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Summary:

Management of flexor tendon injuries of the hand remains a major clinical problem. Even with 

intricate repair, adhesion formation remains a common complication. Significant progress has 

been made to better understand the mechanisms of healing and adhesion formation. However, 

there has been slow progress in the clinical prevention and reversal of flexor tendon adhesions. 

The goal of this article is to discuss recent literature relating to tendon development, tendon 

healing, and adhesion formation to identify areas in need of further research. Additional research 

is needed to understand and compare the molecular, cellular, and genetic mechanisms involved in 

flexor tendon morphogenesis, postoperative healing, and mechanical loading. Such knowledge is 

critical to determine how to improve repair outcomes and identify new therapeutic strategies to 

promote tissue regeneration and prevent adhesion formation.

Tendon injuries to the hand and wrist constitute one of the most common disorders of the 

human body, affecting one in 2700 people each year.1,2 These tendon injuries can result 

from trauma, chronic overuse, and/or age-related degeneration.3 Injuries to tendons, tendon-

bone junctions, and related tissues (such as ligaments) can occur in numerous areas of the 

body. Tendons are hypovascular compared to many other tissues.3,4 Flexor tendons are 

covered by an intrasynovial sheath and have been thought to have a limited vascular supply 

compared with other tendons.3,5 However, synovial fluid may compensate for the 

differences in vascular supply.6–8 In addition, tendons overall are hypocellular and may lack 

sufficient cellularity for adequate healing.3 Unfortunately, 30 percent of flexor tendon 

injuries result in adhesion formation, which can cause significant disability,9–11 and the 

exact cause remains unknown.

Both nonoperatively and operatively managed flexor tendon injuries can be complicated by 

fibrotic adhesions that severely impair the function of the hand by disrupting the gliding 

mechanism.11,12 Tendon adhesions to the fibro-osseous canal and surrounding tissues have 

been associated with a myriad of pathologic factors.11 Many pharmacologic agents (such as 

hyaluronic acid, 5-fluorouracil, lubricin, and a variety of growth factors) and mechanical 
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barriers have been investigated in the reduction of adhesion formation, but none has been 

proven useful in clinical settings.13–16

Our understanding of the formation of flexor tendon adhesions remains limited.17 We will 

discuss what is currently known about limb tendon development, tendon healing, growth 

factors involved in tendon healing compared with those in tendon development, and the role 

they play in both repair and adhesion formation.

LIMB TENDON DEVELOPMENT

Limb tendons arise from the lateral plate mesoderm, which form secondary to bone 

morphogenetic protein-4 secretion provided by the ectoderm.18 These same cells give rise to 

endoskeletal cartilage. Tenocytes themselves are distinct from other fibroblast-like cell 

types.19 Mature tenocytes are spindle-shaped and can be identified in mouse embryos as 

early as embryonic day 13.5. Although tenocytes are noted to be sparse in mature tendon 

tissue—generally anchored to the collagen fibers they produce—changes in their structure 

and activity have been specifically linked with a variety of tendinopathies.20

Tendons are composed primarily of collagen type I, with the fibrils organized along the axis 

of the tendon. Collagen type I is made up of two a1 molecule chains (encoded by the gene 

Col1a1) and one a2 molecule chain (encoded by the gene Col1a2), which form a triple helix.
21 Although much remains to be fully understood, it is thought that most of the fibril 

assembly takes place during the prenatal period, whereas the tissue grows and matures 

postnatally.21 This maturation process includes a dramatic increase in the elastic modulus.22 

In addition to collagens, small leucine-rich proteoglycans are important for tendon 

development and growth, particularly in terms of regulating the growth of collagens.21

The only known marker for a developing tendon is the transcription factor scleraxis. 

Scleraxis regulates Col1a1 in mice and is known to play an important role in tendon 

development in chick and zebrafish as well. Tenocyte overexpression of scleraxis causes up-

regulation of the gene tenomodulin (Tnmd), the protein product of which is specific to 

tendons and ligaments and is understood to be a marker of tendon formation.23 Postnatally, 

scleraxis expression is restricted largely to the epitenon.24 Two other transcription factors are 

known to guide tendon development in vertebrates: Mohawk (Mkx) and Early growth 

response 1 (Egr1). Mkx−/− mice show smaller tendons with defective collagen.25 Egr1−/− 

mice also show collagen fibril defects; tendons from these animals are weaker than wild-

type and have healing deficiencies after injury.26

A variety of other factors are known to be involved in intrasynovial (flexor) tendon 

development. These include cytokines, chemokines, and signaling molecules. Mechanical 

forces also play a role. Limb tendons initiate their development independent of muscles; 

however, muscles are required for subsequent tendon differentiation.27

Fibroblast growth factors (FGFs) and the transforming growth factor (TGF)-β family are 

known to promote tendon commitment of limb mesodermal cells and act downstream of 

mechanical forces to regulate tendon differentiation during chick limb development. TGF-β2 

was noted to be tenogenic for tendon progenitor cells at all stages of development in vitro,28 
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whereas FGF4 lacked tenogenicity for tendon progenitor cells in vitro. However, FGF4 is 

believed to induce and maintain scleraxis expression during tendon development.29 Bone 

morphogenetic protein-12 signaling, by means of Smad 1/5/8, guides the expression of 

scleraxis, Tnmd, Col1, and tenascin-C in tendon progenitor cells in vitro. This effect was 

found to be positively regulated by connective tissue growth factor.30

Although vascularity is limited in mature tendons, vascular endothelial growth factor 

(VEGF) signaling is important during tendon development in human tissue—specifically, 

within developing tendons under traction—and gliding tendons maintain an avascular zone 

even from the fetal period.31 Nearly all of the 23 known matrix metalloproteinases and the 

19 disintegrin and metalloproteinase with thrombospondin motif proteins can be identified 

in adult tendon specimens. These are involved in regulation of the tendon extracellular 

matrix and establishment of the muscle-tendon junction.32 Some of the specific extracellular 

matrix proteins, such as fibronectin and laminin-a1, are also known to be involved in 

interactions at the muscle-tendon junction. Other factors known to be involved in tendon 

healing, which are also believed to play a role in tendon development, include insulin-like 

growth factor 1, platelet-derived growth factors (PDGFs), and interleukins such as 

interleukin-6 and interleukin-1β and their receptors.33

INTRASYNOVIAL TENDON HEALING PROCESS

Successful flexor tendon healing after complete laceration requires restoration of the 

baseline collagen fibers in the tendon and reestablishment of the tendon gliding within the 

sheath, which does not occur spontaneously, unlike in extrasynovial tendons.34 Tendon 

healing is believed to involve both the extrinsic and intrinsic pathways and is composed of 

three phases: inflammatory (days 1 to 7), fibroblastic (days 3 to 14), and remodeling 

(beyond day 10).12,35–38 The extrinsic mechanism proposes that cells not resident to the 

local injury niche, such as immune cells and fibroblasts, are directly involved in repair.39 

The intrinsic mechanism suggests that the cells involved in tendon repair are from within the 

tendon.40 Immediately after an injury until approximately 3 to 7 days after injury, an acute 

inflammatory response is initiated, with both resident intrinsic cells from the epitenon and 

endotenon, and extrinsic cells from the surrounding peritendinous, recruited to and 

proliferated at the injury site.12 The strength of the tendon during this phase is reliant almost 

entirely on the blood clot. If a surgical repair is performed, the surgical suture provides the 

majority of the mechanical strength of the tendon.41,42 The strength of the tendon does not 

begin to increase until the fibroblastic phase is initiated at day 3. During the fibroblastic 

phase, the injury site becomes hypercellular as components of the extracellular matrix are 

deposited. Initial deposition of collagen type III occurs in a disorganized fashion and is then 

reorganized into longitudinal structures. The collagen type III is subsequently replaced with 

collagen type I during the remodeling phase. Over the span of the ensuing 2 months, the 

tendon tissue matures, and the prevailing tension forces cause the fibers to reorient 

longitudinally. Unfortunately, the repaired tendon will never achieve its full uninjured 

strength43,44; it has been reported that an injured tendon heals to approximately 40 to 70 

percent of a normal uninjured tendon’s strength.45–47
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FACTORS INVOLVED IN FLEXOR TENDON ADHESIONS

A great deal of research has been devoted to understanding the formation and prevention of 

tendon adhesion after injury and/or surgical repair.12 Adhesions are most commonly seen in 

healing intrasynovial flexor tendons.33 Through the use of animal studies, we have identified 

some of the critical aspects of tendon healing and adhesion formation. In addition to the 

extent of initial injury and quality of subsequent surgical repair, mechanical loading is 

critical to the reduction of adhesions.34,48–54 Mechanical loading up-regulates the expression 

of collagen type III mRNA expression in tenocytes and increases the concentration of 

growth factors, resulting in cell proliferation and differentiation, and matrix formation at the 

injury site.48 However, for tendon repair rehabilitation to be beneficial, it must protect the 

repair from excessive forces and also allow for enough mechanical loading to help prevent 

development of adhesions with some loading. Excessive loading may not only rupture the 

repair but also impair healing.55 Prolonged immobilization will also result in adhesion 

formation.35,56 Wong et al. developed a mouse model in which the flexor tendons were 

immobilized through the creation of a proximal tenotomy to the injury site, which greatly 

increased the likelihood of adhesion formation.35 They also found that adhesions not only 

are caused by resident (local) cells but also are a result of cells in the surrounding tissue that 

had trauma. These cells appear to develop an excessive amount of collagen.

Aging has also been found to be associated with impaired healing in flexor tendons in 

addition to patella and rotator cuff tendons.57–59 Ackerman et al. found that, at baseline, 

tendons in older mice have a decrease in cell density. It is unknown what proportion of adult 

cells within the tendon are tendon progenitor cells or stem cells. However, it is likely that the 

number of tendon progenitor cells decreases in proportion to the age-related decrease in cell 

density. In addition, as cells age within a tendon, they lose their rounded morphology, taking 

on a more elongated shape. The number of organelles within the cells also decreases.57,60,61 

Collagen synthesis and collagenolytic activity diminish with age.62 This results in an altered 

composition and alignment of collagen fibrils in the aging population, whereas collagen 

fibrils of the young tendon are largely homogenous and arranged in parallel.57 Interestingly, 

after flexor tendon injury, there is a decrease in the amount of extracellular matrix deposition 

in older mouse tendons, and the mechanical strength is diminished.57,63 Despite significant 

research on tendon healing strength, there has been minimal investigation into flexor tendon 

adhesions with aging; it is also unknown whether there are any differences in how aging 

effects intrasynovial compared to extrasynovial tendons.

RECAPITULATION OF TENDON DEVELOPMENT PROCESSES IN TENDON 

HEALING

Tendon healing is a complex process controlled by a variety of regulatory growth factors. 

Many of the same processes and regulators involved in tendon development are involved in 

tendon healing.33,64 Growth factors, including TGF-β, bFGF, VEGF, and PDGF, have been 

studied extensively in a variety of tendon healing models both in vivo and in vitro (Table 1).
1–127
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TGF-β

TGF-β has three main isoforms and is involved in a myriad of cellular pathways.65 Within 

tendon healing, it is known to be involved in the initial inflammatory response, collagen 

synthesis, angiogenesis, and fibrosis/excessive scar formation.66–73 TGF-β1 is expressed by 

tenocytes, infiltrating fibroblasts, and inflammatory cells72,73 and is thought to be associated 

with the pathogenesis of excessive scar tissue formation. Interestingly, when TGF-β1 

signaling is disrupted either by means of antibody or miRNA after flexor tendon injury, 

range of motion of the digit improves; however, the mechanical strength of the tendon 

decreases.57,73,74 TGF-β2 and TGF-β3 are thought to be essential for tendon formation and 

are potent inducers of the tendon progenitors.28,75 When TGF-β signaling is disrupted 

during chick development, almost all tendons and ligaments are absent.75,76 Mechanical 

cues are important in the initiation of TGF-β and FGF signaling in utero. Both TGF-β/

SMAD2/3 and FGF/ERK MAPK signaling pathways are decreased in tendons under 

immobilization conditions in developing chicks. The application of FGF4 or TGF-β2 ligands 

prevents scleraxis down-regulation in immobilized developing chick limbs.27

Exogenous delivery of TGF-β has been long studied as a treatment, both in vivo and in vitro. 

TGF-β1 has been thought to lead to excessive scar formation. The treatment of tenocytes in 

vitro with TGF-β1 promotes extracellular matrix synthesis (up-regulation seen in biglycan, 

collagen V, collagen XII, plasminogen activator inhibitor-1, scleraxis, and Mohawk) and 

down-regulates matrix remodeling matrix metalloproteinases,77 which is suggestive of how 

it may facilitate adhesion formation. The mechanical strength of injured rabbits’ Achilles 

tendons that received bone marrow–derived mesenchymal stem cells transfected with TGF-

β1 cDNA was significantly increased.78 Despite evidence that disrupting TGF-β1 reduces 

the extent of scarring, mechanical strength of the tendon and repair site decrease,56,73,74 

suggesting that complete blockade of TGF-β1 is not optimally therapeutic.

Unlike with TGF-β1, ectopic delivery of TGF-β3 has demonstrated some promising results. 

TGF-β3 promoted the tenogenic differentiation of stem cells in co-culture.79 Jiang et al. 

found that the addition of TGF-β3 to tenocytes can significantly down-regulate the 

expression of Smad3 and up-regulate the expression of Smad7 at the gene and protein levels, 

which may minimize scarring.80 Exogenous delivery of TGF-β3 after Achilles tendon 

injuries in rats has improved the structural and mechanical properties of the tendon.81 

Further evaluation into the specific isoforms’ role in tendon healing is required to evaluate 

their possible therapeutic application in flexor tendon injuries.

FGF2

FGF2 is a single-chain polypeptide belonging to the heparin-binding growth factor family 

that facilitates numerous mitogenic and angiogenic activities.82,83 Within tendon healing, 

FGF2 has been found to be associated with inflammation, neovascularization/angiogenesis, 

cellular proliferation, and collagen synthesis.3,38,66,84–86 Despite FGF2 not being directly 

investigated in tendon formation, several other factors within the FGF family have been 

investigated with regard to their effects on tendon development. FGF4 and FGF8 are both 

expressed on muscle and tendon boundary regions during limb development.87 This suggests 

that the FGF signaling pathway may play a role in the muscle and tendon interactions that 
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facilitate tendon development.87 Brent and Tabin demonstrated that FGF signaling may 

induce the formation of a tendon progenitor population that expressed scleraxis during 

somite development.29 However, Brown et al. reported that FGF4 did not increase scleraxis 

expression in mouse limbs in both early and late developmental stages in vitro.28,88 Rather, 

it had negative effects on scleraxis and Col1a1 gene expression in vitro.28,88

The effects of exogenous FGF delivery after tendon injury are controversial. Ectopic FGF2 

has been shown to increase cell proliferation and promote neovascularization within tendon 

repairs; however, improvements in mechanical strength remain equivocal.3,89 Tang et al. 

demonstrated improvements in tensile strength in injured chick flexor tendons treated with 

FGF2.90 However, Thomopoulos et al. did not find improvements in mechanical or 

functional properties with exogenous delivery of FGF2 by means of a fibrin-heparin–based 

delivery system to dog flexor tendon injuries.85

VEGF

The VEGF family consists of several isoforms that bind to three tyrosine kinase receptors, 

but their bioavailability for each receptor depends on the isoform.91 VEGF levels are 

elevated during tendon development. The VEGF present in human fetal tendons is thought to 

be responsible for the differentiation of vascular and avascular zones within tendons.31 

VEGF levels then decrease to low concentrations within healthy (homeostatic) adult 

Achilles tendons.92 The presence of minimally elevated VEGF in adults is suggestive of a 

chronic overuse tendon injury.93 Within tendon healing, it has been well established that 

VEGF is up-regulated very early in the healing process and is involved in angiogenesis.
42,94,95 VEGF promotes neovascularization by means of the stimulation of matrix 

metalloproteinases to possibly degrade connective tissues to facilitate angiogenesis.92

Ectopic VEGF delivery improves tensile strength of injured Achilles tendons.96 However, it 

has also been found by Wang et al. that VEGF does not significantly up-regulate collagen 

gene expression.97 Therefore, it may not necessarily be the most important factor in collagen 

synthesis in intrasynovial tendon healing; however, it clearly plays an important role in 

angiogenesis in tendon healing and in the formation of tendon.

PDGF

PDGF is a 30-kDa dimer, and its family comprises four different polypeptide chains.98 

PDGF plays a role in the migration and proliferation of the tenocytes, fibroblasts, and 

mesenchymal stem cells responsible for tissue homeostasis.99 PDGF expression is up-

regulated shortly after tendon injury and helps to stimulate the production of other growth 

factors.82 PDGF signaling may be essential to tendon homeostasis. Sugg et al. demonstrated 

that the inhibition of PDGF signaling prevented the normal growth response in tendon tissue 

to a mechanical stimulus in adult mice.100 Little is known regarding its role in tendon 

development. Exogenous delivery of PDGF improves both morphologic and biomechanical 

properties in numerous animal and tendon models, suggesting the PDGF may help augment 

tendon healing.101–105

There appear to be common growth factors and gene expression patterns between tendon 

development and repair. Further investigation is required to better understand the roles that 
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growth factors, cytokines, chemokines, and/or other signaling molecules play in both tendon 

development and healing. Despite a wealth of knowledge regarding what factors play a role 

in tendon healing, a better understanding of how tendons develop would likely provide 

additional insights toward improving tendon repair after injury (Table 1).

CONCLUSIONS

Further exploring the similarity and differences in gene expression between tendon 

morphogenesis and repair may elucidate novel strategies to improve perioperative and 

postoperative flexor tendon injury management. In addition, understanding the molecular 

mechanisms dependent on mechanical loading involved in flexor tendon healing without 

adhesion formation is also critical in learning how to best improve repair outcomes. 

Fundamental and translational studies will help us decipher which growth factors, cytokines, 

chemokines, and/or other signaling molecules are most crucial in the prevention of adhesion 

formations.
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