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Abstract

Purpose of Review—Osteoporosis is disproportionately common in rheumatology patients. For 

the past three decades, the diagnosis of osteoporosis has benefited from well-established practice 

guidelines that emphasized the use of dual x-ray absorptiometry (DXA). Despite these guidelines 

and the wide availability of DXA, approximately two thirds of eligible patients do not undergo 

testing. One strategy to improve osteoporosis testing is to employ computed tomography (CT) 

examinations obtained as part ofroutine patient care to “opportunistically” screen for osteoporosis, 

without additional cost or radiation exposure to patients. This review examines the role of 

opportunistic CT in the evaluation of osteoporosis.

Recent Findings—Recent evidence suggests that opportunistic measurement of bone 

attenuation (radiodensity) using CT has sensitivity comparable to DXA. More importantly, such an 

approach has been shown to predict osteoporotic fractures.

Summary—The paradigm shift of using CTs obtained for other reasons to opportunistically 

screen for osteoporosis promises to substantially improve patient care.

Keywords

Computed tomography; Fracture; Opportunistic screening; Osteoporosis

Introduction

Osteoporosis is increasing in prevalence and resulting in a significant public health impact 

[1]. There is increasing evidence on reduced quality of life and shortened life span in 
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patients with low bone mineral density (BMD), regardless of fracture status [2–4]. Owing to 

the use of glucocorticoids and other comorbidities, osteoporosis is especially common and 

has especially dire consequences in the rheumatology patient population [5, 6].

The current standard of care for the diagnosis of osteoporosis relies heavily on the diagnosis 

of a fragility fracture or the presence of low BMD on dual x-ray absorptiometry (DXA) 

testing [7, 8]. For over three decades clinical practice guidelines from the American College 

of Rheumatology (ACRheum),American College of Radiology (ACRad), International 

Society for Clinical Densitometry (ISCD), National Osteoporosis Foundation (NOF), and 

many other professional organizations throughout the world have emphasized the utility of 

DXA in the diagnosis of osteoporosis [9–16]. Unfortunately, in the USA, only about one 

third of eligible patients undergo DXA testing [17]. Osteoporosis remains largely 

underdiagnosed and undertreated, and the situation is particularly concerning in chronic 

glucocorticoid users [18–21].

Novel approaches to finding patients at risk for osteoporotic fracture who are candidates for 

pharmacologic therapy are long overdue. “Opportunistic CT” is one such approach. The 

essential insight or “paradigm shift” of this approach is that routine CT scans already 

performed for standard clinical indications can be used to screen for additional body 

composition information, such as the attenuation (radiodensity) of the bone. Thus, regardless 

of their primary indications, CT scans of the chest, abdomen, pelvis, and spine may be used 

to screen patients for osteoporosis. Importantly, there is no additional burden to the patient in 

terms of radiation exposure, examination time, or image acquisition cost. Used properly, CT 

promises to shift the paradigm of care for many rheumatology patients.

The timing for the paradigm shift is critical. Throughout the world, the population is aging 

and the burden of comorbidities is rapidly increasing [22]. In tandem with progressively 

aging populations, there has also been a sustained growth in the clinical use of CT scanning, 

with over 70 million examinations performed each year in the USA [23]. Worldwide, the 

growth of CT utilization has increased even more sharply due to a growing middle class and 

generally improved access to advanced imaging.

The ability to opportunistically mine quantitative data from CT images is becoming more 

feasible. The machine learning revolution, poised to impact all aspects of medical imaging, 

will eventually allow fully automated measurement of bone and other tissues using CT 

images. If these trends continue, substantial cost savings to our health care systems and 

improved care for our patients will follow. This review examines the role of opportunistic 

CT in the evaluation of osteoporosis.

CT for Osteoporosis: Past, Present, and Future

The Past

The evaluation of osteoporosis using CT has been possible since the 1980s [24]. The 

traditional approach, called quantitative CT (QCT), was applied to the spine and determined 

volumetric BMD (vBMD) with the aid of specialized software and a calibration phantom, 

placed under the patient during scanning [25]. The phantom calibration accounted for the 
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variability in CT scanners by converting CT attenuation (measured in Hounsfield units 

[HU]) to vBMD (measured in mg/cm3) [25]. To this day, QCT-derived vBMD continues to 

be a powerful research tool, used to investigate everything from basic bone biology to 

population health [26–33]. However, its use for directing patient care has been dwarfed by 

DXA.

Mainly due to its lower cost, wider availability, and lower radiation dose, the vast majority of 

observational studies and randomized clinical trials have used DXA-derived areal BMD 

(aBMD), rather than QCT-derived vBMD [34–36]. This, in turn, led to wide clinical 

acceptance of DXA as well as the proliferation of clinical practice guidelines that amplified 

the value of DXA in patient management.

The Present

Recently, there has been resurgence in the use of CT for osteoporosis screening. One of the 

explanations has to do with favorable evolution of CT technology. In the past decade, the 

CTsystems have become progressively better calibrated, allowing for more consistent and 

accurate bone measurements. In 2015, the ISCD convened a Position Development 

Conference, largely devoted to QCT [37, 38]. Shortly after, the most widely used fracture 

risk instrument, the Fracture Risk Assessment Tool (FRAX™) was modified to allow for 

fracture risk calculation based on QCT-derived aBMD of the proximal femur.

The use of CT is favored by many because, as a cross-sectional technique, it allows 

measurements of trabecular bone. By comparison, DXA is a projectional technique that 

cannot differentiate between trabecular and cortical bone.

Opportunistic CT for BMD evaluation has become increasing popular because patients 

undergoing clinical CT examinations are often at increased risk for osteoporosis, including 

rheumatologic and geriatric patients.

The Future

In the future, the use of CT for the evaluation of osteoporosis will undoubtedly increase. 

However, much of that grow this likely to come not from CTs ordered specifically to assess 

osteoporosis, but from CTs obtained for other reasons where osteoporosis will be assessed 

concurrently on a routine basis.

Technical Considerations

There are many scanner-related factors that influence bone measurement using CT. These 

include scanner manufacturer and model, scanner calibration, collimated beam width (e.g., 

20 mm vs. 40 mm), and scanning protocol (e.g., kV, slice thickness, reconstruction 

algorithms) [38]. For these reasons, the traditional approach to QCT standardizes vBMD 

measurements using a calibration phantom, made with known amount of hydroxyapatite 

(HA) or potassium phosphate (K2HPO4), that is scanned at the same time as the patient—

commonly referred to as “synchronous calibration” (Fig. 1).
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While synchronous calibration is still commonly used in research, it is generally not 

practical for opportunistic screening, since the vast majority of clinical CTs are acquired 

without simultaneous imaging of a patient with a calibration phantom. For opportunistic 

screening using clinical CTs, an alternative approach is needed. The three main 

opportunistic approaches are often referred to as “phantomless” because a calibration 

phantom is not placed under the patient during scanning: (1) synchronous internal 

calibration, (2) asynchronous external calibration with BMD phantom, and (3) asynchronous 

external calibration with the American College of Radiology (ACRad) phantom [39•].

Synchronous Internal Calibration

With this phantomless approach, no external calibration phantom is scanned. Instead, the CT 

attenuation of adjacent internal tissues (blood or fat) and air are used to calibrate attenuation 

measurements and calculate vBMD [40–43] (Fig. 2). VirtuOst® software (O.N. Diagnostics, 

Berkeley, CA) uses this approach.

Asynchronous External Calibration with BMD Phantom

With this asynchronous approach, a calibration phantom is scanned at a different time from 

the patient and specialized software is then used to calibrate the phantom scan and the 

separate patient scan in order to calculate vBMD [44–47] (Fig. 3). CliniQCT (Mindways, 

Inc) is a commercially available product that uses this approach. Asynchronous CTof the 

proximal femur has also been adapted to derive aBMD, from which DXA-equivalent T-

scores are obtained [44]. These DXA-equivalent T-scores have a much wider clinical 

acceptance than traditional QCT T-scores and can be used to classify patients based on the 

World Health Organization criteria and determine fracture risk based on FRAX™ [38].

Asynchronous External Calibration with ACRad Phantom

With this approach, direct CT attenuation values (HUs) are used determine trabecular 

radiodensity without a BMD-specific calibration phantom [48–54]. This approach does not 

require any specialized software and can be performed on a picture archiving and 

communication system (PACS) workstation or any computer with standard tools that are 

used for viewing CT images (Figs. 4 and 5). However, it does require careful attention to 

standard quality assurance procedures. On CTscanners, HUs are normalized values of the 

linear attenuation coefficient, where water attenuation is calibrated to 0 HU and air 

attenuation to − 1000 HU. Reliable results depend on standardized quality assurance 

measures performed for the ACRad accreditation of CT scanners. The ACRad recommends 

a vigorous quality control program that checks daily for artifacts, noise, and calibration to 

water within ± 5 HU [55].

Table 1 summarizes the three approaches used for opportunistic CT measurements of bone. 

An approach that does not require purchase of an additional proprietary phantom or software 

seems to offer the greatest promise, but only if challenges related to reproducibility can be 

overcome [56, 57]. Lee et al. [42] reported precision errors for phantomless measurements 

that are not significantly different than those phantom-based measurements (< 1%). 

However, there is continuing debate whether routine calibration of CT scanners using 

ACRad phantoms is sufficient for such opportunistic measurement of bone [58]. One reason 
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for this is that the ACRad phantom is only 20 cm in diameter, far smaller than an adult torso, 

and therefore the beam hardening and scatter properties are quite different. Furthermore, the 

clinical utility of opportunistic CT may be influenced by newer technology (e.g., dual-

energy CT and ultra-high-resolution CT) that continues to evolve rapidly.

Road to Clinical Implementation

The Past

Because the most important clinical consequence of osteoporosis is fracture, the best way to 

validate any diagnostic test for osteoporosis is to determine its ability to predict spine and 

hip fractures. With traditional QCT, this has been shown in several large prospective studies 

including the Age, Gene, Environment Susceptibility-Reykjavik (AGES-Reykjavik) Study 

and the Osteoporotic Fractures in Men (MrOS) Study [39•, 59, 60].

The Present

For the three CT approaches best suited for opportunistic screening, the initial studies have 

focused on comparing new methods to traditional QCT and to DXA. Opportunistic 

measurements of bone have shown good correlation with measurements of vBMD using 

traditional QCT [41, 52, 61] and aBMD using DXA [44, 48, 51, 53, 62–66].

More recent studies on opportunistic CT have used fractures as outcomes [67–74]. In 

patients who had a hip fracture after an abdominopelvic CT examination performed for other 

reasons, Lee et al. [73] reported significantly lower L1 trabecular attenuation values (98.5 ± 

36.8 HU) in patients who fractured, compared to age- and sex-matched controls (129.7 ± 

44.9 HU). In a later study, the same investigators applied a 90 HU cut-point at L1 in 507 

adults aged ≥ 65 years who underwent chest and/or abdominal CT for any indication, and 

reported an increased risk for future osteoporotic fracture, even after adjusting for common 

confounding variables [74].

Perry Pickhardt and colleagues at the University of Wisconsin have led important work 

validating opportunistic CT [75•]. They have published data on various HU thresholds 

developed based on Receiver Operating Characteristic (ROC) analyses, using either DXA-

derived T-scores or fractures as the standard. Based on their research, they have adapted the 

following approach to their clinical interpretation of “phantomless” CT exams. At L1 and 

T12, they have suggested a conservative diagnostic cut-point of < 90 or 100 HU for L1 to 

recommend further testing with DXA [75•]. At the hip, they use an asynchronous calibration 

method and report CT-derived T-scores (rather than HU) for the diagnosis of osteoporosis 

[75•].

How Exactly Is It Done?

Using routine PACS viewing software, the CT measurement of attenuation is performed 

most commonly at the L1 vertebral body by placing an oval region of interest in the anterior 

trabecular space on an axial or sagittal CT image of the chest or abdomen. When the L1 

attenuation is < 100 HU, this is concerning for osteoporosis and significantly increased 

fracture risk, and DXA is recommended for these patients. Because bone attenuation is 
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strongly influenced by the kV used for the scan, the threshold value of 100 HU assumes the 

CT was performed at 120 kV.

Although the thresholds used by the University for Wisconsin seem sensible, other 

investigators have proposed different thresholds at the same vertebral levels. In a systematic 

review of opportunistic use of CT for osteoporosis screening, Gausden et al. [76] 

summarized various skeletal sites and the associated HU-based diagnostic thresholds. Their 

work makes it clear that, even in research trials, the approach to opportunistic measurement 

of bone is far from standardized.

The Future

Future research will help direct optimal clinical implantation of opportunistic CT. The 

research will undoubtedly include refinements in both technical (e.g., CT methodology) and 

clinical (e.g., appropriate diagnostic thresholds) factors.

Concerns about high variability in bone measurements between and within CT scanners, has 

led to widespread caution on the use of opportunistic CT. This was the main concern raised 

by the ISCD Position Development Conference in 2015 [37], the systematic review of 

opportunistic CT by Gausden et al. in 2017 [76], and the comprehensive review of CT and 

fracture risk by Johannesdottir et al. in 2018 [39•].

There are several studies that mitigate such concerns about CT scanner variability. In a study 

of 4126 subjects measured on 14 CT scanner models from 5 CT manufacturers, Budoff et al. 

[77] reported high correlation between phantomless CT and traditional 

QCT(r=0.987,p<0.001). Similarly, in a study of 1959 subjects with incident hip fracture and 

1979 controls measured on 80 different CT scanners (15 scanner models), Adams et al. [78•] 

reported that 86% of the CT scans provided valid measurements and that CT-derived femoral 

bone strength was as effective as DXA-derived aBMD in determining hip fracture risk.

It is also important to consider the concerns about standardization across CT manufacturers 

in the context of similar concerns about DXA. Although DXA has been widely used for 

osteoporosis screening for nearly four decades, different DXA manufacturers continue to use 

quite different methodology for aBMD measurement. In fact, ISCD guidelines encourage 

patients to have follow-up scans on the same DXA scanner, in order to avoid having to 

cross-calibrate scanners.

With DXA, it took multiple consensus conferences over many years to settle important 

standardization issues relating to scan acquisition, scan analysis, and quality assurance. To 

gain wider acceptance, a similar process will likely be needed for opportunistic CT. 

Hopefully, with the proactive cooperation of clinicians, radiologists, medical physicists, and 

industry, the process will proceed faster than it did with DXA. In any case, future practice 

guidelines should consider how to best standardize opportunistic CT measurements of bone.

Concerns about variability in measurements between various skeletal sites and the lack of 

standardized diagnostic thresholds have also limited the use of opportunistic CT. Although 

the technique has been applied mostly to the spine and proximal femur, it also has been used 

in the proximal humerus, distal radius, distal tibia, talus, and sacrum [76, 79, 80]. Site-
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specific diagnostic thresholds need to be independently validated before bone measurements 

at these nonstandard skeletal sites are accepted into clinical practice.

For now, the most robust data for opportunistic bone measurement are at T12 and L1, using 

a non-contrast CT. While the effect of intravenous contrast on bone attenuation has been 

investigated in several studies, the results have not been consistent [45, 81]. Similarly, the 

effect of variable kV on bone attenuation can benefit from further study [82]. In particular, it 

is important to determine if post-hoc adjustments in HU results should be made to correct 

for variations introduced by known CT variables such as use of intravenous contrast or 

variable kV.

Opportunistic CT research is rapidly gaining momentum. Additional clinical trials and meta-

analyses are certainly forthcoming. These studies will help resolve some of the outstanding 

issues, including:

• Should opportunistic CT be used only in older adults or are there other high-risk 

groups that would benefit from testing?

• Should opportunistic CT be used only as a screening test, with DXA retaining its 

established role in the definitive diagnosis of osteoporosis?

• Should skeletal sites other than the spine and the hip be used for opportunistic 

CT screening?

• Should opportunistic CT be used to influence the choice of surgical techniques or 

be limited to post-operative risk stratification?

• Should machine learning tools be used to maximize efficiency and consistency of 

measurements across large populations?

Ultimately, the most important driver in the clinical implementation of opportunistic CT 

should be based on evidence on improved patient outcomes.

Collateral Benefits of Using CT for Osteoporosis Screening

Current approaches to osteoporosis screening rely on areal BMD (aBMD) measured with 

DXA. Importantly, over 50% of fractures occur in persons classified as non-osteoporotic 

based on aBMD [83]. While there are many explanations for this, decreased accuracy of 

aBMD in obese patients is worth emphasizing [84]. By 2030, the prevalence of obesity in 

older Americans is expected to increase from 37 to 50%, potentially adding to DXA-based 

underdiagnosis [85, 86]. Importantly, CT measurements are much less susceptible to error 

from obesity [84].

CT measurements offer other distinct advantages compared to DXA measurements. CT 

measurements of bone are less influenced by spine degenerative diseases, vascular 

calcifications, deformities such as scoliosis and kyphosis, patient positioning errors, and 

various internal and external artifacts [25].

Another benefit of CT is that opportunistic measurement of bone could be combined with 

opportunistic measurement of muscle [87]. This would not only help diagnose sarcopenia, 
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but also improve the prediction of fracture risk. Generally defined as decreased skeletal 

muscle mass and function, sarcopenia has been shown to be an independent predictor of hip 

fractures and has also been associated with decreased quality of life and increased mortality 

[88–92]. The term “osteosarcopenia” has been applied to patients who have both conditions, 

generally indicating a poorer prognosis than either sarcopenia or osteoporosis alone [93].

On CT images, sarcopenia may be diagnosed based on low muscle cross-sectional area (and 

skeletal muscle index [SMI] which adjusts muscle area for patient height) or low muscle 

attenuation [94•]. While different approaches have been used to assess muscle area, the most 

common measures all visualized muscles at the L3 vertebral level and applies the following 

diagnostic thresholds for sarcopenia: SMI < 52.4 cm2/m2 in men and SMI < 38.5 cm2/m2 in 

women [94•].

Regardless of the approach, opportunistic CT promises to provide a collateral benefit to 

patients by helping assess muscles as well as bones.

Finite Element Analysis

Whether measured with DXA or CT, BMD is used as a surrogate biomarker for bone 

strength, the key component of fracture risk. Research using CT for finite element analysis 

(FEA) of bone is becoming progressively more sophisticated, employing volumetric BMD, 

cortical thickness, computational anatomy, and other methods to assess bone strength (Figs. 

6 and 7) [95–101].

FEA tools used in research are being translated for clinical implementation with 

opportunistic CT [78•, 98•]. This is particularly important, since there are many contributors 

to fracture risk that are not captured by BMD. CT allows for comprehensive assessment of 

many other phenotypes that increase fracture risk, including decreased cortical thickness, 

decreased cortical density, and increased bone marrow adipose tissue (BMAT) [95–101].

An increase in BMAT is associated with aging and obesity. BMAT infiltrates medullary 

cavity spaces that could otherwise be occupied by bone and may compete with osteogenesis 

because both osteoblasts and adipocytes differentiate from a common mesenchymal stem 

cell. The increased heterogeneity of the trabecular matrix leads to decreased bone strength 

[102].

Opportunistic CT could be used to construct patient-specific FEA models. The models 

would use CT-derived bone geometry, cortical thickness, and material property data to 

predict bone strength and fracture risk in vivo, at clinically relevant sites including the spine 

and hip. While such FEA techniques have been widely used in research, the challenge is to 

adapt them to clinically acquired scans that typically use lower spatial resolution [39•].

The future of opportunistic CT will also be fundamentally changed by further automation in 

image analysis and tissue segmentation. Quantitative analysis of CTimages now requires 

manual placement or adjustment of regions of interest in bone or around adjacent tissue 

(e.g., muscle or fat). In the future, machine learning tools will enable automated CT 

segmentation of various tissues, including bone. We expect that clinical implementation of 
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fully automated tissue segmentation with measurement of trabecular, cortical, subchondral 

bone, as well as FEA modeling, is forthcoming. Analogous to the current DXA reports, we 

also predict that future CT reports will routinely include quantitative results with evidence-

based risk stratification that will contribute to improvements in patient care.

Conclusion

Just as imaging methods including ultrasound and magnetic resonance imaging have been 

useful in the early diagnosis of patients with inflammatory arthritis, leading to early 

treatment, imaging methods such as DXA and CT are increasingly used to assess for pre-

clinical manifestations of another common condition in rheumatology patients: osteoporosis.

Compared to DXA, CT examinations are more expensive and result in higher radiation dose 

to patients. Both of these disadvantages are avoided when CTs obtained for other reasons are 

used opportunistically to screen for osteoporosis. Part of the increased cost of traditional 

QCT was the requirement for a specialized calibration phantom and analysis software. In the 

past decade, improvements in CT technology have facilitated “phantomless” approaches to 

CT measurement of bone, thus eliminating the added cost.

For decades, most of the evidence on the relationship between BMD and fracture risk came 

from studies that used DXA. More recently, fracture data became available for CT; not just 

traditional QCT, but also opportunistic CT [39•]. These data have paved the way for wider 

acceptance of measurement of bone on CT scans obtained for other reasons. Outside of the 

scope of this review, opportunistic CT has also been used to screen for vertebral fractures, 

providing further benefit to patients at risk for osteoporosis [71].

Importantly, concerns about the higher radiation exposure of CT compared to DXA become 

moot when BMD measurements are analyzed on CT exams that are already being performed 

for other indications. Such opportunistic CT evaluation becomes particularly important for 

patients who would otherwise not undergo DXA testing.

At this time, opportunistic CT is still in its infancy and incorporation into routine clinical 

workflow is limited. Effective integration of CT-based diagnosis of osteoporosis into patient 

care will require increased collaboration between clinicians and radiologists. An incidental 

finding of osteopenia in a recently menopausal woman may have different implications than 

the same diagnosis in an elderly rheumatology patient with frailty. Despite these challenges, 

radiologists should be encouraged to begin using CT measurements to help screen for 

osteoporosis.

Opportunistic CT is a rapid and reproducible method of screening patients for osteoporosis, 

and may even show significant bone loss before it can be detected with DXA. Furthermore, 

by identifying patients at risk for osteoporotic fracture who would otherwise not undergo 

DXA testing or be diagnosed with osteoporosis, opportunistic screening using CT has the 

potential to shift the existing diagnostic paradigm and ultimately improve patient care.
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Fig. 1. 
Traditional quantitative CT (QCT) with calcium hydroxyapatite (CaHA) phantom for 

determination of vertebral bone mineral density (BMD)
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Fig. 2. 
Synchronous internal calibration of phantomless CT for determining vertebral BMD using 

two additional regions of interest: psoas muscle and subcutaneous fat
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Fig. 3. 
Asynchronous external calibration of phantomless CT (a) with post-hoc BMD phantom scan 

(b)
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Fig. 4. 
Asynchronous external calibration with non-bone (ACRad) phantom. Trabecular attenuation 

at L1 is measured at 110.5 HU, which is considered within the range of normal.

Lenchik et al. Page 19

Curr Rheumatol Rep. Author manuscript; available in PMC 2020 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Asynchronous external calibration with non-BMD (ACRad) phantom. Trabecular 

attenuation at L1 is 83.4 HU, which is considered in the osteoporotic range. Further 

evaluation with DXA is recommended.

Lenchik et al. Page 20

Curr Rheumatol Rep. Author manuscript; available in PMC 2020 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Subject-specific vBMD, cortical thickness, and bone geometry derived from CT are used in 

a finite element analysis to predict bone strength in a vertebral compression simulation
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Fig. 7. 
Subject-specific vBMD, cortical thickness, and bone geometry derived from CT are used in 

a finite element analysis to predict bone strength in a femoral stance simulation
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