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The spread of infectious diseases, rumors, fashions, and innovations are complex contagion processes,
embedded in network and spatial contexts. While the studies in the former context are intensively expanded, the
latter remains largely unexplored. In this paper, we investigate the pattern formation of an interacting contagion,
where two infections, A and B, interact with each other and diffuse simultaneously in space. The contagion
process for each follows the classical susceptible-infected-susceptible kinetics, and their interaction introduces
a potential change in the secondary infection propensity compared to the baseline reproduction number R0.
We show that the nontrivial spatial infection patterns arise when the susceptible individuals move faster than
the infected and the interaction between the two infections is neither too competitive nor too cooperative.
Interestingly, the system exhibits pattern hysteresis phenomena, i.e., quite different parameter regions for patterns
exist in the direction of increasing or decreasing R0. Decreasing R0 reveals remarkable enhancement in contagion
prevalence, meaning that the eradication becomes difficult compared to the single-infection or coinfection
without space. Linearization analysis supports our observations, and we have identified the required elements
and dynamical mechanism, which suggests that these patterns are essentially Turing patterns. Our work thus
reveals new complexities in interacting contagions and paves the way for further investigation because of its
relevance to both biological and social contexts.
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I. INTRODUCTION

After entering the new millennium, infectious diseases ap-
pear to be more active than ever, along with many new emerg-
ing pathogens. Well-known examples include Severe Acute
Respiratory Syndrome in 2003 [1,2], influenza A (H1N1)
in 2009 [3], Middle East Respiratory Syndrome coronavirus
in 2012 [4], Ebola in 2013 [5], and the continuing H7N9
of avian influenza virus [6], etc. To understand contagion
processes, mathematical models are an essential tool and have
a long tradition in scientific communities that can date back
to Bernuolli’s work on the smallpox vaccination in 1760 [7].
Until now, the modeling effort has been fruitful at all levels
[8,9], ranging from conceptual models [10,11] that capture the
generic features of contagions, network models [12–15] that
focus on the underlying structure of population or commuting
patterns to the sophisticated computational models [16,17],
where a variety of high-resolution data, like demographics,
transportation, epidemiological features, and behavioral re-
sponse [18], are incorporated.

One important research line aims to understand realistic
yet more complicated contagion scenarios, where, e.g., more
than one infection is considered that circulates simultaneously
in the population. This sort of interacting contagions is moti-
vated by the fact that the spread of different infections in the
real world is not entirely independent; they often influence
each other [19,20]. Well-known examples include the case
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of pneumonia bacterium like Streptococcus pneumoniae and
viral respiratory illness (e.g., seasonal influenza) where they
mutually facilitate each other’s propogation [21,22], and the
coinfection between human immunodeficiency virus and a
host of other infections [23–27]. The interaction among dif-
ferent infections can be either competitive [28–34] (they sup-
press each other’s circulation) or cooperative [35–42] (they
support each other). The mean-field treatment and percolation
studies of structured population reveal a rich spectrum of new
dynamical features that are unexpected in the classic scenario
of single infection. For example, when different infections are
competing, both one-infection-dominance and coexistence are
possible, depending on the properties of involved infections
and the underlining networks [28]. By contrast, in cooperative
contagions discontinuous outbreak transition appears [35,36],
along with many interesting spreading features such as the
higher chance of outbreak in clustered networks [37], first-
order phase transitions in the contagion prevalence [40], etc.

Although these studies provide new insights into the tem-
poral dynamics of interacting contagions, their spatial behav-
ior is largely unknown [43]. The investigation of the spatial
role is indispensable for a full comprehension of contagion
complexities [44,45], not only for its conceptual significance
but also for its practical relevance to the real world [46]. Abun-
dant empirical evidence reveals nontrivial dynamical proper-
ties in spatial epidemiology, such as traveling waves [47], in-
fection patterns [48], and even the spatiotemporal chaos [49].
A major modeling effort is devoted to the studies of traveling
waves in spatial domains, like the Black Death in Europe or
the rabies epizootic in France [44]. The emergence of infec-
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FIG. 1. The model of interacting contagions. (a) Mean-field model (without space): Consider two infections, A and B, that circulate in
a population. Four states are then possible for host individuals: susceptible S, partially infected A or B, and the coinfected state AB. In
the contagion process, S becomes partially infected (A/B) with an initial infection rate α by contacting the infected; the partially infected
individuals can be further be infected by the other infection to be doubly infected (AB) with the secondary infection rate α′. All infected
individuals recover with rate β. (b) Spatially interacting contagions: When subpopulations are coupled through their spatial neighborhood,
the diffusion captures the local mobility of individuals and thus also the infections they carried. Generally, the mobility of a given individual
depends on its state; e.g., in epidemic spread, susceptible people statistically move faster than infected individuals, who might prefer to stay at
home or in the hospital for recovery. Mathematically, this is captured by DS > DA,B,AB within the RD framework described by Eq. (2).

tion patterns, however, receives much less attention, yet a few
mechanisms are proposed for their generation [50,51]. These
studies mainly focus on the single infection cases by incorpo-
rating additional compartments and/or additional dynamical
processes. To our knowledge, there is rare work discussing
the spatial dynamics of interacting contagions, especially the
possibility of pattern emergence. A preliminary effort studies
the spatial dynamics of two interacting contagions, assuming
all individuals are of identical mobilities; novel propagation
modes are revealed, like receding fronts and standing waves
[40]. However, in realistic cases, individuals in different states
are generally of different mobilities, depending on the indi-
vidual’s state. For example, healthy people normally move
faster than the sick, who might prefer staying at home or
in the hospital for recovery. So what is the generic spatial
dynamics when more than one infection proliferates in the
population? This question is also of particular interest in the
ecology community, where different diffusivities of species
are thought to be responsible for the emergence of patchiness
[52]. In addition, recent works show that multiplex networks
as the underlying medium provide another mechanism for
generating patterns even if all species are of the same mobility
[53–56].

In this work, we study the dynamical properties of two in-
teracting susceptible-infected-susceptible (SIS) infections in a
spatially extended context within the reaction-diffusion (RD)
framework, see Fig. 1. When the susceptible individuals are
assumed to diffuse faster than the infected, we find infection
patterns in a wide range of parameters. Counterintuitively,
neither competition nor cooperation between the two infec-
tions is required for pattern formation, implying a rather loose
precondition for their emergence. Our linearization analysis
provides a good prediction, where positive eigenvalues imply
instability modes, corresponding to the pattern formation.

The paper is organized as follows. In Sec. II, we first briefly
introduce the mean-field treatment of interacting contagions
and then define the spatial model in the RD framework. Main
results are shown in Sec. III, where the impact of contagion
interactions, the baseline reproduction number, and the mo-

bilities of different states are studied. Special interest goes to
the pattern hysteresis in Sec. IV. The dynamical mechanism
is discussed in Sec. V. Finally, we summarize our work in
Sec. VI.

II. MODEL DESCRIPTION

A. Mean-field model without space

As in Ref. [40] we shall only consider the case of two
infections, A and B, each of SIS-type contagion dynamics. For
a single SIS-type infection, host individuals can be susceptible
(S) or infected (I); the transmission happens via S + I → 2I
and recovery by I → S, with infection rate α and recovery
rate β, respectively. The dynamics of SIS therefore captures
a class of contagions where recovered individuals confer no
immunity. In a well-mixed population, one can write down the
kinetic equations for S(t ) and I (t ); an outbreak happens only
if the so-called basic reproduction number R0 ≡ α/β > 1 and
the population is contagion-free otherwise.

When generalized to the case of two infections [see
Fig. 1(a)], a host could then be in one of four states (S, A, B,
AB), corresponding to being susceptible, infected with A only,
infected with B only, and infected with both, respectively. In
the transmission dynamics, we distinguish two infection rates:
the initial rate αA (αB), with which infection A (B) transmits to
a susceptible S individual, and the secondary rate αAB (αBA),
with which a secondary infection transmits to a host who is
already infected with A (B). To simplify, we assume uniform
recovery rate β. With these, the mean-field (MF) dynamics is

Ṡ = −αAS(IA+IAB)−αBS(IB+IAB)+β(IA+IB),

İA = αAS(IA+IAB)−αABIA(IB+IAB)+β(IAB−IA),

İB = αBS(IB+IAB)−αBAIB(IA+IAB)+β(IAB−IB),

İAB = αABIA(IB+IAB)+αBAIB(IA + IAB)−2βIAB. (1)

Here S, IA, IB, and IAB denote the densities of individuals
in the states S, A, B, and AB, respectively. The precise
meaning of αAB is the rate that a host already infected
with A can be further infected with B and vice versa. One
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can then conveniently defines the cooperativity coefficients
CA = αAB/αB (CB = αBA/αA), measuring the infection A–(B)
induced change in the secondary infection rate for the other.
When A and B cooperate, the secondary infection is easier,
i.e., CA,B >1; CA,B <1 implies competitive contagions, such
as the case of cross-immunity; and if CA,B = 1, then the
two infections are neutrally interacting, essentially decoupled
in their contagion processes. Without considering birth and
death processes in the population, the four densities are in
conservation, i.e., S + IA + IB + IAB = 1. For simplicity, here
we adopt symmetrical parameters, i.e., αA = αB = α for the
initial infections, αAB = αBA = α′ for the secondary infec-
tions, which implies CA = CB = α′/α ≡ C.

In Ref. [40], this mean-field model has been systematically
studied, and the main findings are as follows: for strong co-
operation (C >2), the contagion shows backward bifurcations
[57], i.e., first-order dynamical phase transitions with two
different thresholds in R0, one for outbreak at 1, and the other
for eradication at 2

√
C − 1/C <1; for competitive or weakly

cooperative scenarios (C <2), the contagion transitions are
qualitatively the same as the traditional single infection, show-
ing continuous outbreak transitions. General asymmetrical
parameters do not change the results qualitatively. For details
we refer to Ref. [40].

B. Spatially interacting contagions

When the spatial dimension is incorporated [Fig. 1(b)], the
dynamics is conveniently described by the RD system [44] as
[in the 1 dimensional (1D) domain]

∂t S(x, t ) = fS + DS∂
2
x S,

∂t IA(x, t ) = fA + DA∂2
x IA,

∂t IB(x, t ) = fB + DB∂2
x IB,

∂t IAB(x, t ) = fAB + DAB∂2
x IAB. (2)

The first terms in the right-hand side fS,A,B,AB are reactions,
representing the intrinsic contagion dynamics, the same as the
right-hand side of Eq. (1); the second terms are the diffusion,
capturing the local mobilities of individuals potentially ca-
pable of carrying the infections to their neighboring regions,
with DS,A,B,AB being the corresponding diffusion coefficients.
The simplest case, where DS = DA = DB = DAB, has been
studied in Ref. [40] and mainly focuses on the properties
of traveling waves. There, apart from the classic scenario of
forward movements, the backward propagation also emerges,
together with the possibility of standing waves being ex-
pected. These new modes come from the competition between
the reactions and the diffusion in Eq. (2).

In the following studies, we consider a more general set-
ting, where the individuals’ mobilities depend on their states;
therefore the diffusion coefficients are not all identical any
more. To simplify, we only differ the diffusion of the infected
from the susceptible’s and do not further distinguish those
partially infected and the doubly infected, i.e., DA = DB =
DAB = DI �= DS . As mentioned above, the mobilities of the
infected individuals are generally lower than the healthy, and
therefore we assume DS >DI =1 if not stated otherwise. In
Appendix, the linearization analysis of Eq. (2) is conducted,

where positive eigenvalues mean the instability of the homo-
geneous solutions, providing indicators for patterns to emerge.

In numerical simulations, the RD system is approximated
as diffusively coupled ordinary differential equations and is
solved with the fourth-order Runge-Kutta method, with the
spatial resolution and time step being 1 [and 1 × 1 in the
2 dimensional (2D) domain] and 0.01, respectively [58].
Random initial conditions are adopted whereby for each site
x, a random number in the range of (0, ε) is chosen for
the densities of IAB(x, 0) with IA,B(x, 0)=0, and S(x, 0) =
1−IAB(x, 0) for the density conservation. ε = 10−6 is used,
meaning the population is almost contagion free but with
many tiny infection seeds introduced. The specific value of
ε or additional seeding in IA,B(x, 0) does not qualitatively
change the pattern dynamics. A periodic boundary condition
is used throughout the study.

To monitor the process of pattern emergence, we introduce
a spatial heterogeneity quantity:

h(t ) =
√√√√ 1

L1

∫ L1

0

4∑
j=1

[Xj (x, t ) − 〈Xj (t )〉]2dx (3)

in 1D continuous space or

h(t ) =
√√√√ 1

L1L2

∫ L2

0

∫ L1

0

4∑
j=1

(Xj (x, y, t )−〈Xj (t )〉)2dxdy (4)

in 2D continuous space, with L1,2 being the size of the domain
and X1,2,3,4 = {S, IA, IB, IAB}. 〈Xj (t )〉 is the average density of
each component over the whole domain. In our practice, we
compute the heterogeneity according to the discrete version

h(t ) =
√√√√ 1

N

N∑
i=1

4∑
j=1

[X i
j (t ) − 〈Xj (t )〉]2, (5)

where N is the number of local sites. By definition, a homo-
geneous solution (no pattern) means h → 0, and the hetero-
geneous cases (pattern emergence) have h > 0. Note that, in
the single SIS infection, a well-known fact is that no positive
eigenvalue is detected, and the homogeneous state with h(t →
∞) = 0 is the only stable solution.

III. PATTERN FORMATION

We start with 1D space and random initial conditions,
where we can see the spatiotemporal evolution of infection
patterns as illustrated in Fig. 2, which shows an example in
a supercritical region (R0 = 2), but without any cooperation
or competition (C =1) at the moment. Without proper data
in hand for an estimate, we assume DS = 10, which means
that the susceptible individuals move faster by an order of
magnitude than the infected.

As we can see, patterns emerge as the strongly and weakly
infected regions are gradually formed and segregated. A close
comparison shows that the four densities are well correlated,
where the density landscapes of A, B, and AB overlap, but
the density distribution of S is opposite, as expected. In
particular, the infection patterns of A and B are asymptotically
identical IA(x, t )= IB(x, t ) when t → ∞. By incorporating
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FIG. 2. Emergence of infection patterns in 1D space. Starting with a perturbed contagion-free state (random initial conditions), strongly
and weakly infected regions segregate from each other as time goes by [(a), (b), (d), and (e)]. Note that, due to the symmetrical parameters
for the two infections, the resulting patterns of IA and IB are also in symmetry as t → ∞, even though their initial conditions are not. (c) The
spatial heterogeneity h(t ) gradually increases and then tends to saturation thereafter. (f) Among all Fourier modes, there are some unstable
λk

max >0, which trigger the spatial instability, in line with the patterns shown here. Parameters: R0 = 2, C = 1, DS = 10, DI = 1.

this symmetry, Eq. (2) can be reduced into

∂t S(x, t ) = −2αS(I+IAB)+2βI+DS∂
2
x S,

∂t I (x, t ) = αS(I+IAB)−CαI (I+IAB)+β(IAB−I )+DI∂
2
x I,

∂t IAB(x, t ) = 2CαI (I+IAB)−2βIAB+DI∂
2
x IAB, (6)

where I (x, t )= IA(x, t )= IB(x, t ). For this reason, in the latter
part we will adopt the overall density of infection A (ρA =
IA+IAB) as our observable to illustrate the pattern, but we have
to bear in mind that the results apply exactly to infection B
since ρA =ρB (ρB = IB+IAB) after the transient. Note that, due
to the difference in diffusivities, the overall density of a given
location is in general not conserved anymore, i.e., S(x)+
IA(x)+IB(x)+IAB(x) �= 1. The pattern formation process is
captured in the increasing trend of spatial heterogeneity h(t ).

By analyzing the eigenvalues of the linearized system,
there is indeed a positive eigenvalue region for some Fourier
modes, which implies pattern formation and therefore sup-
ports our observations. From Fig. 2(f), the spatial scale can
be estimated through the relation

wavelength = 2π/k, (7)

where k is a wave number and the value is 25.7–31.4 units
when k2 is chosen between 0.04 and 0.06 around the peak.
This estimated length scale well matches the pattern scale
here (500 units/16 bars ≈ 31.3). The system exhibits a rich
spectrum of dynamical properties, which we will discuss in
details in the following part.

A. Impact of contagion interaction

The first concern is the role of contagion interaction—
characterized by the cooperativity coefficient C. We might
suppose that it is due to the contagion interaction that induces
pattern formation. Strong cooperation or competition may be
preferred. But this is not actually the case.

Figure 3 shows that too-competitive (small C) or too-
cooperative (large C) interaction hinders the emergence of a
pattern (e.g., C =0.2 and C =3). More evidence is illustrated
in the evolution of h(t ) for a couple of cases with different C
[Figs. 3(d) and 3(e)]. As we see, the increasing trend of h(t )
becomes slower or just ceases when the interaction C deviates
gradually from 1 at both sides. These suggest that the most
favored case for pattern emergence occurs at an intermediate
interaction (here, coincidentally, the neutral scenario). The
maximal eigenvalues λmax clearly show that only a bounded
range of C supports the emergence of patterns, and they peak
around C =1 [Fig. 3(f)]. While the positive sign of λmax

indicates the possibility of pattern formation, their absolute
value determines the speed of segregation process. So for
those with small positive eigenvalues, pattern formation takes
a long time, like the one in Fig. 3(b). Note that the specific
value of C for the most favored cases is not necessarily at 1;
generally, it depends on the reproduction number R0, a larger
R0 reduces the value, and vice versa. Further studies show that
when C deviates from the most favored case, the peaked mode
k becomes smaller; accordingly, the pattern scale increases
[according to Eq. (7)], as one can compare the number of bars
in Fig. 3(b) and in Fig. 2.

Generally, an outbreak is the precondition of pattern for-
mation; the presence of competition between two infections
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FIG. 3. The impact of contagion interactions. Upper row: The spatiotemporal evolution of overall density of infection A (ρA = IA+IAB) for
C = 0.2, 2.5, 3, which shows that strong competition, e.g., C =0.2 in (a) or strong cooperation like C =3 in (c) actually inhibits patterns. (b)
A case with a relatively strong interaction (C =2.5) that takes a long time to develop patterns. Lower row: h(t ) for a couple of interaction C
indicates that patterns are most likely to happen in the case of C �1 [(d) and (e)]; any deviation to a smaller or larger value will delay or just
fail to have the formation process. (f) Eigenvalue analysis shows that the pattern appears within 0.23<Cinstability <2.73, where λmax >0 and the
peak is around C =1, in line with the observations here. Parameters: R0 = 2, DS = 10, DI = 1. Random initial conditions are used in (a)–(e).

inhibits each other’s outbreaks and therefore also suppresses
patterns. Counterintuitively, the cooperative interaction is also
shown to impair pattern emergence, yet strong cooperation
is always believed to facilitate outbreaks. A more confusing
observation is that the intermediate interaction cases like the
neutral one are the most likely scenario for patterns. These
cases are usually believed to be weakly or noninteracting;
the dynamics of the two infections are almost decoupled just
as the single infection case, and no any pattern should be
expected. This argument is, however, not true because the two
contagion processes are not completely decoupled even when
C =1, as we will discuss later.

B. Impact of the baseline reproduction number R0

Now we turn to two traditional control parameters—the re-
production number R0, which measures the baseline contagion
capability of a given infection, and the mobilities.

Figures 4(a) and 4(b) show the impact of R0 on pattern
formation for a couple of diffusion coefficients DS and in-
teraction levels C. There is an upper threshold in R0 for
pattern transitions in all cases, above which the prevalence
ρA,B is homogeneous. This means that, similarly to contagion
interaction C, a bounded range is present for patterns. This
range expands as DS becomes larger, but the upper threshold
reduces as C increases.

Figure 4(c) summarizes these observations in a more com-
pact way. Notice that whenever the pattern becomes less likely
to emerge (approaching the boundaries), the pattern scale
increases. A close observation shows that for weakly cooper-

ative or competitive cases (C <2) where outbreak phase tran-
sitions are continuous in the MF treatment, patterns are not
allowed for R0 <1; this result is incorrect because the eigen-
values are computed based on the equilibrium of MF treat-
ment (see Appendix), which could be different when patterns
are present. Similar issue arises in strong cooperative cases
(C >2), where the lower boundaries can be much reduced
compared to the MF ones, which will be discussed in Sec IV.

C. Impact of mobilities

While Figs. 4(a) and 4(c) indicate that a higher mobility
of the susceptible individuals facilitates pattern formation,
Fig. 5(a) further provides the phase diagram by fixing the
mobility of the infected (DI =1). It shows that patterns tend
to disappear when C deviates from the intermediate values
or DS becomes smaller. The former observation is consistent
with the above results whereby the most favored cases for pat-
terns occur at intermediate interactions. The latter observation
suggests that a higher mobility of the susceptible is beneficial
to the pattern emergence. In principle, a large-enough DS can
always produce patterns no matter how strong the interaction
between the two infections (either large or small C).

Figure 5(b) shows the impact of the infected mobilities,
where we can see that increasing DI shrinks the pattern re-
gions. This means for those cases where the infected individ-
uals still move a lot, a pattern is less likely to appear. Actually,
what really matters here is the ratio of the two diffusion coef-
ficients; these boundaries are all well collapsed by rescaling
the x axis as DS/DI if C is not too large (see Supplementary
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FIG. 4. The impact of baseline reproduction number. (a) λmax

versus R0 for different DS by fixing C =1. (b) λmax versus R0 for
different C by fixing DS =10. (c) Boundaries for a couple of DS

in R0-C parameter space, where the left side allows for pattern
(λmax >0) and the right side corresponds to no pattern (λmax =0).
Similarly to the impact of the interaction strength C, there is also
an upper threshold of R0 for the pattern emergence, above which
patterns disappear. Parameter: DI =1.

Figure S1) [59]. This is because their absolute values simply
set scale, and it is the ratio of DS/DI that shifts the peaked
wave-vector mode k, namely the pattern scales. Notice that
for the limiting case of DI = 0, where the infections become
completely localized, the spreading is blocked and there is no
nontrivial patterns expected. All together, pattern formation
favors the condition when the susceptible people diffuse a lot
and at the same time the infected move relatively less (i.e.,
large ratio DS/DI ), which prevents a too-large pattern scale
from exceeding the domain size.
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FIG. 5. The impact of mobilities. (a) λmax shown in DS-C space,
where the boundary line separates the regions with (λmax > 0) and
without (λmax = 0) pattern formation. DI = 1 fixed. (b) Boundaries
for a couple of DI ; the left sides are regions allowing patterns.
Parameter: R0 = 2.

IV. PATTERN HYSTERESIS

A main concern for the contagion phenomena is preva-
lence. Here we address the following question: Compared to
the case without space [described by Eq. (1)], what is the
impact of the embedded space on the overall prevalence of
outbreaks?

To achieve this aim, we first focus on the cooperative
cases and slowly increase the reproduction number R0 of the
noisy system from zero, to trigger an outbreak, to a large
value; then we decrease R0 (e.g., by vaccination programs)
for contagion eradication, and we examine the prevalence
in the whole process. In numerical simulations, we start
from the equilibrium state under the initial R0, the increasing
(decreasing) rate of R0 is set 10−7 per time unit, and random
perturbations within (0, ε) are constantly imposed to trigger
patterns or outbreaks in the density of IAB(x, t ) for each
site per time unit; accordingly, S(x, t ) minus the same ε for
the density conservation. Here ε is also taken as 10−6. An
interesting dynamical property we identified is the hysteresis
phenomena, as shown in Fig. 6. In the direction of increasing
R0 [Figs. 6(a) and 6(b)], outbreak transition remains the same
for both cases (with and without space), where the outbreak
thresholds are identical at R0 ≈1 and the two outbreaks share
the same prevalence. Immediately after the outbreak, pattern
is formed. Further increase in R0 interestingly does not destroy
the patterned infection as the theoretic prediction that when
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patterns. The parameter R0 is changed slowly enough (subplots at the top) to have stable patterns. Pattern hysteresis is defined by two sets of
pattern regions [1–1.5 in (a) and (b) and 1.08–0.25 in (c) and (d)]. The lower panels show that the presence of patterns leads to a much more
difficult eradication because Re,p

0 <Re
0, close to zero, which is bad for containment. Parameter: C =10 with tiny conservative noise kept in the

system (see the text).

R0 >1.08 for C =10 [see Fig. 4(b)] patterns should become
unstable. Instead, the pattern disappears until R0 >1.5, as
shown by h(t ). The presence of pattern does not alter the
overall outbreak size in this direction.

In the opposite direction [Figs. 6(c) and 6(d)], the pattern
is not permitted at the beginning with R0 =2. By decreasing
the reproduction number, pattern emerges until R0 ≈1.08, pre-
dicted by the eigenvalue analysis. An amazing phenomenon
happens when we further decrease R0 so the eradication of
the two infections now occurs not at Re

0 but at a much smaller
threshold, Re,p

0 (“p” indicates the presence of patterns). This
means that a persistent prevalence is present compared to the
MF case (without space) in this less-infectious region. An
intuitive explanation can be found in Fig. 6(d), where the
coinfected individuals are now clustered in a few spatial spots
in quite high densities; the two infections support each other,
making their survival at a rather small R0. Here the number
of segregated bars decreases in both cases as time goes by
[Fig. 6(b) and 6(d)], indicating that the pattern scale increases
as the patterns become less likely, in line with the above
observations.

Taken together, by varying R0 in two directions, the pattern
regions are quite different, only sharing a small overlap. This
process is reminiscent of hysteresis in statistical physics,
and hence we term the phenomenon pattern hysteresis. In

the standard hysteresis, like first-order phase transitions, the
critical behavior is depicted by a different transition point
along each direction, and the hysteresis is defined typically
by two different thresholds. In pattern hysteresis, however,
the critical behavior along each direction is defined by a set
of two thresholds for a pattern region, and the hysteresis
is defined by two different sets of thresholds. As shown,
pattern hysteresis results in persistent prevalence, and, to
eradicate infections, an unusually high amount of effort is
required.

Unexpectedly, even for neutral (C =1) and competitive
(C <1) contagions, hysteresis is still present. For example,
we compute the cases with C =1 and 0.5 by decreasing R0

and find that the eradication threshold Re,p
0 is around 0.7

and 0.9, respectively (see Supplementary Figure S2) [59],
smaller than the cases without space, where Re

0 =1 for the
eradication. Strikingly, the higher prevalence than MF value
in these noncooperative cases are observed for all patterned
regions, not only the patterned range within R0 <1 as shown
in Fig. 6(c). Due to the hysteresis-induced deviation from
the MF prevalence, the computation of eigenvalues is not
exact when only using the MF prevalence without considering
moving direction. True pattern regions with hysteresis are
wider than the ones computed based on the fixed points in
the MF treatment, as shown in Fig. 4.
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FIG. 7. Dynamical mechanism. (a) Density profiles arranged within the high (H) and low (L) infected density regions in the 1D domain.
The dotted-dashed line is the MF value (i.e., without space) of S for reference. (b) The effect of reactions in the dynamics of S [i.e., fS in
Eq. (2)]. The positive reaction contribution (source) is to increase the density of S, whereas the negative one (sink) is to increase the infected
at the expense of S instead. (c) The scheme of dynamical flows between two neighboring regions: The net reaction within the H regions is
from the susceptible S of a low density to the infected ρA,B of a high density to be even higher and is reversed in the L regions—an aggregation
process (the thick vertical arrows). Diffusion is always from high-density regions to low-density regions (the curved arrows). In such a way, a
dynamical loop is formed, maintaining stable patterns. Same settings as in Fig. 2, and profiles in (a) are plotted after 1000 time units.

V. DYNAMICAL MECHANISM

Until now, we see the emergence of patterns and provide
a theoretic analysis by computing the eigenvalues of the lin-
earized system. But still there is a lack of mechanism analysis,
from which we may build a theory.

To this aim, we first plot all four density distributions of the
stationary pattern, see Fig. 7(a), from which we see that these
densities are segregated within high (H) and low (L) density
regions, and the distribution tendency for S and for those
infected are just reversed. To understand how these density
profiles come to be possible, we look into the contributions
from the two different dynamical parts—the reaction and
diffusion. We find an aggregation process behind [Fig. 7(b)]:
In L regions, where the density of S is higher than the
neighboring regions, the reaction ρA,B → S instead further
increases its density to be even higher; a similar process
happens in H regions, where the high density of infected
gets higher by the underlining reaction process S → ρA,B . The
diffusion processes, however, always dilute any high density
in its neighborhood to counterbalance the density aggregation.
Therefore, the two contributions are just opposite.

Bearing this in mind, Fig. 8 shows how instabilities trigger
occurrence of patterns, which can be summarized as follows:

(1) Starting from an equilibrium state, set the densities of
both infections a bit higher in the center to seed the instability,

and the density of S is accordingly lower than the equilibrium
for conservation [Fig. 8(a)].

(2) Immediately after this perturbation, the densities of
infected decrease for their deviation from the equilibrium,
and therefore the reactions of IAB → IA,B →S dominate. As
DS >DI , a substantial amount of S quickly replenishes in the
lateral regions (region I), and soon the density of S becomes
relatively higher [Fig. 8(b)].

(3) Then the aggregation process starts, where S steadily
increases in region I via ρA,B → S; the reverse happens in
the center where ρA,B increases. The increase of S in lateral
regions combined with its diffusion causes further increase of
all densities in the wider outside regions and because DS >DI ,
IA,B,AB >S at some points [region II in Fig. 8(c)].

(4) This then triggers another aggregation process in re-
gion II for IA,B,AB to build up [Fig. 8(d)]. In such a way,
the patterning process sweeps the whole domain and these
periodic profiles steadily grow until the stationary state is
reached, as shown in Fig. 7(a).

Based on these observations, the occurrence of patterns
can be decomposed into two essential processes: (i) the trig-
gered alternating profiles, where S and IA,B,AB start to take
the lead in turns such as in Fig. 8(b) and 8(c), and (ii) the
aggregation process. While the former is naturally driven by
the diffusion difference, the latter is critical for further growth
and is summarized in Fig. 7(c). There the reactions happen

x
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ty

x x x

I

I

S

(a) (b) (c) (d)
III I II II II

FIG. 8. Onset of pattern formation. Panels (a)–(d) show the occurrence of pattern formation triggered by a perturbation. The initial
conditions of the evolution are from equilibrium state (S∗ = I∗

A = I∗
B = I∗

AB =1/4, for the chosen parameters) except for the center site at the
1D domain with a length of 60 units shown here. Parameters: R0 = 2, C = 1, DS = 10, DI = 1.
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within each local site for aggregation, and diffusion occurs
between neighboring sites for dilution. Once an alternating
profile is triggered between neighboring sites, the reaction
dominates over the diffusion at the beginning for the growth
of the profiles. As diffusion becomes stronger later, the two
eventually are balanced in the form of a sustainable dynamical
loop, and a stationary pattern is then reached.

Note that such a dynamical loop is impossible for single
infections, and therefore patterns cannot be expected. In sim-
ulations of such a case in a similar setting, we can also see
a profile like Fig. 8(b) because process (i) is still present, but
further growth is absent because there is no similar process
with the aggregation mechanism in its dynamics. The system
becomes homogeneous eventually.

The impact of physical parameters on pattern formation
can be understood by discussing their influence on the stability
of this dynamical loop as follows:

(a) C → 0 or C → ∞ breaks the loop’s sustainability.
C → 0 means the termination of the secondary infection
process, and this breaks down the reaction into two single-
infection processes, S → IA,B. Since the aggregation dynam-
ics is absent for a single infection, no pattern is expected.
C → ∞, on the contrary, leads to an overwhelming fraction
in ρA,B , while others, especially the density of S, become quite
low in H regions. As such, the inadequate supply of S for the
reaction to produce ρA,B makes the loop collapse, and patterns
thus also fail to exist. This explains why too-competitive or
-cooperative interactions fail to generate patterns and an inter-
mediate C provides the most favored condition for patterns.

(b) For a large C, however, there are two strategies one
can think of to keep the loop working: either a large DS that
provides a quick supply of S from the neighborhood or a small
DI where the loss of ρA,B by dilution is so slow that the reaction
S → ρA,B is almost turned off and even a very low density of S
is enough to keep the loop working. This explains why pattern
emergence favors large DS and small DI and why the ratio
DS/DI is essential.

(c) The impact of R0 is similar to C and affects both
initial and secondary infection processes. R0 → 0 terminates
the whole reaction, R0 → ∞ by contrast, and results in an
imbalance between S and ρA,B ; therefore a bounded pattern
range of R0 is explained. Also as expected, when a larger R0 is
used, the value of C for the most favored conditions decreases
for moderate densities of ρA,B , and vice versa.

(d) As the dynamical loop is endangered by tuning param-
eters, this always means an inadequate supply of either S or
ρA,B . As a consequence, the width of the L/H regions tends to
increase for accumulating the minority species to sustain the
loop. This is why the less likely cases for pattern are always
accompanied by increased length scales. And once the pattern
scale exceeds the domain size, patterns disappear.

At first glance, this mechanism is seemingly different from
the Turing mechanism [60], where activator and inhibitor
species are well defined and fixed [44]. Interestingly, in our
system either the susceptible or the infected plays both roles;
for example, in the H regions, the infected are activators to
themselves but are inhibitors to S, while in the L regions, S
plays the role of activator to its own but of inhibitor to the
infected instead. So the activator and inhibitor are not fixed
but spatially alternating, region L/H dependent. Even so, we

FIG. 9. Typical patterns in the 2D domain. (a) Spot pattern (R0 =
1.5) and (b) strip pattern (R0 = 2.2). Random initial conditions and
500 time units transient are used. Dark blue indicates weakly infected
regions. Parameters: C =1, DS =10.

argue that the patterns here still belong to Turing mechanism,
because they are consistent with the general criterion “local
activation with lateral inhibition” [61,62]. Wherever a dynam-
ical loop emerges, the aggregation process increases the local
activator and then is followed by the inhibition by others in its
lateral regions. The striking similarity to Turing patterns can
be seen in the 2D domain (Fig. 9).

VI. DISCUSSION AND CONCLUSION

In the real world, hundreds or even thousands of different
infectious strains simultaneously circulate around and they
potentially interact with each other. In this study, we in-
vestigate the generic contagion scenario of two interacting
infections in the spatial context. Compared with the trivial
dynamics of single SIS-type infections, the presence of more
than one infection reveals new complexities in the form of
infection patterns. Their emergence does not require any
peculiar infection-infection interaction; instead, the pattern
formation favors a mild condition where too-strong coopera-
tion or competition is absent. Dynamical mechanism analysis
reveals an aggregation phenomenon along with a dynamical
loop. This mechanism is rooted in the intrinsic dynamics
when two infections are engaged, and too-strong baseline
infection or infection-infection interaction destroys this loop.
Among other observations, one finding of particular interest
is the pattern hysteresis, i.e., the pattern formation is not
only determined by the system parameters but also depends
on its evolution history. Since our model is simple enough,
only involving two classic SIS infections, we expect some
empirical evidence to be found in the future.

The consequence of pattern formation is straightforward
whereby the infection is now spatially segregated; some loca-
tions are of high prevalence while their neighborhoods could
be much less infected or contagion free, even though the
whole system is in the outbreak phase. When the patterns
emerge, the clustering of the infected individuals leads to
persistent survival of the infections in the form of pattern
hysteresis. As a consequence, much more effort, if it is not
impossible, is required to eradicate infectious diseases com-
pared to the scenario without space (e.g., within a single city)
or the single-infection case.

Here we choose infectious diseases as the context, where
our findings are bad news for health departments and the
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public, because minimizing or eradicating infections is the
primary task, and this becomes more difficult for interacting
contagions. In some other contexts, however, such as social
contagions, a higher prevalence is usually desired. For exam-
ple, companies want to sell more products or technologies
to their customers, politicians try to convince more people
of their political opinions, and bloggers want to make their
messages have a wider readership and more retweets. In those
cases, the implications of our study, which supports higher
and persistent prevalence, are good news.

Our results together with previous related works [35–40]
show that the contagion dynamics of two infections is funda-
mentally different from the classic scenario based on a single
infection. These observations of “more is different” [63] sug-
gest that realistic contagions could be far more complex than
the picture captured by most of previous modeling efforts. Be-
sides, our work highlights that the spatial dimension is capable
of harboring unexpected amount of complexities in the conta-
gion processes, which has largely been underestimated in past
research. In this sense, our work could act as a helpful starting
point for a more systematic investigation, while many open
questions remain, such as the contagion dynamics of more
general cases with arbitrary number of infections and how
to relate the plain-spaced pattern dynamics to a networked
modern world, where heterogeneous transportation systems
are often present [46]. Other important issues include devising
effective strategies for containment [64] and maximization
strategies in some other contexts.
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APPENDIX: LINEARIZATION
STABILITY ANALYSIS

To theoretically analyze the pattern emergence of Eq. (2),
here we follow the standard procedure of linearization stabil-
ity analysis [44]. Let there be a steady, spatially homogeneous
state (S∗, I∗

A, I∗
B, I∗

AB), which could be an outbreak solution
or a contagion-free fixed point of Eq. (1), depending on the
parameters. The emergence of patterns can be studied by
posing perturbations into the system and monitoring their evo-
lution, i.e., (δS, δIA, δIB, δIAB) = (S−S∗, IA−I∗

A, IB−I∗
B, IAB−

I∗
AB). The evolution of the linearized system can be formulated

by

∂

∂t

⎛
⎜⎜⎜⎝

δS

δIA

δIB

δIAB

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ fs

∂S
+ DS

∂2

∂x2

∂ fs

∂IA

∂ fs
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∂ fs

∂IAB

∂ fA

∂S

∂ fA

∂IA
+ DI

∂2

∂x2

∂ fA

∂IB

∂ fA

∂IAB

∂ fB

∂S

∂ fB

∂IA

∂ fB

∂IB
+ DI

∂2

∂x2

∂ fB

∂IAB

∂ fAB

∂S

∂ fAB

∂IA

∂ fAB

∂IB

∂ fAB

∂IAB
+ DI

∂2

∂x2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δS

δIA

δIB

δIAB

⎞
⎟⎟⎟⎠. (A1)

Next, we make Fourier transformation,

δSk =
∫

δS(x, t )e−ik·xdx, (A2)

δIk
A =

∫
δIA(x, t )e−ik·xdx, (A3)

δIk
B =

∫
δIB(x, t )e−ik·xdx, (A4)

δIk
AB =

∫
δIAB(x, t )e−ik·xdx, (A5)

where k is the wave vector. With this operation we reduce the PDEs into ODEs. Inserting the above forms into Eq. (A1), for a
given Fourier mode k = |k|, we then have

d

dt

⎛
⎜⎜⎜⎝

δSk

δIk
A

δIk
B

δIk
AB

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ fs

∂S
− k2DS

∂ fs

∂IA

∂ fs

∂IB

∂ fs

∂IAB

∂ fA

∂S

∂ fA

∂IA
− k2DI

∂ fA

∂IB

∂ fA

∂IAB

∂ fB

∂S

∂ fB

∂IA

∂ fB

∂IB
− k2DI

∂ fB

∂IAB

∂ fAB

∂S

∂ fAB

∂IA

∂ fAB

∂IB

∂ fAB

∂IAB
− k2DI

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δSk

δIk
A

δIk
B

δIk
AB

⎞
⎟⎟⎟⎠. (A6)
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The instability of small perturbations in wave-vector mode
k is then determined by the maximal value of the result-
ing eigenvalues λk

1,2,3,4. A nontrivial pattern appears if any
mode of the perturbations is linearly unstable, i.e., λmax =
maxk (λk

max) = max(λk
1,2,3,4) > 0. The above analysis can be

conveniently extended into a higher spatial dimension without
changing the statement at all.

When we want to study the impact of any parameter on the
pattern dynamics, we compute the λmax as a function of those
parameters which are supposed to be already incorporated
in (A6). Figure 3(f) shows such an example to examine the
role of contagion interaction C in pattern formation. Similar
computations are conducted for Figs. 4(a) and 4(b). A bit more
complicated case is Fig. 5(a), where the eigenvalue λmax is
now a function of both C and DS , and the value of λmax is

color coded. Since the system is conserved when the mode
k → 0 as described by Eq. (1), we can easily prove that
λmax =0 rather than negative values for those cases without
pattern. To divide the region in Fig. 5(a), it is therefore proper
to set a threshold with a small value, say, 10−5, to separate
the pattern formation region (λmax >10−5) from the region
without pattern (λmax <10−5). The location of the boundary
could shift slightly when using a different threshold, and this
shift is undetectable as long as the threshold value is small
enough. In Fig. 5(b), we only plot the boundary lines for
different mobilities of infected DI , and with these curves, we
can study the impact of DI on the region available for pattern.
Figure 4(c) is obtained in a similar way as in Fig. 5(b): by plot-
ting the boundaries in the R0-C parameter space for a couple
of DS .
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