error

trials. We indicate that the correct storage of WM can

increase the information transmission efficiency. Fig-

ure 6H showed that small-world attribution had no signif-

icance in correct and error trials and all values were greater

than 1, indicating that the constructed brain networks in

correct or error trails have the small-world attribution.

Taken together, the changes of average degree, the

average shortest path length and the global efficiency in the

network are associated with WM formation. Correct stor-

age of WM information will not change local information

transmission and the small-world attribute, while, it can

increase the network connection and efficiency of infor-

mation transmission.

Conclusion

In this study, we first recorded 16-channel LFP signals in

the mPFC during WM tasks in the T maze by using mul-

tichannel in vivo recording technology and analyzed the

power changes of the LFPs during WM. Second, the brain

network was constructed by using the 16-channel elec-

trodes as network nodes and the CFC values of theta and

gamma components of LFPs as the connection between the

nodes. Finally, we analyzed the dynamic changes in the

CFC values and the complex network properties of the

brain network during WM. The experimental results can be

divided into tree aspects: the power changes of the LFPs

during WM; the changes of CFC during WM; the changes

of complex network properties. From the power changes of

the LFPs, the power of LFPs increased at the WM period

than at resting stat and peaked near the reference point of

selection, however, the LFPs power decreased across

learning. From the changes of the CFC, the CFC values

between theta-gamma of LFPs increased significantly with

an increase in learning days and the PAC values at the WM

state were significantly higher than those in the free choice

state and resting state. The modulation between theta phase

and gamma amplitude plays an important role in the for-

mation of WM. From the changes of the complex network

properties, the changes of average degree, the average

shortest path length and the global efficiency in the net-

work are associated with WM formation. The network

connection was enhanced and the information transmission

efficiency decreased with an increase of learning days.

Furthermore, correct storage of WM information will not

change local information transmission and the small-world

attribute, while, it can increase the network connection and

efficiency of information transmission. This study tries to

map the changes that occur in the brain networks during

WM at the level of CFC between theta-gamma and pro-

vides innovative ideas for the coding mechanism of neural

information in WM from the perspective of the graph

theory and complex network properties.

Experimental procedure

Ethics statement

Behavioral training and electrophysiology recording

methods were in accordance with the Guideline for the

Care and Use of Laboratory Animals and were approved by

the Biomedical Ethics Committee of Hebei University of

Technology.

Electrophysiological recordings

Ten male Sprague–Dawley (SD) rats, aged 12–14 weeks

and weighing 250–300 g, were bred in house and main-

tained on a 12:12 h light: dark schedule. Before the elec-

trophysiological experiments, the SD rats were given a

two-day food restriction (at least 85% of normal body

weight). The electrophysiological experimental steps were

as follows: (1) rats were anesthetized with chloral hydrate

(350 mg/kg) throughout surgery; (2) the coordinates for the

mPFC were determined according to the rat brain in

stereotaxic coordinates (2.5–4.5 mm anterior to bregma,

0.2–1.0 mm lateral to midline, 2.5–3.0 mm from dura); (3)

microelectrode arrays with 16 channels (2 9 8, 33 lm
diameter, 300 lm spacing, nickel–chromium, impedance

\ 1 MX) were chronically implanted into the mPFC

(Fig. 1C); (4) microelectrode arrays were affixed to the

skulls using dental cement. After surgery, the rats were

given 3–5 days to recover.

Training and data acquisition

The spatial delayed alternation task in a T maze based on a

food reward was chosen as the WM paradigm for the rats.

The T maze consists of a starting arm (point A), two target

arms (point B and point C) that have the food reward, and

the selection reference point (point O), shown in Fig. 1A.
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The rats’ intake of food was controlled to keep their weight

at 85% of normal body weight. A total of 10 rats were

given two training sessions per day (10 trials per session).

Each trial of the T maze WM task included two phases: the

free choice and the delayed alternation. Before the start of

each task, rats were placed in the starting arm (point A),

and the food reward was placed in the troughs of the target

arms on both sides. At the beginning of the task, the rats

were allowed to choose freely by opening the movable

door in the departure area. Food rewards could be obtained

from point A to the end of the target arm on either side.

After feeding, the rats returned to the starting area and

started again after a five-second delay. If the rats chose the

target arm that they did not enter in the previous stage, they

could get a food reward, and it was recorded as correct. In

contrast, if the rats chose the same target arm that they had

entered in the previous stage, they could not get a food

reward. After the completion of a trial task, the rats

returned to the starting area and waited for the next trial.

Training continued until the correct rate was over 80% for

two consecutive days.

During the training of the WM tasks in the T maze, we

recorded the 16-channel neural data from the microelec-

trode arrays in the mPFC by using a Multichannel Neu-

roelectrophysiological Signal Recording System

(OmniPlex/128, Plexon, USA). To extract the LFP data, the

original neural signals were amplified (gain: 5000), filtered

(0.3–500 Hz) and sampled at 1000 Hz.

Histology

We examined the positions of the recording electrode tips

in the rat brain after the electrophysiological experiments.

Firstly, all the rats were deeply anesthetized and transcar-

dially perfused with phosphate buffered solution followed

by 4% paraformaldehyde solution. Then the brain tissue

was sliced at 150 lm and mounted on slides to visualize

and photograph lesions. Lastly, the location of electrodes

were verified histologically and plotted on standard dia-

grams compared with the brain atlas of rats.

Data analysis

Power spectrum estimation and time–frequency analysis

Power spectrum analysis can reflect the spectrum charac-

teristics of signals. We chose fast Fourier transform (FFT)

to analyze the frequency-energy distribution of multi-

channel LFP signals. The formula of FFT is shown as:

FðxÞ ¼
Z þ1

�1
f ðtÞe�jxtdt ð1Þ

where x ¼ 2pft, x is the angular frequency, f is the signal

frequency, t is the signal time.

The time–frequency distribution of multi-channel LFPs

was obtained by using short-time Fourier transform

(STFT). The formula of STFT is shown as:

STFTðf ; sÞ ¼
Z þ1

�1
½xðtÞgðt � sÞ�e�j2pftdt ð2Þ

in which, gðtÞ is window function. The length of window

function was chosen as 1000 ms, the moving step was

chosen as 200 ms. The dynamic time–frequency distribu-

tion of LFPs in each channel was calculated during WM.

CFC algorithm

CFC can describe the coordination between different fre-

quency components of the LFPs, including AAC, PPC and

PAC. The CFC algorithm requires the following steps: first,

extracting the instantaneous amplitude and phase of the

signal by using a Hilbert transform; then calculating the

CFC values with specific methods including AAC, PPC

and PAC; and finally, comparing the differences among the

AAC, PPC and PAC. The Hilbert transform decomposes

signals in the time domain into adjacent frequency bands,

and then converts each frequency band into complex sig-

nals in the frequency domain. After the Hilbert transform,

the power of the signal does not change, but the phase is

shifted by �p=2 compared with the original signal. First,

an analytic signal, gðnÞ, is defined below:

gðnÞ ¼ xðnÞ þ i~xðnÞ ¼ AxðnÞeihxðnÞ ð3Þ

AxðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xðnÞ2 þ xðnÞ2

q
ð4Þ

hxðnÞ ¼ arctan
~xðnÞ
xðnÞ

� �
ð5Þ

in which ~xðnÞ is the Hilbert transform of xðnÞ, AxðnÞ is the
amplitude of the signal in time step n and hxðnÞ is the

instantaneous phase of the signal. Having the instantaneous

phase and the amplitude of the signal, we can calculate

different types of CFC.

(1) AAC

The Pearson correlation coefficient is usually used to

estimate AAC between signals. The specific formulas are

as follows:

corrðx; yÞ ¼ covðx; yÞ=rxry
¼ EððX � uxÞ � ðY � uyÞÞ=rxry ð6Þ

in which X and Y represent the power densities of xðnÞ and
yðnÞ, respectively. The Pearson correlation coefficient

corrðx; yÞ is between - 1 and 1. When corrðx; yÞ ¼ 1, this

means y increases with an increase in x; when
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corrðx; yÞ ¼ �1, this means y increases with a decrease in

x. When corrðx; yÞ ¼ 0, this means that there is no linear

relationship between the two signals. The larger the Pear-

son correlation coefficient is, the stronger the correlation

between the two signals is.

(2) PPC

The Phase locking value (PLV) can measure the phase

synchronism between two frequency bands. The descrip-

tion of PLV can be shown as follows:

PLV ¼ 1

N

XN
n¼1

eiDhðnÞ

�����
����� ð7Þ

in which N is the length of the time sequence. The PLV

value is between 0 and 1. A value of PLV ¼ 0 indicates

that there is no coupling relationship between the two

phases of the two signals, and a value of PLV ¼ 1 means a

complete coupling between the phase of the two signals.

The larger the PLV value is, the stronger the phase cou-

pling between the two signals.

(3) PAC

PAC of the amplitude of high-frequency activity to the

phase of slower oscillations has been described in cognitive

process and it is used to measure the modulation effect of

the phase of one signal on the amplitude of another signal

(Jafakesh et al. 2016). In this study, the modulation

between theta phase and gamma amplitude of the multi-

channel LFP signals was studied by using PAC based on

the PLV method. Assuming that two different signals are

xðnÞ and yðnÞ, the instantaneous amplitude and the phase of

xðnÞ and yðnÞ are extracted by the Hilbert transform.

xðnÞ ¼ axðnÞeihxðnÞ ð8Þ

yðnÞ ¼ ayðnÞeihyðnÞ ð9Þ

The phase of yðnÞ is hyðnÞ and the amplitude of xðnÞ is
axðnÞ. The time series of axðnÞ was filtered on the fre-

quency band of signal yðnÞ, which gave the axyðnÞ value.

By applying the Hilbert transform, we can get haxyðnÞ,
which is the phase of axyðnÞ. The PAC value Pyx of the two

signals xðnÞ and yðnÞ can be obtained by using formula (8).

The value of Pyx ranges from 0 to 1. The larger the value is,

the stronger the coupling between xðnÞ and yðnÞ is. A value

of Pyx ¼ 0 indicates that there is no coupling between the

two signals.

Pyx ¼
1

N

XN
n¼1

ei½hyðnÞ�haxyðnÞ�

�����
����� ð10Þ

Complex network analysis

Graph theory is the most important mathematical tool in

the field of complex network analysis. In graph theory, a

complex network can be expressed as a graph. The graph

consists of two sets: the vertex set and the edge set. The

network topology properties are described as follows:

(1) Degree

Degree k is defined as the number of edges directly con-

nected to nodes, which is the most important description of

the statistical characteristics of nodes interconnection, and

it reflects the characteristics of network evolution. The

greater the degree of the node, the more important the node

position in the network. The formula for calculating the

degree ki of node i is as follows:

ki ¼
X

aij ð11Þ

(2) Clustering coefficient

The clustering coefficient Ci represents the possibility that

neighbors of the node i are neighbors to each other. This

coefficient can measure the local information transmission

of the network and reflect the ability of the network to

defend against random attacks. The calculation formula is

as follows:

Ci ¼ 2ei=kiðki � 1Þ ð12Þ

in which Ci is the ratio between the number of actual

connected edges (ei) and the maximum number of possible

connected edges. The formula of the average clustering

coefficient of the network is as follows.

C ¼ 1

N

XN
i¼1

Ci ð13Þ

(3) Shortest path length and global efficiency

The shortest path length lij describes the optimal path for

information transmission from the node i to the node j.L

describes the average shortest path length of the network

between any two nodes in the network. The global effi-

ciency Eglob is reciprocal to the average shortest path length

L.

L ¼ 1

NðN � 1Þ
X
i6¼j

lij ð14Þ

Eglob ¼
1

NðN � 1Þ
XN

i¼1;j¼1;i 6¼j

1

lij
ð15Þ

(4) Small-world attribute

Based on the complex network experiments, researchers

have found that real networks are almost all small world

networks, which also exists in the brain network (Bullmore
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and Sporns 2009). Evidence demonstrated that the neural

network has a small-world network attribute, which was

characterized by higher average clustering coefficient and

shorter average shortest path length (Watts and Strogatz

1998). To quantify the small-world attribute of the net-

work, the clustering coefficient and the shortest path length

are unified as one index, r ¼ c=k, to measure the small-

world attribute. In this equation, c ¼ Creal=Crandom and

k ¼ Lreal=Lrandom.Creal and Crandom are the average clus-

tering coefficient of the real network and the random net-

work, respectively. Lreal and Lrandom are the average

shortest path length of the real network and the random

network, respectively. The network holds a small-world

attribute if r[ 1. The greater r is, the stronger the small-

world attribute is.

The average degree, average clustering coefficient,

average shorted path length, global efficiency and small-

world attribute are the basic characteristics of complex

networks, reflecting the efficiency of WM information

transmission in brain networks.

Statistical analysis

We recorded 16-channel LFPs activities from rat mPFC

when they performed the WM task in T maze. In total, we

described 100 trials from 10 rats in learning days and 168

correct trials and 32 error trials from 10 expert rats in last

two days. Data in the text and figures are expressed as the

mean ± SEM. The comparisons of the PAC values at the

WM stat, resting state and free choice state were done by

using Bonferroni post hoc test after one-way ANOVA.

When comparing the correct rate of behavioral training, the

CFC values and the complex network properties during

learning days, a one-way ANOVA followed by post hoc t

test was used. Independent sample t test and paired sample

t test were used to compare two groups of data. The P value

was considered statistically significant as follows:

*P\0:05, **P\0:01, ***P\0:001, ****P\0:0001.
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