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ABSTRACT Physical models of biological systems can become difficult to interpret when they have a large number of param-
eters. But the models themselves actually depend on (i.e., are sensitive to) only a subset of those parameters. This phenomenon
is due to parameter space compression (PSC), in which a subset of parameters emerges as ‘‘stiff’’ as a function of time or space.
PSC has only been used to explain analytically solvable physics models. We have generalized this result by developing a nu-
merical approach to PSC that can be applied to any computational model. We validated our method against analytically solvable
models of a random walk with drift and protein production and degradation. We then applied our method to a simple computa-
tional model of microtubule dynamic instability. We propose that numerical PSC has the potential to identify the low-dimensional
structure of many computational models in biophysics. The low-dimensional structure of a model is easier to interpret and iden-
tifies the mechanisms and experiments that best characterize the system.
SIGNIFICANCE Computational models are integral to many domains of science. But are these models overly complex?
Von Neumann quipped that only four parameters can fit an elephant, and five can make its trunk wiggle. Here, we show
how to compress the parameter space of computational models, which allows us to discover their underlying structure and
to extract key parameters. We validate our method against two analytically solvable models. We then compress a well-
known computational model of microtubule dynamic instability, which is the nonequilibrium switching of tubulin polymers
between phases of growth and shrinkage. We show that only two effective parameters are sufficient to describe dynamic
instability. Our work opens the door to the rigorous analysis of any computational model in biophysics.
INTRODUCTION

A central goal of biophysics is to develop mathematical and
computational models that describe biological systems.
These models can operate at different temporal and spatial
scales. In the case of the microtubule cytoskeleton, models
range from molecular dynamics simulations of ab-tubulin
heterodimers (1) to Monte Carlo simulations of microtubule
dynamic instability (2–4) to analytical theories that treat the
mitotic spindle as a nematic liquid crystal (5). These models
vary in their degree of complexity, i.e., in the number of pa-
rameters they use.

A central problem in biophysical modeling is defining the
‘‘right’’ number of parameters to explain and predict exper-
imental data, which we refer to as observables. We prefer
simple models; in the well-known quip from Von Neumann,
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four parameters are sufficient to fit an elephant, and five can
make its trunk wiggle (6), as was indeed later demonstrated
(7). More parameters can sometimes improve a model’s per-
formance—namely, its ability to reproduce observables—
but too many can be a problem. Unnecessary parameters
obfuscate those that determine the model’s output and
render the model less interpretable—all without any gain
in predictive power (8). In other words, complex models
can be black boxes. Thus, we need a rigorous way to define
which parameters determine the performance of any model.

The behavior of a model can be described within a so-
called parameter space, which has as many dimensions as
there are parameters. Moving within this parameter space
(by changing the values of parameters) should change a
model’s output of observables. But usually a given observ-
able significantly changes along only a few directions in
parameter space (9). In other words, most directions in
parameter space are irrelevant. To make sense of complex
models, an important scientific problem is to reliably extract
relevant directions in parameter space, defining the true,
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lower-order ‘‘dimensionality’’ of the model. There are
several ways to solve this problem. In the 1980s, classical
principal-component analysis was proposed as a method
to reduce ordinary differential equations (ODE)-based
models of biochemical systems (10). More recently, the
manifold boundary approximation method has been devel-
oped to fit data while minimizing dimensionality (11); simi-
larly, fitness-based asymptotic parameter reduction can
extract the ‘‘core working module’’ of a model (12). Other
machine-learning approaches can develop realistic models
with a minimal number of parameters, e.g., using Bayesian
information criterion (13). These methods are focused on
ODE-based models, however, so there is an acute need for
universal methods that are applicable to stochastic computa-
tional models as well.

Recently, parameter space compression (PSC) (14) has
been proposed as the reason why fundamental models in
physics operate successfully with simple parameter sets
(15). PSC is related to the properties of the Fisher informa-
tion matrix (FIM), which quantifies the relative significance
of a model’s parameters. More specifically, for a generic
dynamical physical system, the eigenvalues of the FIM
change over time to identify combinations of parameters
that become ‘‘stiff’’ (viz, those with strong effects on model
outputs) versus others that become ‘‘sloppy’’ (those with
very weak effects) (16). The sloppy parameters or parameter
combinations are thus ‘‘compressed away’’ to reveal the
simpler dimensionality that underlies a model’s perfor-
mance (17). In other words, most parameters are sloppy
and thus irrelevant; this sloppiness is the main reason why
coarse-grained models in physics provide such satisfying
descriptions of the natural world (15).

PSC explains how the predictive, low-dimensional struc-
ture of a model emerges (14), but currently PSC has been
applied to a very limited number of analytically solvable
physics models because of the difficulty of generalizing
A B
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PSC to other contexts. To study the phenomenon of dimen-
sional reduction via PSC in more general contexts, we
developed a numerical PSC method, allowing us to explic-
itly study stochastic biophysical systems. To validate our
method, we recovered the analytical results of a simple
one-dimensional random walk model (14) and its perturba-
tions. We further tested our method on an analytically
solvable model of protein production and degradation. To
test our method on a bona fide computational model, we
applied numerical PSC to a classic Monte Carlo model of
microtubule dynamic instability. In all three test cases,
we show that the eigenvalues of the FIM provide critical
insights into the behavior of a model and the importance
of its parameters. Thus, our numerical PSC method opens
the door to an analysis of computational models in
biophysics that reveals the minimal yet predictive descrip-
tions of living systems.
MATERIALS AND METHODS

Mathematical formulation

Our approach implements numerically the theoretical ideas of Machta and

colleagues on the computation of the FIM to describe parameter space

compression (14,16,17). We thus study the distribution of an observable x

and its sensitivity to a vector of parameters~q ¼ fqmg. The central idea is

that changes in an important parameter will result in larger changes in

the probability distributions yð~q; xÞ relative to changes in a less important

one (Fig. 1 A). Thus, the important parameters will dominate the eigen-

values and eigenvectors of the FIM. Dominating eigenvalues define direc-

tions in parameter space where observables vary significantly. We call

these directions ‘‘effective parameters.’’ In general, the effective parameters

of a model are not the original parameters but rather combinations of them

(see below). Thus, the goal of PSC is to identify these dominating eigen-

values and eigenvectors, which will define the most important directions

in parameter space and the effective parameters defining the distribution

yð~q; xÞ of observable x (16,17). In particular, for a dynamical system, we

expect that a hierarchy of eigenvalues will appear for the FIM of yð~q; x; tÞ
as time t progresses, such that only a few effective parameters define the
FIGURE 1 Numerical PSC. (A) Shown is a

schematic of a stiff parameter versus a sloppy

parameter in parameter space. The stiff parameter

changes the observable more significantly than a

sloppy one. Note: the red and blue curves are prob-

ability distributions when shifting different param-

eters by the same amount. (B) Shown is a

schematic of one-dimensional random walk with

parameters qi, the probability of jumping to neigh-

boring sites. (C) Shown are the three steps of our

numerical PSC method: 1) generate the probability

distributions of the observables needed (see the

plot of particle density at different time steps), 2)

calculate the finite derivatives for the Fisher infor-

mation matrix and its corresponding eigenvalues,

and 3) repeat at each time step of the simulation

and track the eigenvalues over time. Our numerical

PSC reproduces the analytical result from (14).

Note: each color corresponds to the same eigen-

value tracked over time. To see this figure in color,

go online.
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observed dynamics at any given time. These few effective parameters are

sufficient to completely describe the system.

As shown in (14), with yð~q; xÞ being the probability distribution of

observable xwith parameters~q, the FIM at any given time t can be rewritten

with standard assumptions as a simple ‘‘metric’’:

gm;nðtÞ ¼
X
x

vy
�
~q; x; t

�
vqm

vy
�
~q; x; t

�
vqn

; (1)

where y can be evaluated as a function of time t. Notice that gm;nðtÞ then be-
comes a simple function of the Jacobian with respect to its parameters. A

detailed derivation adapted from (14) is provided in Appendix 1 in the Sup-

porting Material. We independently consider several observables x and, for

each x, compute the FIM of distribution yð~q; x; tÞ and its eigenvalues as a

function of time t by summing over the entire observable landscape.
Scaling and algorithm

A challenge in analyzing computational models, especially in biology, is

that the parameters have different units and scales. Some parameters are en-

ergies (e.g., the DGo of bond formation), and some are kinetic rate constants

(e.g., the rate constant of a GTP hydrolysis reaction). Because rate constants

are exponentially distributed to thermal energy kBT, we choose to rescale

the parameters to express them all in terms of energies when calculating

the FIM. Energies are more fundamental quantities, and their variations

are easier to interpret physically. We thus define newly rescaled parameters,
~qm, so that ~qm ¼ qm for parameters that are energies and ~qm ¼ logqm for rate

constants (with an implicit conversion factor to remove units, which nor-

malizes the different parameters, equivalent to the common procedure of

taking the derivatives with respect to the log of the parameter, as done

previously (9)). Therefore, Eq. 1 becomes

gm;n ¼
X
x

vy

v~qm

vy

v~qn
¼

X
x

vyi
vqm

vyi
vqn

qamm qann ; (2)

where am ¼ 0 if qm is an energy and am ¼ 1 if qm is a rate constant.

To calculate the FIM numerically using Eq. 2, we developed a three-step

algorithm, shown in Fig. 1 C. First, we numerically compute the probability

distributions yð~q; x; tÞ of each observable x at any time t for incremental var-

iations of parameters qm. We then compute finite derivatives to evaluate

ðvy =v~qÞ (corresponding to the Jacobian), which implies that we need to

generate 2N þ 1 probability distributions yð~q5D~q; x; tÞ for each observ-

able x for a model with N parameters. Second, we evaluate each element

of the FIM using the 2N þ 1 probability distributions that we generated.

Therefore, Eq. 2 becomes

gm;n ¼
X
x

yðqm þ Dqm; x; tÞ � yðqm � Dqm; x; tÞ
2Dqm

� yðqn þ Dqn; x; tÞ � yðqn � Dqn; x; tÞ
2Dqn

(3)

Using Eq. 3, we sum over the entire observable landscape for each element

of the FIM and then calculate the eigenvalue of the FIM at a given time.

Third, we track the eigenvalues of the FIM over time. In general, the eigen-

values of the FIM are logarithmically distributed (16). The important

feature of the eigenvalues is not their absolute values but rather their relative

values, which is to say that the largest eigenvalue points to the most impor-

tant direction in parameter space.

When evaluating the finite derivatives in Eq. 3, the choice of Dq is arbi-

trary. It is clear that very large changes in parameter values will cause nu-

merical instability when calculating the finite derivatives. Rather, the issue
is whether small changes in parameter values are nevertheless large enough

to cause meaningful changes in the distributions of observables. In our

experience, very small changes cause the eigenvalues and eigenvector com-

ponents of the FIM to become noisy. Therefore, we recommend Dq ¼ 0.05

kBT (leading to a change of 5% for corresponding rate constants; see Ap-

pendix 2 in the Supporting Material) as a robust choice to avoid numerical

instability while keeping significant changes in model output. The best

value of Dq may be be model dependent. The consequences of small

changes in the parameters (e.g., 0.01 kBT) will be demonstrated below.

Computational costs mostly come from running enough simulations to

generate good probability distributions. For the microtubule study, we

ran R40; 000 independent simulations of microtubule growth per param-

eter set, which represents a bit less than 1 h of computation on a single

3.6-GHz core. As mentioned above, for N parameters, we need 2N þ 1 sim-

ulations to compute derivatives from Eq. 3. Thus, for five parameters,

roughly 10 core hours of computation are needed. Computation can be

easily parallelized because simulations of individual microtubules are inde-

pendent, and distributions of all observables can be obtained from the same

set of simulations.
RESULTS

Test case: one-dimensional random walk

To test our numerical PSC method, we benchmarked our
algorithm by simulating a model for which an analytical
solution is available. We chose the one-dimensional
random walk model introduced in Machta et al. (14), which
is the model used to develop the concept of PSC. The pa-
rameters of the model are the probabilities of a particle
jumping to one of six neighboring sites (Fig. 1 B); the
observable x of the model is the position of a particle,
and yð~q; x; tÞ is the distribution of particle positions as a
function of time (viz, the particle density in a mean-field
approximation when there are many particles). We simu-
lated the random walk and plotted the eigenvalues of the
FIM over time (Fig. 1 C), and our results precisely match
those derived from the analytical expression (see Appendix
2 in the Supporting Material). In particular, the eigenvalues
start at unity; as time progresses, the distribution of eigen-
values expands, establishing a clear hierarchy of eigen-
values at later times.

As pointed out in Machta et al. (14), the first two eigen-
values can be interpreted as a drift term and a diffusion co-
efficient, respectively; the spreads of the eigenvalues are
enough to reproduce most of the data in an effective theory
(as discussed in (14)). We further tested the correspondence
between our numerical results and the analytical theory by
introducing drift into the random walk, which was not
done previously. The particle density over time is shown
in Fig. 2 A. The eigenvalues of the FIM over time for the
perturbed random walk are shown in Fig. 2 B. The result
is similar to uniform diffusion in the sense that a hierarchy
of eigenvalues appears as time progresses. We are able to
show that the eigenvalues are proportionally defined by
the probabilities of particles jumping to neighboring sites
(the derivation is shown in Appendix 3 in the Supporting
Material). Most importantly, our numerical results precisely
Biophysical Journal 118, 1455–1465, March 24, 2020 1457
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FIGURE 2 Random walk and random walk

with drift. (A) Shown is the particle density for a

nonuniform one-dimensional random walk over

time (with probability higher to the right side of

the space). (B) Shown are the eigenvalues for the

nonuniform one-dimensional random walk. The

eigenvalues at the first step of the simulation are

not at unity contrary to the uniform random

walk. (C) At the first step of the simulation for

the one-dimensional random walk, the eigenvalue

is equal to the squared rate given for the nonuni-

form simulation. This result is universal for any

rates given. (D) The eigenvalues at the first step

of a uniform simulation are also equal to the

squared rate of the simulation, i.e., squared of

one over the number of parameters. To see this

figure in color, go online.
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match the analytical solutions we derived for a random walk
with drift and a uniform random walk with different
numbers of parameters (see Fig. 2, C and D, respectively).
Thus, our numerical PSC method successfully compressed
this classical system and its variations.
Test case: a simple protein production and
degradation system

Having benchmarked our algorithm against the random
walk model, we next wondered how our numerical PSC
method would handle a model in biophysics, in which the
distributions of observables are often complex. Therefore,
we applied our numerical PSC method to a textbook bio-
physical model of protein production and degradation.
The model has only two parameters, the production rate r

and the degradation rate d (see Fig. 3 A). The observable x
of the model is the number of proteins in the system at
A B C
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any given time. Importantly, the stationary distribution
yð~q; xÞ of protein number is a Poisson distribution of the
parameter combination r=d (representing the expectation
value for the number of proteins) (18). Using this stationary
distribution, we can analytically solve for the dominating
eigenvalue of the corresponding FIM in the continuous
limit:

l1x
1

2

ffiffiffiffiffiffi
r

dp

r
(4)

The derivation of the eigenvalues and the expression for Eq. 4
can be found in Appendix 4 in the Supporting Material.

Starting from an initial condition with no proteins, we
simulated this process using the Gillespie algorithm (19)
and computed the eigenvalues of the system over time
(Fig. 3 B). One eigenvalue is always over two orders of
magnitude larger than the other, indicating that the system
FIGURE 3 Protein production and degradation.

(A) Shown is a schematic of a simple protein pro-

duction-degradation system with production rate

r and degradation rate d. (B) Shown is a plot of

eigenvalues over time for the protein production-

degradation system. There is one dominating

eigenvalue, and it matches the analytical result.

(C) Shown is the plot of eigenvector percent from

the dominating eigenvalue of (B). The production

rate r dominates at early time points, but at statio-

narity, the production rate and degradation rate

contribute equally. Note: the eigenvector percent

is the absolute value of the parameter component.

To see this figure in color, go online.
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is governed by one effective parameter, which is to say that
there is only one relevant direction in parameter space that
determines the model’s output. Looking at the relative
contribution of the eigenvector components of the domi-
nating eigenvalue in Fig. 3 C, we can see that during the
early stages of the simulation, the production rate r domi-
nates, corresponding to the net production of proteins
from the initial condition. The system then reaches statio-
narity, at which point the eigenvector components of the
dominating eigenvalue are an equal mix of the production
rate r and degradation rate d, as expected from our deriva-
tion (Fig. 3 C). We checked that our method recovers the
analytical result of Eq. 4 (in the asymptotic limit) for
different ratios of production rate over degradation rate
(see Fig. 4 A). Thus, our numerical PSC method is able to
compress out irrelevant directions and extract the effective
parameter defining the distribution of protein number
(here, a Poisson distribution).

In the continuous limit, the second eigenvalue of the sys-
tem goes to 0. In a discrete simulation, however, it is impos-
sible for the second eigenvalue to reach 0 because of the
limitations of numerical precision and the physical
definition of the system. For example, for a production
rate r ¼ 1 and a degradation rate d ¼ 0:01, we know that
the steady-state solution will have a peak at N ¼ 100 pro-
teins. However, this means that when calculating the finite
derivatives, any shift smaller than 1% will result in a change
of less than one protein, which is nonphysical. We show that
even using analytical values of the Poisson distribution, we
will not be able to reach 0 when calculating finite derivatives
(see Fig. 4 B).
Microtubule dynamics: a complex biophysical
system

Having fully characterized our method, we applied it to a
biophysical system that cannot be solved analytically—
namely, the dynamic instability of microtubules (20).
Microtubules are polymers of ab-tubulin, and dynamic
instability is the nonequilibrium behavior in which the
polymers stochastically switch between periods of growth
A B
and shrinkage. This complex, nonequilibrium phenomenon
was first simulated numerically in the 1980s (21,22) and
has remained a subject of considerable interest for computa-
tional biologists, who have developed increasingly sophisti-
cated models (3,4,23,24). The long-term goal of these
collective efforts is to develop a powerfully predictive yet
minimal model that can be used to explain microtubule
physiology. Our numerical PSC method has the power to
determine whether existing models have an underlying
low-dimensional structure.

Our model is based on VanBuren et al. (2) (see
Fig. 5 A); a similar model is used by Ayaz et al. (25).
We chose this model because it is a classic and because
understanding its underlying dimensionality will inform
ongoing modeling work on microtubules. Briefly, tubulin
subunits associate head-to-tail to create protofilaments
(pfs), forming longitudinal bonds described by an energy
parameter DGo

long. In our model, 13 pfs are connected by
lateral bonds between adjacent subunits with an energy
parameter DGo

lat (26). The rate at which tubulin binds to
pf ends is described by an association rate constant, kþ.
Because tubulin is a GTPase, these incoming tubulin sub-
units contain GTP in the tubulin nucleotide pocket. This
GTP becomes hydrolyzed after 1) the subunit incorporates
into the polymer and 2) another GTP-tubulin binds on top
of it, contributing catalytic residues that complete the
nucleotide pocket (27). The rate of GTP hydrolysis is
described by a rate constant parameter kH. GTP hydrolysis
and phosphate release converts GTP-tubulin to GDP-
tubulin and weakens the bonds between tubulin subunits
in the polymer (28,29). After VanBuren, this weakening
of energies is described by an energy parameter, DDGo

lat,
which is assigned to the lateral bonds of the new GDP-
tubulin subunit.

We performed a parameter sweep and arrived at param-
eter values similar to Castle et al. ((4), see Fig. 5 A). Using
these parameters, our simulation produces microtubule
growth curves that correspond reasonably with measure-
ments from multiple labs using 8 mM brain tubulin (e.g.,
(30), see Fig. 5 B). More specifically, microtubules grow
as long as their ends are protected by a ‘‘cap’’ of GTP-
FIGURE 4 Generalization of protein system

and understand numerical limitations. (A) The

dominating eigenvalue for the protein production-

degradation system is shown to be a ratio of the pro-

duction rate over the degradation rate times some

constant. The simulations of different ratios match

the analytic solution. (B) The second eigenvalues

for the protein production and degradation rate

are nonzero during simulation because of the limi-

tation of the physical system itself. At steady state,

the average number of proteins is 100 proteins,

which means that the smallest shift for probability

to calculate the finite derivatives is one protein

(1%of the average number),which gives a nonzero

eigenvalue. To see this figure in color, go online.
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FIGURE 5 Microtubule dynamics. (A) Shown is the base model of our

microtubule simulation after VanBuren et al. (2). (B) Shown is a plot of

length versus time from our microtubule simulation. To see this figure in

color, go online.
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tubulin (31). If this GTP cap is ‘‘lost,’’ the polymer switches
to rapid shrinkage in an event known as a ‘‘catastrophe,’’ the
hallmark of dynamic instability (20).

There are many subtleties and caveats to models of dy-
namic instability. For example, which bonds are weakened
by GTP hydrolysis is not well established (32,33), and the
transition from GTP-tubulin to GDP-tubulin may have sub-
steps (33). These subtleties are discussed in Appendix 5 in
the Supporting Material. We used the direct method of the
Gillespie algorithm (19), which is a different implementa-
tion than the one in VanBuren et al. (2) and Ayaz et al.
(25). To validate our Gillespie algorithm, we used the pa-
rameters found in Ayaz et al. (25) and confirmed that our
simulation produces identical results. The details of our
simulation method and the benchmarking of our algorithm
against published data can be found in Appendix 5 in the
Supporting Material and Fig. S2.

To compress our model, we varied all five parameters
(DGo

long, DGo
lat, kH, kþ, and DDGo

lat) around their initial
values. We measured four independent observables of the
simulations that correspond to the experimental data used
in our parameter sweep (30): 1) the length of the microtu-
bule (Fig. 6 A); 2) the decay constant that describes the con-
version of GTP-tubulin into GDP-tubulin (‘‘GTP cap size,’’
Fig. 6 B) (34); 3) the microtubule lifetime (Fig. 6 C); and 4)
1460 Biophysical Journal 118, 1455–1465, March 24, 2020
the postcatastrophe shrinkage rate (Fig. 6 D). Two of these
observables can be tracked continuously over the time
course of the simulation—namely, the length of microtubule
and the decay constant. The second column of Fig. 6, A and
B shows the eigenvalues over time for these observables.
The other two observables—namely, microtubule lifetimes
and the postcatastrophe shrinkage rate—are not tracked
continuously because they require postsimulation analysis
to determine when catastrophes occurred (see Appendix 6
in the Supporting Material). The second column of Fig. 6,
C and D shows the eigenvalues for these observables at
the conclusion of the simulation, when the distributions
have reached stationarity. This framework allowed us to
apply our numerical PSC method to our model of microtu-
bule dynamic instability.

For three out of four observables, one eigenvalue domi-
nates the others by at least one order of magnitude (note
the log-scale for eigenvalues). This dominance implies
that the distribution of these observables is determined by
a single effective parameter. This result is not obvious:
one expects that the mean and the variance of any given dis-
tribution are described by independent parameters, as was
the case for the random walk (14). Rather, three of our
microtubule observables are similar to the number of pro-
teins in the protein production/degradation model, in which
both the mean and variance of the distributions are deter-
mined by a single effective parameter. The only exception
we observe to this rule is the microtubule lifetime distribu-
tion; even though one eigenvalue strongly dominates this
distribution, a second eigenvalue is a bit less than one order
of magnitude below the first one. This smaller difference
suggests that although the lifetime distribution is mostly
determined by one effective parameter, another parameter
mildly modulates it.

As for the protein production/degradation case, the single
effective parameter determining the distribution of each
observable is a priori a complex function of the initial pa-
rameters. As before, the relative influence of each initial
parameter is given by the eigenvector components of the
dominant eigenvalue (see column three of Fig. 6, A–D; for
the lifetime distribution, we also show the eigenvector com-
ponents for the second eigenvalue). Importantly, we can also
see which parameters are not important for a given observ-
able because these parameters will be insignificant compo-
nents of the dominating eigenvalue.

The important components for microtubule length are the
lateral bond, DGo

lat, followed closely at later times by the
longitudinal bond, DGo

long. These components are not sur-
prising considering that the bond energies are what drive
polymerization. The important components for the decay
constant are more interesting. In addition to the obvious
parameter of the GTP hydrolysis rate constant, kH, the decay
constant is also determined by kþ and DGo

long. A simple
interpretation of this result is that a microtubule that forms
stronger bonds (and hence grows faster) will have a larger
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FIGURE 6 Numerical PSC for the five-param-

eter bovine microtubule model. (A–D) Eigenvalues

and eigenvector components (percent) for four ob-

servables: (A) length (the exact number of dimers

in each microtubule), (B) decay constant of GTP

from the tip, (C) average lifetime of the microtu-

bule, and (D) postcatastrophe shrinkage rate.

Note: the eigenvector percent is the absolute value

of the parameter component. To see this figure in

color, go online.

TABLE 1 This Table Demonstrates the Importance of

Parameters on Different Observables

Observables

Ranking

Important Intermediate Less Important

Length DGo
latDG

o
long NA kþkHDDGo

lat

Decay constant DGo
longkHk

þ DGo
lat DDGo

lat

Lifetime DGo
latDG

o
long NA kþkHDDGo

lat

Postcatastrophe

shrinkage rate

DGo
latDDG

o
latDG

o
long kþ kH

Parameter Compression for Biophysics
GTP cap. Consistently, microtubules that grow faster have
larger GTP caps when end-binding proteins are used as re-
porters of GTP cap size (34). The lifetime distribution de-
pends on the two bond energies and is further modulated
by kþ and kH via the second eigenvalue. However, for the
postcatastrophe shrinkage rate, the most important param-
eter is the lateral bond DGo

lat, followed closely by DDGo
lat

and DGo
long. Table 1 summarizes the parameters that are

important for each observable.
As explained in Scaling and Algorithm, we calculated the

FIM by varying our parameters by 0.05 kBT. When we used
smaller variations (0.01 kBT), the results were similar in
magnitude but clearly noisier (see Fig. S6) because the dis-
tributions of observables were shifted to a lesser extent.
The results above used a parameter set that reproduces
data from mammalian microtubules using tubulin purified
from brain tissue (e.g., (30)). We wondered whether a
different parameter set would give the same results in terms
Biophysical Journal 118, 1455–1465, March 24, 2020 1461
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of the number of dominating eigenvalues and their compo-
nents. In other words, do our results apply only to a local re-
gion of parameter space, or do they apply globally? To
answer this question, we used a parameter set that repro-
duces different data—namely, the dynamic instability of
Caenorhabditis elegans microtubules (30). C. elegans mi-
crotubules are among the most divergent measured to date
in that they grow faster and have shorter lifetimes than mi-
crotubules from several other species (35–37). Our PSC pre-
dicts that faster growth requires more negative values for
DGo

long and DGo
lat, and indeed, the C. elegans parameter

set is shifted accordingly (see Fig. S4).
With this C. elegans parameter set, we performed PSC on

our model. The results were quite similar; e.g., as with the
bovine parameter set, the length distribution, decay constant,
and postcatastrophe shrinkage rate had one dominating
eigenvalue (see Fig. S4), indicating that these observables
are controlled by a single effective parameter. Similarly,
the lifetime distribution had two dominating eigenvalues
(see Fig. S4). Indeed, the eigenvector components of these
eigenvalues were nearly identical in every case, indicating
that the low-dimensional structure of our model is conserved
between the brain and C. elegans parameter sets. The one
difference we observed was in the eigenvector components
that describe the effective parameter for the postcatastrophe
shrinkage rate (see Fig. S4). In the C. elegans case, the asso-
ciation rate constant kþ is a significant component. We inter-
pret this result in light of our previous observation that
C. elegans tubulin is more ‘‘active’’ in solution (30): a
more active dimer may influence the rate of shrinkage
through its binding to microtubule ends. Despite this differ-
ence, the PSC results for brain microtubules and C. elegans
microtubules are broadly similar. We conclude that our PSC
results are weakly dependent on specific parameter values
and/or the local position in parameter space.
Parameter dependencies of distributions

As shown above, the distribution of most observables can be
described by a single effective parameter, which is specified
A B C
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by the eigenvector components of the dominating eigen-
value. We can illustrate this phenomenon by plotting the dis-
tribution of microtubule lengths (Fig. 7 A); the distribution
is a nearly perfect exponential (as predicted from simple
analytical models (38,39)). Exponential probability distri-
butions are described by one parameter, which in the micro-
tubule case is the average length, hLi, thus defining the
effective parameter.

In contrast to the length distribution, the microtubule life-
time distribution should be controlled by two parameters ac-
cording to our analysis. Consistent with this idea, it has been
suggested that this lifetime follows a G-distribution (40). We
thus plotted our computed lifetime distribution (Fig. S3).
We indeed observe an increase followed by an exponential
tail (consistent with a multistep process as proposed in
(40)), but our distribution rises slightly faster than the best
G-fit. To visualize the effects of the two effective parame-
ters, we follow the two eigendirections, as illustrated in
Fig. S3 B. To compare properly the shapes of the distribu-
tion, 1) we further rescale the distributions by their maximal
probability, and 2) we adjust the magnitude of the changes
so that the most probable lifetime is the same in both direc-
tions. It is then very clear that although the leftmost part of
the distribution is similar, the exponential tail differs. Con-
trary to the length case above, we thus cannot define the dis-
tribution with only one parameter (such as the most
probable lifetime) because the tail of the distribution clearly
requires another parameter.
Estimating the dimensionality of the system

Our eigenvector components tell us which directions matter
in parameter space, similar to the ‘‘hyper-ribbon’’ notion
described in (17). But is the important direction for micro-
tubule length, e.g., the same direction that is important for
the other observables? Or do we need five orthogonal direc-
tions to describe the full model? For three of our observ-
ables, the eigenvector components are very similar,
suggesting a common effective parameter. More specif-
ically, DGo

lat, DG
o
long, and kþ are dominating eigenvector
FIGURE 7 Identifying the dimensionality of the

models. (A) Shown is the probability of length plot

for our simulation versus analytic expression from

(38,39). (B) Shown is the plot of the singular values

for three different cases: in red, our five parameter

microtubulemodel; in blue, five randomfive-dimen-

sional vectors; in green, length and decay constant

observables. (C) The first column is the leading vec-

tor for the highest singular value for the microtubule

system. The lateral bond and longitudinal bond are

the controlling parameters. The second column is

the leading vector for the second highest singular

value for the microtubule system. The on-rate con-

stant and the energy penalty after hydrolysis are

the controlling parameters. Note: the SVD vector

percent plotted is the absolute value of the parameter

component. To see this figure in color, go online.
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components for microtubule lengths, lifetimes, and the post-
catastrophe shrinkage rates. In contrast, the decay constant
has a significant eigenvector component from kH, indicating
that its effective parameter may differ from the others. So
what is the true dimensionality of our model?

To perform a rigorous estimation of the dimensionality,
we computed the singular value decomposition (SVD) on
all the eigenvectors of all the observables. The number of
large singular values in an SVD analysis indicates how
many dimensions are sufficient to describe the original ma-
trix with good precision. To perform our SVD analysis, we
rescaled the eigenvectors proportionally to their respective
eigenvalues so that the largest eigenvalue for each observ-
able has a weight of 1 (41). This rescaling allows us to cap-
ture the global sensitivity with respect to parameters of all
observables simultaneously. We compared the SVD compu-
tation of our model with two cases: 1) five random vectors in
five directions and 2) combinations of eigenvectors for the
length and lifetime observables in our microtubule system.
The singular values for these computations are shown in
Fig. 7 B. The random case gives a baseline for what might
be expected from a five-dimensional system: random vec-
tors are almost orthogonal, so we obtained five large singu-
lar values. The two-observable case gives us a baseline for a
low-dimensional system: the singular values decay rapidly
from the first large singular value, indicating that only one
effective parameter defines the distributions of these two
observables.

SVD for the full model shows an intermediate result with
a sloppy distribution of singular values: there is one large
singular value, a second singular value roughly three times
smaller, and three even smaller singular values at least one
order of magnitude below. It is also visually clear that the
relative positions of the first two singular values are roughly
comparable to the first two singular values of the random
case, indicating that the system is close to two-dimensional.

Thus, the presence of two large singular values means
that two effective parameters are essentially enough to fit
the data. A standard estimation of the precision of this
dimensional reduction can be done by computing ratios of
Frobenius norms of the singular matrix rk ¼
ðPi < kl

2
i =

P
il

2
i Þ, where li are singular values ordered

from top to bottom rank (42). The closer to 1, the better
the reduction, and a good rule of thumb is rk > 0:9. For
k ¼ 1, one finds r1 ¼ 0:82, whereas for k ¼ 2, one finds
r2 ¼ 0:99, indicating an excellent dimensional reduction
if we keep the first two modes.

Our SVD analysis demonstrates rigorously that the full
dimensionality of our model is essentially equal to two.
The vectors that correspond to the two dominating singular
values are shown in Fig. 7 C. The first vector is primarily
composed of the lattice bond energies. The second vector
combines parameters associated with the binding and un-
binding of tubulin dimers, with major contributions from
kþ and DDGo

lat. We observed similar results for an SVD
analysis of our model when we used our C. elegans param-
eter values (Fig. S5). The C. elegans model was also two-
dimensional, but the second singular value included a signif-
icant contribution from kþ, which is consistent with our PSC
results for the worm model described above. Thus, our re-
sults generalize to different parameter sets while revealing
how new parameter dependencies can appear.
DISCUSSION

As biophysicists, we want to capture the complexity of
biology in the simplest possible terms, even if those terms
are themselves quite complex. Our work has demonstrated
the power of numerical PSC as a method for identifying
the essential parameters and low-dimensional structure of
complex models. We first validated our method against
two analytically solvable models and then applied it to a
well-known computational model of microtubule dynamic
instability. Thus, our method opens the door to the simplifi-
cation of many computational models in biophysics.
Computation of effective parameters is made rigorous and
possible by the use of our approach. PSC of microtubule dy-
namics is very reminiscent of classical examples, such as
random walks (14), in which a sloppy distribution of
eigenvalues is also observed and two effective parameters
naturally appear (drift and diffusion, Fig. 1 C). It is remark-
able that a biological phenomenon as complex as dynamic
instability can be compressed into a two-parameter system
as well.

Our analysis of microtubule dynamic instability revealed
that almost all data simulated here can be described with
only two effective parameters: 1) a ‘‘polymerization’’
parameter, which includes DGo

long and DGo
lat, and 2) a GTP

cap parameter, which includes kH, k
þ, and DDGo

lat. These
two parameters form a two-dimensional ‘‘ribbon’’ within
the five-dimensional space of parameters (16). The polymer-
ization parameter makes physical sense if most of the bind-
ing sites at the end of a microtubule are shaped like
‘‘corners,’’ where the incoming tubulin subunit will form
one longitudinal bond and one lateral bond. Because these
bonds are formed at the same time in the model, they are
strongly coupled, as our analysis shows. The GTP cap
parameter makes physical sense because it couples the size
of the GTP cap (determined by kH and kþ) and the strength
of the GTP cap (determined by DDG0

lat, which encodes the
extra bond strength found in the cap versus the lattice).

This ribbon structure also provides direct insight into ca-
tastrophe dynamics. For example, we were surprised to find
that kH had a lesser influence on the lifetime distribution
than DGo

lat and DGo
long. This suggests that catastrophe might

be more efficiently prevented by making stronger bonds
rather than by slowing down hydrolysis. Our interpretation
is that stronger bonds help prevent pfs from losing their ter-
minal GTP-tubulin dimers, which would cause the pf to
become ‘‘fully uncapped.’’ Bowne-Anderson et al. argued
Biophysical Journal 118, 1455–1465, March 24, 2020 1463
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that uncapping of pfs is the irreversible event that leads to
catastrophe (43). Similarly, poisoning of pf ends with the
drug eribulin has a very strong effect on catastrophe fre-
quency (44). Therefore, our results showing the importance
of DGo

long and DGo
lat are consistent with the emerging

concept that ‘‘pf destabilization’’ is a root cause of catastro-
phe. Our results may also explain why depolymerases and
catastrophe factors work by disrupting lattice bonds rather
than acting as GTPase activating proteins, which are com-
mon in the regulation of other GTPases.

From the modeling standpoint, our results imply that a
basic quantitative understanding of dynamic instability
might not require many parameters but, rather, only the
effective ones. This simplified structure is illustrated by
the one-parameter fit of the length distribution in Fig. 7 A.
But one limitation of PSC is the lack of a universal method
for converting these discoveries into a coarse-grained model
(e.g., a two-parameter simulation or analytical model).
Machine-learning approaches and principal component
analysis face a similar problem: how to interpret the
lower-dimensional model or principal components. In the
microtubule PSC case, we have made our best effort to inter-
pret our results in physically meaningful ways that will
facilitate the development of simpler models.

It is important to point out that the addition of new param-
eters might add new dependencies on the corresponding ei-
genvectors/eigenvalues, meaning that those parameters
would matter (in the sense that they influence the effective
parameters). However, they might change neither the nature
nor the number of the effective parameters controlling the dy-
namics. Amore interesting situation would bewhen adding a
new biochemical parameter also adds a new effective param-
eter to the system, increasing the net dimensionality from two
and three. Additionally, we can add new observables to our
analysis (e.g., the ‘‘taper length’’ that describes the difference
in length between the shortest and longest profotilaments).
These new observables may demand new effective parame-
ters. Our approach could help experimentalists identify the
types of data that are necessary and sufficient to define
such effective parameters. Which parameters of a model
are stiff and which are sloppy depends critically on the ob-
servables that the model attempts to reproduce.

Our ability to distinguish between models in science is al-
ways limited by the availability of hard data. In biophysics,
the rigor of physical modeling collides against the
complexity of biological interactions. A coupling of theory
and experiment is necessary to disentangle this complexity.
PSC tightens this coupling by improving the interpretability
of models, which in turn identifies the key experiments that
drive theory forward.
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