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Summary.

In medical research, there is great interest in developing methods for combining biomarkers. We 

argue that selection of markers should also be considered in the process. Traditional model/

variable selection procedures ignore the underlying uncertainty after model selection. In this work, 

we propose a novel model-combining algorithm for classification in biomarker studies. It works by 

considering weighted combinations of various logistic regression models; five different weighting 

schemes are considered in the article. The weights and algorithm are justified using decision 

theory and risk-bound results. Simulation studies are performed to assess the finite-sample 

properties of the proposed model-combining method. It is illustrated with an application to data 

from an immunohistochemical study in prostate cancer.
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1. Introduction

Biomarkers play an important role in medical research (Biomarkers Definitions Working 

Group, 2001). Using novel genomic and proteomic technologies, new biomarkers are 

constantly being discovered. It is becoming increasingly clear that one single biomarker will 

not be sufficient to serve as an optimal screening device for early detection or prognosis for 

many diseases (Sidransky, 2002). It has been suggested that a combination of multiple 

biomarkers will potentially lead to more sensitive screening rules for detecting cancer 

(Etzioni et al., 2003). One example comes from ovarian cancer, where multiple serum 

markers from patients are being used to assess disease (Bast et al., 2005). A combination of 

two markers, Mesothelin and HE4, produces an improved receiver-operating characteristic 

(ROC) curve relative to that for either marker individually. The resulting composite marker 

can improve sensitivity without losing specificity. Therefore, the natural answer to improve 
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the clinical performance of a single biomarker is to combine the information from multiple 

markers. As Bast et al. (2005) argue, new statistical methods must be developed to facilitate 

multiple marker analysis and improve clinical performance compared with the evaluation of 

individual markers.

We consider a data set from an immunohistochemical study in prostate cancer conducted at 

the University of Michigan with eight biomarkers: ECAD, MIB1, P27, TPD52, BM28, 

MTA1, AMACR, and XIAP. The biomarkers have been selected from previous gene 

expression studies in the literature on prostate cancer. The data have a two-level structure. 

The upper level is the patient level, where a group of patients are followed to observe their 

recurrence time to prostate cancer. The lower level is the core level within each patient. The 

tumor sample of each patient is divided into several fractions. The core is a fraction of the 

tumor sample. Each biomarker is measured at each core on a continuous scale of protein-

staining intensities using the method developed in Bauer et al. (2000). The tissue microarray 

is used as a high-throughput tool to assess the protein-staining at the core level. The goal of 

the study is to establish relationships between the protein staining intensities of the eight 

biomarkers and the clinical outcomes. The clinical outcome of interest in this article is the 

diagnostic status of the tumor sample being cancerous or not at the core level, which is 

binary. The eight biomarkers serve as continuous independent predictors. We are interested 

in combining multiple biomarkers in order to achieve better prediction in the context of 

logistic regression models for binary data.

There has been much recent work developing methods for combining multiple biomarkers. 

Su and Liu (1993) and Pepe and Thompson (2000) considered linear combinations of 

biomarkers to optimize measures of diagnostic accuracy. McIntosh and Pepe (2002) noted 

the optimality of the likelihood ratio. Etzioni et al. (2003) proposed developing screening 

rules based on the consideration of logical combinations of biomarker measurements.

The methods described in the previous paragraph all attempt to find the best combination of 

all available biomarkers, which we term a full model approach. However, there are plenty of 

biomarkers being discovered through genomic and proteomic technologies. This necessitates 

selecting biomarkers and leads to the problem of variable/model selection. When multiple 

plausible models are present, the traditional approach is to use a model selection criteria to 

select a “best” model. This selected model is then used for subsequent inference and 

prediction. A large amount of work has been done on the topic of model selection. These 

procedures ignore the uncertainty in model selection. This could lead to poor prediction and 

diagnostic accuracy on independent data sets.

Because the natural objective in these studies is prediction, an alternative approach is to 

combine predications from multiple models. These procedures have been considered from a 

Bayesian viewpoint (Hoeting et al., 1999) as well as a frequentist one (Yang, 2001). We 

consider the latter approach here. In this article, we extend the algorithm of Yuan and Yang 

(2005), called adaptive regression by mixing with screening (ARMS), to logistic regression. 

We propose several weighting schemes for combining biomarker logistic models and 

compare their prediction performance with that of a full model and Akaike information 
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criteria (AIC; Akaike, 1973)-selected model. In addition, we develop both risk-bound results 

as well as a decision-theoretic framework to theoretically justify the algorithm.

The article is organized as follows. In Section 2, we outline the model and describe the 

ARMS algorithm. A risk-bound result for the algorithm, Theorem 1, is also presented here. 

In Section 3, we propose various weighting methods for the algorithm and describe a 

decision-theoretic framework for the justification of certain weights. In Section 4, we study 

the finite-sample performance of the proposed algorithm. Simulation studies are performed 

to compare ARMS with Bayesian model averaging (BMA; Hoeting et al., 1999) and model 

selection methods in logistic regression. In addition, we apply the proposed methodology to 

the previously mentioned tissue microarray data from the immunohistochemical study in 

prostate cancer. We conclude with some discussion in Section 5.

2. Proposed Methodology

2.1 Data and Model Setup

Suppose we have p biomarkers available in a biomarker study on n individuals. The data are 

(Di, Xi*), i = 1, … , n, independent and identically distributed (i.i.d.) observations from (D, 

X*), where D is the indicator of disease and X* is the p-dimensional biomarker profile. Let 

X = (1n′ , X*) be the design matrix in the logistic regression model. We consider logistic 

regression models of the following form:

logitP Di = 1 Xi = f Xi, β = Xiβ,

where f(·) is the true regression function and β = (β0, β1, … , βp). For estimating f, there will 

be 2p models (including the trivial intercept-only model) to be considered as candidates. Let 

Γ denote the set of all candidate models being considered. The kth model is given by

logitP Di = 1 Xi = fk Xki, βk = Xkiβk, i = 1, …, n,

where Xk is a subset of X.

The goal of model selection is to find a “best” fk(Xki, βk) that fits the data; by contrast, that 

of model combining is to combine multiple plausible good models with appropriate weights.

2.2 ARMS for Logistic Regression

Yang (2001) proposed ARM (adaptive regression by mixing), a method for combining linear 

regression models. He examined its theoretical convergence properties and empirically 

demonstrated its adaptation ability (having the best convergence rate under a global L2 loss 

over various scenarios) in nonparametric estimation with a small number of candidate 

procedures. To deal with a large number of candidate linear regression models, Yuan and 

Yang (2005) proposed an improved ARM with a model-screening step (ARMS) in linear 

regression. They did not include all candidate models for combining. Instead, (AIC; Akaike, 

1973) and Bayes information criteria (BIC; Schwarz, 1978) criteria were used to find good 

candidate models for combining. They showed that the reduction of the number of models 
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for combining substantially reduces the computation cost and also is advantageous from a 

theoretical point of view.

In this article, we extend ARMS to the binary outcome setting. There are three main steps 

involved for the new version of ARMS. In the first step, half of the sample is used as a 

training set to estimate the parameters for each model; the other half is used as a test set. The 

second step consists of using AIC to select the number of most promising candidate models 

for combining, namely, a screening step. At the third step, the response values in the test set 

are predicted using the fitted models obtained from the training set and the prediction 

performance is assessed by comparing the predicted values with the true ones. Then the 

models are weighted according to the prediction performance assessment. The following is 

the ARMS algorithm for logistic regression:

1. Randomly permute the order of the observations and let r denote the rth 

permutation. For simplicity, assume that the sample size n is even. Split the data 

into two parts Q(1,r) = (Di, Xi), 1 ≤ i ≤ n/2 and Q(2,r) = (Di, Xi), n/2 + 1 ≤ i ≤ n.

2. Define Γ to be the entire model space or the set of all possible candidate models. 

Estimate βk by βk, n/2
r  using maximum likelihood based on Q(1,r) for each 

candidate logistic model k in Γ. Compute the AIC values for each model k based 

on Q(1,r) and keep the top m models with the smallest AIC values. Let Γs
r denote 

the screening set of the selected models, where dim Γs
r = m. This step is called 

AIC model screening.

3. Assess the accuracies of the models in Γs
r based on the second half of the data 

Q(2,r). For each model k ∈ Γs
r, compute a model accuracy measurement Bk

r using 

a weighting method that we present in Section 3.1.

4. Compute the weight for each model k ∈ Γs
r based on Bk

r in step 3:

W k
r =

Bk
r

∑j ∈ ΓsrBjr
.

Note that ∑k ∈ ΓsrW k
r = 1.

5. Repeat steps 1–4 (np − 1) more times and obtain an average weight 

W k = np−1∑r = 1
np W k

r for each model k over np permutations. The parameter np is 

chosen to be 20 in our work. Let Γs = ∪ Γs
r

r = 1
np

 denote the union of the 

screening sets over np permutations.

6. Let fk, n(x) = fk x; βk, n = xkβk, n be the estimator of the regression function fk 

=xk βk of the logistic model k based on all data, where xk is a subset of x. The 

final ARMS combined estimator of the regression function f is
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fn(x) = ∑
k ∈ Γs

W kfk, n(x) .

Note that our final estimator combines the union of the models selected across the 

permutations.

Screening by AIC can remove some very poor models, which would affect the performance 

of the combined estimator of the ARMS method. Of course, other model selection criteria 

could also be used for screening, such as BIC. The purpose of model screening is to get a list 

of plausible candidate models and remove other very poor models. So in this article, we 

decide to stick to AIC model screening for the purpose of illustration and simplicity.

Ideally, the number of models, dim Γs
r = m, to include in the procedure should strike a 

balance between the number of models and the variability in the resulting predictions. This 

is very similar to the bias-variance tradeoff in other areas of statistics (Liu and Brown, 1993; 

Low, 1995). Here, we take m to be 20.

Although we fit logistic regression models in the algorithm, we do not require the 

assumption that the true model is logistic. The algorithm will adaptively obtain a combined 

estimator that gives a good estimate of the true model even if the true model is not of the 

logistic form.

2.3 Risk Bound of the ARMS under Bernoulli Likelihood Weights

Regarding the ARM method of combining procedures, Yang (2001) gave a risk-bound result 

and an improvement was made in Yuan and Yang (2005) for ARMS. Those papers dealt with 

linear regression. No known results exist for logistic regression models. In this section, we 

show that the ARMS estimator under Bernoulli likelihood weights in logistic regression 

provides adaptivity among all possible candidate models and its L2 risk is bounded by the 

minimum L2 risk of all candidate models plus a small penalty.

Suppose we have K available candidate models for combining. Let f xi = Pr Di = 1|xi  be 

the probability of having disease; let f j xi  be the maximum likelihood estimate of f(xi) for 

model j. Define Pf di = f xi
di 1 − f xi

1 − di and Pfj di = f j xi
di 1 − f j xi

1 − di. Similar 

to Yang (2001), for the theoretical result, we study a slightly different combined estimator 

from the one we defined in the ARMS algorithm. Let λj be a set of positive numbers 

satisfying ∑j = 1
K λj = 1. They are prior weights of the candidate models. One natural choice 

is uniform prior weights, that is, λj = 1/K. Let Wj,i be the weights for model j based on the 

first i observations and let W j be the modified weight for model j. For i = n/2 + 1, let Wj,i = 

λj and for n/2 + 1 ≤ i ≤ n, let
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W j, i =
λj∏s = n/2 + 1

i − 1 fj xs
ds 1 − fj xs

1 − ds

∑l λl∏s = n/2 + 1
i − 1 fl xs

ds 1 − fl xs
1 − ds

=
λj∏s = n/2 + 1

i − 1 Pfj ds

∑l λl∏s = n/2 + 1
i − 1 Pfl ds

.

Then let fi xs = ∑jW j, if j xs  be a combined estimator based on the first i observations. 

Then the modified estimator is

fn*(x) = 1
n/2 ∑

i = n/2 + 1

n
fi(x) .

Note that fn* depends on the order of observations. For applications (as in the ARMS 

algorithm), we can randomly permute the order a number of times and average fn* over the 

permutations to average out the order effect, which results in the estimator fn of the ARMS 

algorithm (Yang, 2001). Thus the risk-bound results certainly apply to the improved 

estimator fn using permutations. For the theoretical development, we focus on fn*.

For an estimator f  of f, let ‖f − f‖2 = ∫ f x − f(x) 2dμ(x). The theorem on the risk-bound 

results requires the following conditions.

Condition 1: We assume that for each model j, the estimators of the probabilities are 

uniformly bounded away from 0 and 1, that is, there exists constants 0 ≤ Aj ≤ 1/2 such that 

Aj ≤ f j xs ≤ 1 − Aj for all xs.

Condition 2: Let Γ denote the set of all candidate models in the model space before 

screening. There exists a constant τ ≥ 0 such that with probability one, we have

supj ∈ Γ‖f − fj‖ ≤ τ .

Theorem 1: Let Γs denote the union set of the models screened by AIC and let Ks denote 

the size of Γs. Let λj be λj = 1/Ks. Assuming that conditions 1 and 2 are satisfied, then for 

any j ∈ Γ, the L2 risk of fn* using ARMS satisfies
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E‖f − fn*‖2

≤ τP j ∉ Γs + 2
log Ks

n/2 + 2
Aj2

E‖f − fj‖2 P j ∈ Γs

≤ τP j ∉ Γs + 2 log(K)
n/2 + 2

Aj2
E‖f − fj‖2 B0,

≤ τP j ∉ Γs +
4B0 log(K)

n +
4B0
Aj2

E‖f − fj‖2,

where we assume that P(j ∈ Γs) is upper bounded by a constant B0, and K denotes the size of 

the model space Γ.

The proof of Theorem 1 is given in Web Appendix A, available in the Supplementary 

Materials at the Biometrics website. From Theorem 1, K0, B0, A, and τ are finite constants. 

Guyon and Yao (1999) and Zhang (1993) showed that P j ∈ Γs ≤ c1e−c2nc3 for some 

positive constants c1, c2, c3 for a model selection criterion of a penalized log-likelihood term 

with penalty term λn p. Therefore the ARMS-combined estimator fn* converges 

automatically at the best rate of convergence in terms of L2 risk among the estimators 

f j j ∈ Γ  of all candidate models. In addition, for ARMS, we do not require that the set of 

candidate models contains the true model. The risk-bound result for ARMS holds regardless 

of whether the true model exists in the model space.

3. Combining Weights in ARMS

3.1 Description

Yuan and Yang (2005) used the normal likelihood to construct weights for linear regression 

models. In the logistic regression models for binary data, we propose five different methods 

to construct weights. For the definition of the weights, k indexes the model being fitted.

1. Bernoulli likelihood weights

The analog of the normal likelihood-based weights from Yuan and Yang (2005) 

in the current setting would be those based on a Bernoulli likelihood:

Bk
L ≡ Lk = ∏

i = 1

n
fk Xi

Di 1 − fk Xi
1 − Di ,

where Bk
L is called model accuracy measure. Then weights are constructed to be 

proportional to the likelihood:

W k
L =

Bk
L

∑j ∈ ΓsBjL
.

2. AIC weights
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We use an exponentiated function of AIC as the model accuracy measure:

Bk
AIC ≡ exp −AICk = Lk exp −pk ,

where pk is the number of parameters in model k. Note that it is a product of the 

Bernoulli likelihood and the penalty term from the AIC criterion. The 

corresponding weights are constructed proportional to Bk
AIC.

3. Generalized degrees of freedom weights

Ye (1998) proposed a notion of the generalized degrees of freedom (GDF) in a 

linear model setup. The definition of GDF was extended to a general exponential 

family by Shen, Huang, and Ye (2004). Ye (1998) argued that the GDF can be 

used as a measure of the complexity or cost of a general modeling procedure. 

Thus we use the generalized degrees of freedom GDFk to replace pk in the AIC 

weights:

Bk
GDF ≡ Lk exp −GDFk ,

where GDFk is the GDF of model k. The GDF in logistic regression is calculated 

using data perturbation technique (see Web Appendix B in the Supplementary 

Materials at the Biometrics website for details). The corresponding weights are 

constructed proportional to Bk
GDF .

4. Absolute prediction error weights

Absolute prediction error is often used in practice to indicate how well the model 

fits; it is defined as dabs − dabs, x
k , where dabs = 2∑i = 1

n Di − f0 /n, f0 is the 

estimated intercept-only model, and dabs, x
k = ∑i = 1

n Di − fk Xi /n. One can 

construct weights using the following model accuracy measure:

Bk
APE ≡ dabs − dabs, x

k /dabs .

5. Standardized residual weights

A common goodness-of-fit diagnostic for a model is the residuals. They can be 

used to construct weights as well. In particular, we define model accuracy 

measurement as the inverse of the sum of squared standardized residuals:

Bk
RESID ≡ 1

∑ieki
2 ,

where eki = Di − fk xi / fk xi 1 − fk xi
1/2. Note that eki is the standardized 

Pearson residual for the kth model and the ith subject.
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The intuitive idea of weight assignment is that models with good prediction performance 

will be given larger weight, whereas those with worse prediction performance will be given 

smaller weight. All of the above weighting methods are used in step 4 of the ARMS 

algorithm to compute the model accuracy measure Bk. We will compare their performance 

in Section 2.4 in simulation studies and the real data example.

3.2 Weights for ARMS: Decision Theory Framework

Yuan and Yang (2005) pointed out that their weights can be interpreted as posterior 

probabilities of the models after observing the second part of the data with the uniform prior 

on the linear regression estimates from the first part of the data.

Three of our weighting methods have posterior probabilities interpretation with different 

corresponding priors. The Bernoulli likelihood weight corresponds to the posterior 

likelihood with a uniform prior. The AIC weight and GDF weight correspond to the 

posterior likelihood with priors exp(−pk) and exp (−GDFk), respectively.

We now provide an informal justification that the posterior probabilities have an optimal 

model-ranking property in a decision theory framework. A related result was derived by 

Müller et al. (2004) for a microarray problem for genes ranking. We consider a model space 

in which some models are good approximations to the true model, whereas the remaining 

models are not. We refer to the former class of models as good models; note that we are 

being loose with the terminology. The goal is to make decisions on whether each model i in 

the model space is a good model or not. We let ei ∈ {0, 1} denote an indicator of being a 

good model for model i. Let vi ≡ P(ei = 1 | D) denote the marginal posterior probability of 

being a good model for model i. The decision to be made is whether the ith model is selected 

as a good one (denoted by si = 1) or not (denoted by si = 0). We have m decisions to make if 

we have m candidate models in the model space. We let S ≡ ∑i = 1
m si denote the number of 

positive decisions, where the positive decision is defined to be a decision of selecting model 

i as a good model. Then we let

FD(s, e) ≡ ∑
i = 1

m
si 1 − ei

FN(s, e) ≡ ∑
i = 1

m
1 − si ei

denote the number of realized false-positive decisions and false-negative decisions. 

Conditioning on S and marginalizing with respect to D, we obtain the posterior expected 

count of false-positive decisions and false-negative decisions:

FD(s, v) = ∑
i = 1

m
si 1 − vi ,
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FN(s, v) = ∑
i = 1

m
1 − si vi .

We consider the following posterior expected loss for our decision framework,

LN(s, v) = cFD + FN,

where c is a constant parameter used to balance the importance of false-positive decisions 

and false-negative decisions. If both are equally important, then c = 1. We now state the 

following theorem.

Theorem 2: Under the loss function LN (s, v), the optimal decision takes the form

si = I vi ≥ t* ,

where t* = c/(c + 1).

Proof. Subject to a fixed total number of positive decisions S ≡ ∑i = 1
m si,

LN(s, v |S) = cS − (c + 1) ∑
i = 1

m
sivi + ∑

i = 1

m
vi .

The last term does not involve the decisions. For any fixed S, the quantity is minimized by 

setting si = 1 for the S largest vi. In other words, for any S, the optimal rule is of the type si = 

I(vi ≥ t*), where t* is the (m − S)th order statistic of (v1, … , vm). Thus the global minimizer 

must be of the same form. Some straightforward algebra shows that the minimum is 

achieved for t* = c/(c + 1).

Because Theorem 2 shows that the decision based on the posterior probabilities vi ≡ P(ei = 1 

| D) is optimal and minimizes the loss function, this provides an informal motivation for 

using the posterior probabilities or posterior likelihood to assign weights in our model-

combining method. The Bernoulli likelihood weights, AIC weights, and GDF weights all 

have posterior likelihood interpretation with certain priors. Thus we expect that these three 

weights should give good performance from a decision-theoretic point of view, compared 

with other forms of weights.

4. Numerical Examples

4.1 Simulation Studies

We perform extensive simulation studies in order to assess the finite-sample properties of the 

proposed ARMS method. Sample sizes of 100 and 400 are considered; the number of 

random permutations for ARMS is set to be 20. The estimation methods are evaluated based 

on several criteria: L2 risk, L1 risk, error probability (EP), and the area under ROC curve 
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(AUC) based on 1000 simulations. Note that better prediction is associated with lower EP, 

L1, and L2 values but higher AUC values. In simulation studies, because we know the true 

model, we generate an independent data set to compute the L2, L1, EP, and AUC values.

For simplicity, we refer to the ARMS methods with Bernoulli, AIC, GDF, absolute 

prediction errors, and standardized residuals weights as ARMS-LIKELI, ARMS-AIC, 

ARMS-GDF, ARMS-APE, and ARMS-RESID, respectively.

In addition, because the BMA method (Hoeting et al., 1999) can often produce better 

prediction results than any single model, we also compare our ARMS method with BMA in 

simulation. The BMA is implemented by using the BMA package in R, available at the 

following website: http://www.research.att.com/~volinsky/bma.html. Default parameter 

settings for the BMA software are used in the simulations. The assumption that all candidate 

models are equally likely a priori is used (a uniform prior on the model space); normal 

conjugate priors are used for the coefficients of each candidate model. The hyperparameters 

in the normal priors of coefficients are estimated using the summary statistics of the data 

under each candidate regression model.

In the simulation studies, because we know the true model, we generate an independent data 

set to compute the L2 risk, L1 risk, EP, and AUC values. We generate a panel of eight 

biomarkers X* ≡ (X1, … , X8) from multivariate normal distribution with zero mean, unit 

variance, and correlation 0.3. Then the binary responses are generated from the prespecified 

underlying true model.

Because of space limitations, we only present one set of simulation results; others can be 

found in Web Appendix C of the Supplementary Materials, available from the Biometrics 
website. Here, we study the following case:

Case 1: We use the following true model relating biomarkers with disease status:

logitP (D = 1) = 1.0 + 0.1X1 + 0.2X2 + 0.3X3 + 0.4X4+0.5X5+X1X2 .

Note that we only consider the models with main effects in the ARMS algorithm so that the 

true model is not in the space of candidate models for combining in this case. The results are 

shown in Table 1 and Table 2. Among all ARMS methods, we find that the ARMS methods 

with the GDF, AIC, and Bernoulli likelihood weights perform better than others and the 

ARMS method with the GDF weight performs the best. For the sample size of 100, the 

ARMS-LIKELI, ARMS-AIC, and ARMS-GDF methods have 10–14% smaller prediction 

risks and 7–10% higher AUC values than the AIC-selected model. For the sample size of 

400, the ARMS-LIKELI, ARMS-AIC, and ARMS-GDF methods still have smaller 

prediction risks and higher AUC values than the AIC-selected model, although the 

discrepancy is reduced. Sample size affects the difference between the AIC-selected model 

and the ARMS methods. This is because the data with smaller sample size exhibit more 

instability with respect to model selection procedures. Model combining thus performs 

better than selection when sample size is 100 compared with sample size 400. For both 

sample sizes, the ARMS-GDF method has better prediction performance than the BMA 
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method. ARMS-GDF shows bigger gains at the sample size of 100 relative to the sample 

size of 400.

The Bernoulli, GDF, and AIC-based weights tend to give better prediction performance in 

the simulation studies relative to the other weights considered across the scenarios 

considered here. Intuitively, these methods are approximating the posterior model 

probabilities better than the other weights. The decision theory framework described in 

Section 3.2 gives some justification for these three weights being optimal.

To explore the robustness of our biomarker combining methods, we also used multivariate t 
distributions to generate data. We found a similar pattern of results to those presented here 

(data not shown).

4.2 Prostate Cancer Real Data Example

In this section, we apply the ARMS combining method to the real data set from an 

immunohistochemical study in prostate cancer described in the Introduction. The binary 

response is the diagnostic status of the cancer sample being cancerous or not at the core 

level. The predictors are eight biomarkers in the data: ECAD, MIB1, P27, TPD52, BM28, 

MTA1, AMACR, and XIAP. They are normalized and standardized to be nonskewed and 

approximately normal variables. Logistic regression models are fit in the analysis. There are 

five blocks of data. Only the first block of data is considered here. We exclude the 

observations with missing values on either response or predictors. This results in n = 200 

complete observations (139 cases and 61 controls).

Boxplots comparing intensity measurements of each marker between two disease groups 

(cancer versus non-cancer) are shown in Figure 1. Seven of the eight biomarkers have higher 

mean intensity in the cancer group and the other one has higher mean intensity in the 

noncancer group. Among them, AMACR shows the largest difference and P27 shows the 

smallest difference. However, we observe that there is substantial overlap between the boxes 

of two groups, which implies that using any individual biomarker might not be sufficient for 

the purposes of prediction. We apply our ARMS combining methods on the data and 

compare it with the full model, the AIC-selected model and the best univariate (AMACR) 

model.

The performance comparison is done as follows. First, we split the data into two parts: Ω(1) 

with n1 = 134 observations and Ω(2) with n − n1 = 66 observations. The first part data Ω(1) is 

used for estimation, whereas the second part data Ω(2) serves as the validation set for 

performance assessment. Second, we apply the ARMS algorithm on the first part data Ω(1) to 

get the combined estimator. Third, we compute the L2, L1, EP, and AUC values of the 

combined estimator based on the second part data Ω(2). Finally, we randomly permute the 

order of the observations in the data 1000 times and repeat steps 1–3 to obtain the average 

L2, L1, EP, and AUC values over the 1000 permutations. The results are given in Table 3. 

The results show that even the best univariate model has much higher prediction risks and 

much lower AUC values than any other multivariate methods. Again, the ARMS methods 

with the GDF, AIC, and Bernoulli weights perform better than both the AIC-selected model 

and the full model; the ARMS-GDF method performs the best among all. Therefore we 
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exhibit gains in predictive accuracy using the ARMS methods compared with either the full 

model or the AIC-selected model. The separation achieved by the ARMS procedure is 

shown in Figure 1 as well.

Although the focus of the ARMS combining method has been on assessing prediction 

performance, it is also possible to select biomarkers based on their average weights across 

models. From the ARMS combining estimator fn(x), we have

fn(x) = ∑
k ∈ Γs

W kfk x; βk = ∑
k ∈ Γs

W k ∑
j = 1

p
βkjxj

= ∑
j = 1

p
∑

k ∈ Γs
W kβkj xj,

where we assume βkj = 0 if biomarker xj is not selected in the model k. Thus the average 

weights for each biomarker is actually ∑k ∈ Γs W kβkj . The results are shown in Table 4, 

which include both the average weights of each biomarker and the prediction results of its 

corresponding univariate analysis. We see that the ranking tends to be concordant across the 

univariate and multivariate analyses. The biomarkers that are more discriminatory from the 

univariate analyses tend to have larger weights. The two biomarkers, AMACR and TPD52, 

are assigned by the weights 0.76 and 0.84, respectively, which are approximately four times 

the weight of P27.

Originally, we used AIC as a screening criterion. The current implementation requires a 

complete searching to identify the top 20 models with smallest AIC values. When the 

dimension of the data or model is large, complete searching is not feasible computationally. 

In Web Appendix D of the Supplementary Materials, available on the Biometrics website, 

we describe some data analyses using an adaptive penalty for model selection (Shen et al., 

2004). The results appear promising and definitely merit further research.

5. Conclusion

In this article, we propose a model-combining method with an AIC model-screening 

procedure, called ARMS, for logistic regression models in biomarker studies and propose 

five different weights for combining logistic models. The adaptive-risk-bound results show 

that the resulting combined estimator from ARMS has the best rate of convergence in terms 

of L2 risk among the estimators of all candidate models. We perform simulations studies for 

comparing our proposed ARMS method with the AIC-selected model and the full model; 

then apply it to a real data set from an immunohistochemical study in prostate cancer. The 

results from both simulation examples and the real data example show that the ARMS 

combining methods have lower prediction risks and higher AUC values than those based on 

the AIC-selected model or the full model when the uncertainty of model selection in 

estimation is not ignorable. Among five weighting methods we proposed, GDF, Bernoulli 

likelihood, and AIC weights perform better than others and the ARMS method with GDF 

weights performs the best. All those three weights have posterior likelihood interpretations. 

We showed in Section 3.2 that the decision by the posterior probabilities vi ≡ P(ei = 1 D) is 
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optimal in terms of minimizing the posterior loss function. The framework we have used for 

justification of ranking using posterior probabilities is greatly different from the theoretical 

results developed in Yuan and Yang (2005).

Comparison between BMA and our ARMS-GDF method is also done in simulation studies. 

Our ARMS-GDF method performs significantly better than BMA method when there is 

large instability, whereas it performs closely as BMA method when the instability is small or 

the size of underlying true model is small. In addition, when there is data instability, GDF 

weights performs better than the Bernoulli likelihood and AIC weights in the ARMS 

algorithm. This suggests that GDF is a more accurate model accuracy criterion than AIC. 

Differences in BMA and ARMS might reflect this difference in estimation, along with the 

fact that the current implementation of BMA for logistic regression in R uses the (BIC; 

Schwarz, 1978) as an approximation to the posterior probability of a good model (Bk in the 

notation of Section 3.1). In that sense, the R implementation of BMA is a special case of the 

framework we have proposed in this article. A comparison with the method of Hoeting et al. 

(1999), which uses fully Bayesian inference Markov chain Monte Carlo methods, would be 

useful.

What is done in much of statistical practice is to select a model and to do inference and 

predictions using the model. Our study raises the possibility that combining results from 

multiple models might be useful for prediction purposes or from a diagnosis point of view 

when the uncertainty of selection procedure is large or not ignorable for the given data. In 

practice, it would be quite simple to use the model-combining algorithm. Based on the initial 

study for validating the panel of biomarkers, one would save the results of the multiple 

models used for combining and prediction. Given new samples, one could predict the 

probability of disease using the previously saved output.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of the staining intensities of eight biomarkers and their linear combination from the 

ARMS-GDF method in prostate cancer data classified by the cancer (1) group versus the 

non-cancer (0) group.
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Table 1

ARMS simulation results of case 1 with n = 100*

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.087 0.191 0.391 0.771

(0.002) (0.003) (0.007) (0.007)

ARMS-AIC 0.085 0.188 0.385 0.773

(0.002) (0.003) (0.007) (0.007)

ARMS-GDF 0.082 0.181 0.372 0.792

(0.002) (0.003) (0.006) (0.007)

ARMS-APE 0.093 0.203 0.411 0.744

(0.002) (0.003) (0.007) (0.008)

ARMS-RESID 0.093 0.201 0.409 0.742

(0.002) (0.003) (0.007) (0.008)

BMA 0.090 0.196 0.401 0.751

(0.002) (0.003) (0.007) (0.008)

AIC 0.096 0.211 0.418 0.718

(0.002) (0.003) (0.007) (0.008)

Full 0.099 0.218 0.426 0.709

(0.002) (0.003) (0.007) (0.008)

True 0.063 0.143 0.328 0.865

*
The Bernoulli, AIC, GDF, absolute prediction errors, and standardized residuals weights as ARMS-LIKELI, ARMS-AIC, ARMS-GDF, ARMS-

APE, and ARMS-RESID, respectively. Number in parentheses is standard error over 1000 simulations.
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Table 2

ARMS simulation results of case 1 with n = 400*

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.0181 0.101 0.379 0.811

(0.0002) (0.001) (0.003) (0.004)

ARMS-AIC 0.0178 0.099 0.375 0.816

(0.0002) (0.001) (0.002) (0.004)

ARMS-GDF 0.0172 0.096 0.368 0.827

(0.0002) (0.001) (0.002) (0.004)

ARMS-APE 0.0186 0.103 0.389 0.798

(0.0002) (0.001) (0.003) (0.004)

ARMS-RESID 0.0188 0.105 0.392 0.793

(0.0003) (0.001) (0.003) (0.004)

BMA 0.0182 0.102 0.384 0.809

(0.0002) (0.001) (0.003) (0.004)

AIC 0.0191 0.107 0.397 0.775

(0.0003) (0.001) (0.003) (0.005)

Full 0.0198 0.110 0.403 0.768

(0.0003) (0.001) (0.004) (0.005)

True 0.0141 0.076 0.333 0.879

*
See footnote in Table 1.
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Table 3

A comparison of ARMS with AIC, full, and best univariate models in logistic regression for prostate cancer 

data (n = 200) under 1000 random permutations

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.083 0.169 0.388 0.79

(0.002) (0.004) (0.006) (0.01)

ARMS-AIC 0.082 0.166 0.382 0.80

(0.002) (0.004) (0.006) (0.01)

ARMS-GDF 0.078 0.159 0.373 0.82

(0.002) (0.004) (0.006) (0.01)

ARMS-APE 0.087 0.175 0.398 0.77

(0.003) (0.005) (0.007) (0.01)

ARMS-RESID 0.088 0.177 0.401 0.76

(0.003) (0.005) (0.007) (0.01)

AIC 0.089 0.179 0.405 0.76

(0.003) (0.005) (0.007) (0.01)

Full 0.095 0.193 0.418 0.73

(0.003) (0.005) (0.007) (0.01)

Univariate (AMACR) 0.106 0.214 0.439 0.70

(0.003) (0.006) (0.008) (0.01)
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