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Abstract

Calcium imaging has been widely used for measuring spiking activities of neurons. When

using calcium imaging, we need to extract summarized information from the raw movie

beforehand. Recent studies have used matrix deconvolution for this preprocessing. How-

ever, such an approach can neither directly estimate the generative mechanism of spike

trains nor use stimulus information that has a strong influence on neural activities. Here, we

propose a new deconvolution method for calcium imaging using marked point processes.

We consider that the observed movie is generated from a probabilistic model with marked

point processes as hidden variables, and we calculate the posterior of these variables using

a variational inference approach. Our method can simultaneously estimate various kinds of

information, such as cell shape, spike occurrence time, and tuning curve. We apply our

method to simulated and experimental data to verify its performance.

Author summary

Calcium imaging is a promising technique that enables the observation of the activities of

large neural populations as a movie. Since the measured movie is a large-scale dataset con-

taining a considerable amount of information, we need to apply a preprocessing proce-

dure to extract crucial information from the raw movie for the analysis that follows.

Recent studies have adopted matrix decomposition to decompose the observed movie

into the product of two matrices: one consisting of cell shapes and the other consisting of

calcium florescent time series. This approach can estimate cell locations and activities

simultaneously; however, it cannot express some aspects of neural population codes. For

instance, this approach cannot incorporate other covariates that may affect the neural

population activities. In this paper, we propose a new statistical model for calcium imag-

ing movies and an estimation procedure for this model. To express the random occur-

rence of spikes occurring in the movie, our model adopts a marked point process, which

is used to express sequences of events to which certain characteristic values are attached.

Our model can estimate cell shapes, spikes, and tuning curves of cells directly without any

additional preprocessing procedure, and it also improves the estimation accuracy com-

pared to the conventional approach.
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This is a PLOS Computational Biology Methods paper.

Introduction

In recent years, many researchers have used calcium imaging to measure spiking activities in

large neuron populations. Calcium imaging is an imaging technique that observes calcium ion

concentrations inside neurons as a movie. This technique enables researchers to obtain various

types of information about the neurons that cannot be obtained by the potential measurement

approach.

Although calcium imaging offers a considerable amount of information, it is difficult to

deal with the observed movie directly. Therefore, when using calcium imaging to investigate

the structure of the brain system, we need to extract crucial information from the raw movie

beforehand. In calcium imaging, for example, the cell shapes, positions, and spiking times of

neurons are extracted from the raw movie.

Two statistical problems arise with this preprocessing. The first problem involves detecting

the shape of each neuron. When a neuron spikes, the fluorescent value at the pixel contained

within this neuron rises sharply. Therefore, to ascertain the firing activity of each neuron, it is

necessary to know which pixels belong to a particular neuron. Some previous studies have cal-

culated the summarized image averaged in the time direction and applied an image segmenta-

tion method to clarify the locations of the neurons [1, 2]. However, each pixel in the movie

may be contained in two or more neurons, and the observed calcium ion concentrations at

such pixels become the sum of the calcium concentrations for the two neurons. Fig 1A illus-

trates such overlaps in the spatial domain. If neurons overlap each other, we need to decon-

volve such overlaps to extract the calcium fluorescent dynamics of each neuron.

The second problem involves detecting the spike occurrence time. Calcium concentration

is observed as a continuous time series that sharply increases when the neuron fires and subse-

quently slowly decays exponentially with a small time constant. If multiple spikes occur within

a short time, slow decay of calcium fluorescence may cause these firings to overlap in the tem-

poral domain in the movie. Fig 1B illustrates the overlap in the temporal domain. Therefore, to

extract a spike train from the movie, we must also deconvolve calcium traces in the temporal

domain. Previous studies provide several types of solutions for such deconvolution problems

Fig 1. Characteristic features of a calcium imaging movie. (A) Cell overlap in the spatial domain. Calcium fluorescence observed at pixels W and X

contained in the same neuron shows similar behavior, which differs from the calcium fluorescence observed at pixel Y contained in another neuron.

The calcium fluorescence observed at pixel Z is the sum of these series when pixel Z is contained by both neurons. (B) Calcium fluorescence overlap in

the temporal domain. Calcium fluorescence observed at each pixel is the convolution of calcium ion dynamics into a spike train. If two spikes occur in a

short time relative to the time constant of these dynamics, increases in calcium ion concentration due to these spikes will overlap each other.

https://doi.org/10.1371/journal.pcbi.1007650.g001
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[3, 4, 5, 6]. Deconvolution methods for a one-dimensional calcium transient require prior

assignment of pixels to neurons to calculate the one-dimensional mean fluorescent transient

of each neuron. For a review for these methods, see [7].

To solve these two problems simultaneously, recent studies have proposed a matrix decon-

volution approach [8, 9, 10]. In this approach, the observed movie is converted into a matrix

form, and this matrix is approximated by the product of two different matrices: one contains

the cell shapes in its columns and the other contains the calcium fluorescent series in its rows.

Initially, [8] proposed a deconvolution method using independent component analysis and

succeeded in deconvolving a calcium imaging movie in both the temporal domain and the spa-

tial domain simultaneously. However, because independent components analysis is a linear

decomposition, it cannot deal with the nonlinearity of a calcium imaging movie. To address

such nonlinearity, [9] introduced nonnegative matrix factorization to this deconvolution.

Nonnegative matrix factorization can perform nonlinear decomposition, thereby allowing the

effective separation of neuron overlapping. Recently, [10] used constrained nonnegative

matrix factorization to incorporate the nature of calcium ion dynamics.

The matrix deconvolution approach deconvolves the calcium imaging movie simulta-

neously in both the temporal and spatial domains, and it can dramatically improve the decon-

volution accuracy. However, such an approach still suffers from several problems. First, it

cannot detect spike trains as 0–1 sequences. Using matrix deconvolution, we solve the optimi-

zation problem to obtain two matrices whose product approximates the movie matrix well. In

the optimization step, we relax the 0–1 condition imposed on the time series expressing spik-

ing activities. Consequently, to estimate spike occurrence time from the deconvolution results,

we must perform an additional threshold procedure, which may cause either overestimation

or underestimation of the number of spikes. Second, even if there are covariates that may

influence spiking activities, we cannot incorporate this information in the deconvolution pro-

cedure. This affects the estimation of the tuning curve, which is the function of the firing rate

with respect to an external stimulus.

Separating spike assignment and subsequent estimation as distinct steps may cause errors

and loss of information. This problem has also been reported in neural decoding research.

When applying neural decoding, we need to create spike trains from the measured potential

beforehand by using a preprocessing procedure called spike sorting. Spike sorting assigns

spikes to neurons by applying clustering methods to the waveform information of spikes. This

preprocessing generally does not use stimulus information in this spike assignment, and it

causes bias and a loss of information for tuning curve estimation [11]. To avoid such informa-

tion loss, clusterless decoding methods using marked point processes are proposed [12, 13,

14]. In this approach, spike sequences and the attached waveform information are expressed

as marked sequences, and the distribution of the marked sequences is directly estimated. Clus-

terless decoding enables us to avoid performing spike sorting and improves the decoding

accuracy.

Such a problem due to two-step analysis also occurs in calcium demixing. Even if the aim is

to investigate the relation between spike occurrence and other simultaneously measured

covariates, the existing approaches ignore this covariate information, which may be most effec-

tive for extracting spiking activities from the raw movie. Consider two overlapping neurons

that are tuned to an external stimulus, and their receptive fields are isolated. Then, spikes emit-

ted from these two neurons can be easily assigned to true components by observing the stimu-

lus value at each spike occurrence time. However, the existing approaches do not use this

relation, resulting in the misassignment of the spikes. Moreover, existing approaches assume

that the spikes occur at a constant firing rate along the time axis even though the analysis that

follows is based on the existence of the tuning curves. Such model misspecification leads to
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bias in detecting the spikes and cell shapes in the demixing phase, and this bias also affects the

subsequent analysis. Therefore, the simultaneous extraction of the spikes and estimation of the

tuning curves has various advantages in calcium imaging analysis as well.

In this paper, we propose a new deconvolution method using a probabilistic generative

model. We consider that the calcium imaging movie is generated from a stochastic process

that has marked point processes as hidden variables and obtains various types of information

as a posterior of the hidden variables using variational Bayesian inference. The marked point

process is a stochastic process used to express a random series of events with characteristic val-

ues called marks. We express the injected calcium added to the pixels in the imaging movie

when a spike occurs as vectors, and call these vectors as marks. Our model expresses the distri-

bution of the sequences of the marks as the marked point process. Reflecting the dependent

structure between the spiking activities and the stimulus change in the definition of the

marked point processes, we simultaneously perform calcium demixing and tuning curve esti-

mation. This generative modeling avoids a two-step analysis and reduces the error and loss of

information that occurred in previous approaches.

The remainder of this paper is organized as follows: In Results, we first apply our method to

the simulated data and verify its performance. We also apply our method to a measured cal-

cium imaging movie to extract the place cell spiking activities. In Discussion, we discuss our

method. We provide the details of our generative model and the estimation procedure in

Methods and S1 Appendix.

Results

Simulation study

In this section, we apply our method and the existing approach to artificially generated data

and compare their performance. The details of the mathematical terms that appear in this sec-

tion are explained in Methods.

First, we generated the data using a model. Consider that the activities of nine neurons are

observed simultaneously by calcium imaging and that each neuron emits spikes corresponding

to external stimulus xt 2 R. Let κ be a vectorization of the fluorescence image, and assume

that the marked spike sequence of the k-th neuron is generated from the marked inhomoge-

neous Poisson process modulated by xt whose intensity is

lkNðk j mkk ;L
k

kÞNðx j m
x
k; t

x
kÞ:

Here, N(�j�) is a Gaussian kernel, λk is a mean rate, mkk is the mean vector of the density that

explains the fluorescent image fluctuation of this neuron, mxk is a stimulus value to which this

neuron reacts most extremely, and L
k

k ; t
x
k are the scale parameters for κ and x, respectively.

Then, we assumed that the spike train of each neuron is generated independently, given xt.
This means that the overall intensity function is expressed as

X9

k¼1

lkNðk j m
k

k ;L
k

kÞNðx j m
x
k; t

x
kÞ:

Under such an assumption, we generated a marked spike sequence from this marked point

process. Given this sequence, we generated a movie that lasted for 150 s including jumps from

the state space model, which is defined as (1) and (2). We omit the details of the other hyper-

parameters’ settings in this paper. A correlation image calculated from the generated movie

and the external stimulus used for the data generation are shown in Fig 2. Each pixel of the

correlation image contains correlation coefficients with neighboring pixels. It indicates which
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parts of the movie change simultaneously so that we can roughly estimate the spatial locations

of the neurons from it.

Next, we applied our method to the generated movie. For kernel function fx(x j θx) that

expresses the tuning curve of each cell, we selected the univariate Gaussian kernel

f xðx j mx; txÞ ¼ Nðx j mx; txÞ

and set the dimension of hidden state dκ as 40 and the number of mixtures K as 20. In the esti-

mation step, we initialized the distribution of the hidden variables and the hyperparameters, as

described in S1 Appendix. Then, we updated these distributions and hyperparameters for 10

iterations and obtained the variational posterior q̂. Using the calculated variational posterior,

we found the variational expectation of the hidden variables to obtain the deconvolution

results.

To compare the performance of our method with the existing approach, we also applied

constrained nonnegative matrix factorization proposed by [10]. Hereafter, we denote this

method as CNMF. Since CNMF estimates the spike sequence as the real value sequence and

not as the 0–1 sequence, we decided a threshold value for each neuron and detected the spike

occurrence time from these estimated spike sequences using this threshold. Specifically, we

calculated distances dr, r = 1, . . ., R from the estimated spike sequences sr 2 R; r ¼ 1; . . . ;R as

dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsr � ~mÞ
2

~s2

s

;

where ~m is a sample mean and ~s is a sample variance calculated from sr. Using these distances,

we considered that spike occurred at r if d2
r is larger than the upper 0.1% point of the chi-

squared distribution with one degree of freedom. Then, we assumed that the detected spike

train of the k-th component is generated from the unmarked inhomogeneous Poisson process

modulated by xt. Under such a Poisson assumption, the intensity function can be expressed as

a function of xt; this function is called the tuning curve in neuroscience. We assumed that the

tuning curve of the k-th component is expressed as

lðx j mxk; t
x
kÞ ¼ lkNðx j mxk; t

x
kÞ

Fig 2. (A) Correlation image calculated from the simulated movie. (B) External stimulus used for data generation.

https://doi.org/10.1371/journal.pcbi.1007650.g002
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and estimated the parameters ðlk; m
x
k; t

x
kÞ; k ¼ 1; . . . ;K using the maximum likelihood estima-

tion. For details of the tuning curve estimation, see [15], for example.

The estimation results of our method and CNMF are shown in Figs 3 and 4. Our method

detected 9 neurons while CNMF detected 12 neurons, and this result shows that our method

was able to estimate the true number of neurons, whereas CNMF overestimated this number.

Although CNMF contains heuristic procedures such as merging and discarding components,

to detect the number of neurons, it cannot adjust the model complexity along the minimiza-

tion of their loss function. By contrast, our method uses the weighted gamma process as a

prior and can perform model selection automatically in the estimation step.

Fig 3. (A)–(F) Estimation results obtained by two methods in the simulation study. The first column indicates the ground truths, the second column

shows components obtained by our method, and the third column shows components obtained by CNMF. Each component consists of three figures.

(Left) Estimated cell shape. (Middle) Estimated spike train. The vertical lines indicate when spikes occurred; the upper lines indicate true spikes, and the

bottom lines indicate estimated spikes. The black line plot shows the external stimulus. The green band shows the receptive field decided by the true μx

and τx, and the blue band shows the receptive field decided by the estimated values. (Right) Tuning curve. The solid line shows the estimated tuning

curve, and the dashed line shows the true tuning curve with the mean value closest to the estimated mean value mxk.

https://doi.org/10.1371/journal.pcbi.1007650.g003
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Figs 3 and 4 also show that our method estimated the cell shape and the tuning curve of

each neuron accurately. Conversely, CNMF underestimated the tuning curve for some neu-

rons. Adjusting threshold values may reduce such estimation errors; however, it is difficult to

determine these values properly beforehand. Specifically, components 4A, 4B, and 4C in Fig 4

are separated into two different components in CNMF. If CNMF can incorporate the covariate

information into calcium demixing, then it would integrate these components into one com-

ponent by observing similar tuning profiles. This result shows the advantage of using the tun-

ing curve at demixing phase.

To compare the performance quantitatively in terms of spike detection and regions of inter-

est (ROI) detection, we calculated the F-measure to evaluate the performance of binary

Fig 4. (A)–(C) Estimation results obtained by two methods in the simulation study.

https://doi.org/10.1371/journal.pcbi.1007650.g004
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classification. It is defined as the harmonic mean of precision and recall:

Fb ¼
ð1þ b

2
Þ precision � recall

b
2 precisionþ recall

:

The mean values of the F-measures in terms of spike detection were 0.998 (our model) and

0.808 (CNMF) with β2 = 0.3. On the other hand, the mean values of the F-measures in terms of

ROI detection were 0.985 (our model) and 0.503 (CNMF) with the same β2 value. These values

show that our model can detect both spike times and cell shapes better than CNMF.

We also compared the two methods in terms of tuning curve estimation. In this compari-

son, we ignored the marks and assumed that the spike train was generated from one neural

population modulated by xt. Here, the tuning curve of this neuron population corresponds to

the summation of all estimated tuning curves. Under this assumption, we calculated the likeli-

hood, given the ground truth spikes. Then, the log likelihood of our model and CNMF was

92.88 and 85.16, respectively, indicating that our model provided better tuning curve estimates

than CNMF.

Application to the experimental dataset

In this section, we apply our method to the dataset published by [16, 17, 18]. The authors

investigated place cell dynamics of hippocampus CA1 between wild-type and Df(16)A+/−

mice, an animal model of the 22q11.2 deletion syndrome, by using two-photon Ca2+ imaging

with GCaMP6f. In their experiment, mice on a treadmill were imposed to a head-fixed goal

oriented task. The treadmill was composed of a 2 m-long belt consisting of three different fab-

rics and six different tactile cues. The mice searched for hidden rewards on the treadmill using

these cues as clues. After the recording, the authors obtained the ROI from the observed movie

by drawing GCaMP6f-labeled somata manually. The number of detected cells per wild-type

mouse was 463 ± 37 (mean ± std, n = 6).

One imaged session of a wild-type mouse is used in our paper. Its frame rate was 7.5 Hz.

The length of the movie was 2250 frames, the size of the one frame was 498 × 490 pixels, and

there were 1.7007 pixels per micron. For the experimental details, see [17].

The size of the movie in this dataset was approximately 500 × 500, and it was too large for

our method. Therefore, we divided the raw movie into 25 patches, each sized approximately

100 × 100 (dy = 10000), and applied our method to each patch independently. In this section,

we show the result for one of these patches. A correlation image calculated from this patch and

the mouse’s position on the treadmill during the task are shown in Fig 5.

A place cell has a place field, and it fires when the animal passes through its place field [19].

Hence, we assumed that the position of the mouse on the treadmill is external stimulus xt and

that it affects the spiking activities of the neurons. We regarded this treadmill as a unit circle in

R2 and defined the external stimulus xt by the angle of this circle with range (−π, π). For the

kernel function f x(x j θx), we selected the von Mises kernel

f xðx j yxÞ ¼ VMðx j mx; txÞ;

where μx and τx are the center location and the scale parameter, respectively, of its place field.

We also set dκ = 40 and K = 30.

In the estimation step, we initialized the distribution of the hidden variables and the hyper-

parameters as described in S1 Appendix. Then, we updated the distribution and the hyper-

parameters for 10 iterations and obtained the variational posterior q̂. Using this variational

posterior q̂, we calculated the variational expectation of hidden variables to obtain the decon-

volution results.

PLOS COMPUTATIONAL BIOLOGY Deconvolution of calcium imaging data using marked point processes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007650 March 12, 2020 8 / 25

https://doi.org/10.1371/journal.pcbi.1007650


To compare performance, we also applied CNMF proposed by [10]. Similar to Simulation

study, we decided threshold values to detect spikes from the deconvolution results of CNMF.

Then, we assumed that the detected spike train of the k-th component is generated from an

unmarked point process whose intensity is

lðx j yxkÞ ¼ lk VMðx j mxk; t
x
kÞ

and estimated the parameters ðlk; m
x
k; t

x
kÞ; k ¼ 1; . . . ;K using maximum likelihood

estimation.

The estimation results of our method and CNMF are shown in Figs 6, 7 and 8. In order to

evaluate our model performance in a quantitative manner, we manually detected the ROI of

the neurons located in the raw movie. These ground truths of the ROIs and the corresponding

calcium traces calculated by these ROIs are also shown in these figures. Note that the calcium

traces shown in these figures are equal to the mean calcium values within each ROI and they

do not necessarily reflect true calcium traces; they contain calcium fluctuations arising from

other overlapping neurons and background noise. Our method detected 11 components and

CNMF detected 17 components. From this point on, we denote the estimated component

whose label is (A) in Fig 6 as Neuron 6A.

Fig 6 shows that the spike trains obtained by our method and the calcium fluorescence

obtained by CNMF are consistent for the neurons whose cell shapes are similar. For example,

the spikes estimated by both methods for Neuron 6A are almost the same. This observation

shows that our method provides estimations consistent with the existing approach.

Next, we compare each component estimated by the two methods in detail. Initially, we

focus on the difference in terms of the estimated cell shapes between our method and CNMF.

The estimated cell shapes for Neuron 7A are totally different. This is due to the regularization

constraints imposed in CNMF. Because CNMF imposes regularization constraints to the esti-

mated cell shape as being localized, it may fail to estimate neurons that are widely spread. As

our method does not impose such a requirement, it can detect neurons whose cell shape is

widely spread on the microscope plane.

The cell shape estimated by our method for Neuron 7B contained Neuron 8A, whereas

CNMF correctly divided them into two components. This is because our model does not use

any spatial information; the cell has a localized shape and is not divided into two or more parts

Fig 5. (A) Correlation image calculated from the calcium imaging movie. (B) Mouse trajectory throughout the experiment.

https://doi.org/10.1371/journal.pcbi.1007650.g005
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separately. In CNMF, the initial value for the shape of the neuron is defined as being localized.

Therefore, two neurons are regarded as different components as long as the their positions are

isolated. We can introduce such spatial assumptions into our model as regularization or heu-

ristics; however, it may result in miss-detection for a wide spread neurons. For instance, if we

Fig 6. (A)–(G) Estimation results obtained by the two methods in the experimental study. The first column indicates the ground truths, the second

column shows the components obtained by our method, and third column shows those obtained by CNMF. Each component consists of three images.

(Left) Estimated cell shape. (Middle) Calcium trace, estimated spiking time, and receptive field. The blue line indicates the normalized calcium trace

within the ROI, and each vertical line indicates the estimated index when the spike occurred. The black line plot shows the position of the mouse, and

the blue band shows the receptive field decided by μx and τx. (Right) Estimated tuning curve.

https://doi.org/10.1371/journal.pcbi.1007650.g006
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define the limit size of the cell shape beforehand, we may fail to detect components such as

Neuron 7A. If Neurons 7B and 8A have different tunings to the stimulus, our method would

be able to distinguish them. However, these neurons fired simultaneously and had similar tun-

ing to the covariates within the observation interval. The other reason for the result is that

these neurons had similar calcium fluorescence. This observation indicates that these neurons

may share another relation behind and should not be separated.

Neuron 7C, estimated as a single neuron by our method, was divided into two components

in CNMF, and Neuron 7D was also divided into two components. Such differences arise from

the definitions of the calcium footprint in the two methods. Our model assumes the calcium

footprint to be a random variable and thus allows random fluctuations to a certain extent. On

the other hand, CNMF expresses the footprints as deterministic vectors and divides the

Fig 7. (A)–(D) Estimation results obtained by the two methods in the experimental study.

https://doi.org/10.1371/journal.pcbi.1007650.g007
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random fluctuation of one neuron activity into two or more components. The assumption of

the tuning curve existences in our model also works as a regularization for merging compo-

nents with similar tuning profiles into one component.

Neurons 8B and 8C detected by CNMF were not detected by our method. These compo-

nents had a common feature: the estimated calcium fluorescences of these components were

noisy. Because of the high fluctuation of the calcium fluorescence, the number of spikes of

these components was larger than that of the other components, which seems to be unreliable.

Our method discards components whose calcium fluorescence cannot be approximated by

convolution exponential decay with the spike sequence.

Neurons 8D and 8E were not detected by both methods. This is because the activities of

these neurons were too small within the observed interval. Both methods considered these

components as background noise fluctuation.

Fig 8. (A)–(E) Estimation results obtained by the two methods in the experimental study.

https://doi.org/10.1371/journal.pcbi.1007650.g008
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To compare the performance in terms of ROI detection, we calculated the F-measures of

the two methods. We first detected the ROI of each neuron manually from the correlation

image shown in Fig 5. The mean values of the F-measures are 0.578 (our model) and 0.501

(CNMF) with β2 = 0.3. This result also shows the advantage of not using spatial information in

our model.

Next, we compare the results in terms of spike detection and tuning curve estimation. On

the whole, the tuning curves estimated by our method are sharper than those estimated by

CNMF. This difference is due to the assumption of tuning curve existence at the demixing

phase. CNMF assumes that the spikes are generated at a constant firing rate along the time

axis, and thus, it tends to express the background fluctuation in the interval where true spikes

do not occur as false positive spikes. For example, for Neuron 7D, the estimated spikes and

tuning curves of the two methods are different. The calcium traces obtained using ground

truth increase when the mouse passes through a specific area, and our method can express

this response of the neuron to the mouse’s movement. On the other hand, CNMF treats

background fluctuations as spikes and estimates the tuning curve as a more widely spread

shape.

Discussion

When using calcium imaging to measure the spiking activities of neurons, we need to extract

the summarized information from the raw movie in advance. Recent studies have used the

matrix deconvolution approach for this preprocessing; however, such an approach ignores the

spiking nature of the neurons, and it cannot use the covariates information, which may have a

great influence on the spiking activities.

To solve such problems, we proposed a new deconvolution method using a probabilistic

approach. In our method, we assume that a calcium imaging movie is generated from a gener-

ative model with marked point processes as hidden variables, and we calculate the posterior

using a variational inference approach. Our method detects cell shapes and spike times, and

estimates tuning curves simultaneously, which reduces estimation biases and loss of informa-

tion that occurs in the conventional two-step analysis. By applying our method to simulated

and experimental data, we showed that it can estimate various types of information simulta-

neously from a raw movie.

Although our method provides a new framework for calcium fluorescence deconvolution,

several problems exist at this point. Hereafter, we discuss the disadvantages of our method and

suggest future extensions of this work.

Our model assumes that spike trains of different neurons occur independently, given

external covariates. However, this assumption is quite strong; cortical spike trains generated

by different neurons have some positive or negative correlations. Our model ignores such cor-

relations as introducing such structure into the generative model makes estimations difficult.

We aim to improve the model via the inclusion of such correlations in the future.

Our method approximates the true posterior using variational inference, and the variational

posterior obtained by our method may differ from the true posterior. If this difference is not

negligible, the estimation results may be unreliable. To obtain a good solution, we must relax

the independence requirement imposed on the variational posterior. It is also important to

investigate the asymptotic behavior of our method to evaluate the difference between the true

posterior and the variational posterior.

Our method can be applied to various kinds of analyses of calcium imaging movies. One

example is neural decoding. Decoding an external stimulus from a calcium imaging movie has

already been attempted in previous studies [20]. In these studies, spike trains are detected
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from the calcium imaging movie beforehand using preprocessing procedures, and decoding is

treated as another step in this preprocessing. As mentioned in Introduction, separating spike

assignment and subsequent estimation as distinct steps causes errors and loss of information.

On the other hand, since our method assigns spike trains and estimates the tuning curve

simultaneously, it may be able to improve the decoding accuracy. Moreover, our method will

enable us to decode stimuli from a calcium imaging movie in an online manner because it pro-

vides the probability distribution for the calcium imaging movie itself and does not require

preprocessing beforehand.

Methods

We focus on neuron populations whose firing rates change according to an external stimulus

and on the measurement of these neurons by calcium imaging. The explanation for our

method comprises two parts. First, we explain a probabilistic model that decides the generative

mechanism of the calcium imaging movie. Next, we demonstrate the method for estimating

the hidden variables of this generative model.

Generative model

Our model comprises three components. The first component explains how calcium fluores-

cent dynamics construct the observed movie, given the spiking activities of neurons. The sec-

ond component describes how these spiking activities are generated depending on the external

stimulus. The third component specifies a prior for the parameters used in the first and second

components.

Box 1 shows the summary of our generative model in mathematical form. The definitions

of the distributions and kernels we use in our generative model are also summarized in S1

Appendix. To distinguish the distributions and probability density functions, we express the

density functions as shorthand notations.

Calcium fluorescence model. Our generative model assumes that there is a hidden sto-

chastic process that explains the dynamics of the true calcium fluorescence and that the

observed movie is the linear transformation of this process. Fig 9 illustrates this component.

We define several variables. Let (0, T] be an observation interval, and consider that the

calcium imaging movie is measured in this observation interval at sampling interval Δ.

Assume R ¼ T
D
. Let cr 2 R

dk ; r ¼ 1; . . . ;R be the values of this hidden process and

yr 2 R
dy
; r ¼ 1; . . . ;R be a vectorization of each frame of the raw movie. We assume that the

movie has a low-rank nature and set the dimension of the hidden process dκ to be a relatively

small value compared to the dimension of each frame dy. Suppose that the external stimulus is

also simultaneously measured and denoted as xr 2 R
dx ; r ¼ 1; . . . ;R. For notational simplic-

ity, we denote these variables as c ¼ fcrg
R
r¼1

, y ¼ fyrg
R
r¼1

and x ¼ fxrg
R
r¼1

.

In previous studies [4, 6], the calcium fluorescence is expressed as convolution of the cal-

cium ion decay with a spike train, which is considered as the 0–1 sequence. Conversely, in our

method, we replace the 0–1 sequence with the marked spike sequence whose mark contains

information of a fluorescent footprint emitted by each neuron. Let kr 2 R
dk
[ f;g; r ¼

2; . . . ;R be this marked spike sequence; κr takes a vector of the fluorescent footprint added to

the calcium fluorescence cr if a neuron fires between the (r − 1)-th frame and r-th frame; other-

wise, it takes ;. We consider κ ¼ fkrg
R
r¼2

. Given this κ, we assume that the true calcium
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fluorescence c is distributed to a vector autoregressive model with jumps:

c1 � Normal ðmcinit; ðS
c
initÞ

� 1
Þ

cr ¼ Fcr� 1 þ kr; ðif kr 6¼ ;Þ;

cr ¼ Fcr� 1 þ vr; vr � Normalð0;VÞ; ðif kr ¼ ;Þ;
r ¼ 2; . . . ;R;

(
ð1Þ

where Normal(�) is a Gaussian distribution, F 2 Rdk�dk is a transition matrix, V 2 Rdk�dk is a

transition precision matrix, mcinit is an initial state mean, and Sc
init is an initial state covariance

matrix. This assumption can be interpreted as follows. If any spike has not occurred, the cal-

cium fluorescence cr generally stays around zero, and small fluctuations induced by the noise

vr distribute to the Gaussian distribution whose precision matrix is V. If a spike has occurred

between the (r − 1)-th frame and the r-th frame, then the fluorescent footprint of this spike κr

Box 1: Summary of our generative model

• Calcium fluorescence model

c1 � Normalðmcinit; ðS
c
initÞ

� 1
Þ;

cr ¼ Fcr� 1 þ kr; ðif kr 6¼ ;Þ;

cr ¼ Fcr� 1 þ vr; vr � Normalð0;VÞ; ðif kr ¼ ;Þ;
r ¼ 2; . . . ;R;

(

yr ¼ Gcr þ wr; wr � Normalð0;WÞ; r ¼ 1; . . . ;R;

• Spike generation model

κ � MarkedPointProcessðlðkjxt; xÞÞ

lðk j xt; xÞ ¼
Z

Y

f ðk; xt j yÞxðdyÞ

¼

Z

Yx

Z

Yk
f kðk j ykÞ f xðx j yxÞ xðdyk; dyxÞ:

• Prior

x � GKðdx j a0; b0;Hk; uxÞ:

• Other variables

x is given;

ðmcinit;S
c
init; F;V;G;W; a0; u

xÞ are hyperparameters to be estimated;

ðb0;mk; gk; nk; SkÞ are fixed hyperparameters:
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is added to cr. The instantaneous increase of cr due to this spike gradually decreases with the

time constant decided by the transition matrix F.

Next, we consider that the movie y is observed as

yr ¼ Gcr þ wr; wr � Normalð0;WÞ; r ¼ 1; . . . ;R; ð2Þ

where G 2 Rdy�dk
is an observation matrix, and W 2 Rdy�dy

is an observation precision matrix.

The observation matrix G maps the calcium fluorescence cr into the space of the images; Gcr
corresponds to the denoised frame of the movie, and Gκr corresponds to the vectorization of

the fluorescent image of each spike. To reduce the computational cost in the estimation step,

we restrict the observation precision matrix W as a diagonal matrix.

Therefore, the likelihood of κ, given (y, c), is

pðy; c j κÞ

¼ Nðc1 j m
c
init; ðS

c
initÞ

� 1
Þ
Y

kr 6¼;

dkrðcr � Fcr� 1Þ
Y

kr¼;

Nðcr � Fcr� 1 j 0;VÞ
YR

r¼1

Nðyr � Gcr j 0;WÞ:

Spike generation model. Next, we evaluate how the marked spike sequence is generated,

given the external stimulus. In our model, we assume that the marked spike sequence κ is gen-

erated from marked point processes. Fig 10 illustrates this component.

A marked point process is a stochastic process that expresses a random occurrence of events

(for details, see [21]). The probability structure of the point process is decided by a conditional

Fig 9. Calcium fluorescence model. The marked spike sequences κ contain fluorescent footprints of the spikes. Given

κ, the calcium fluorescence c and the observed movie y are generated from a linear state space model including jumps.

Because cr and κr are not defined on the space of yr, these variables are represented as transformed versions Gcr, Gκr in

this figure for intuition. When a spike occurs, the footprint of this spike is added to the calcium fluorescence, and then,

it gradually decreases according to the calcium ion decay dynamics. The blue and green components indicate that the

fluorescent footprints of the spikes originated from different neurons.

https://doi.org/10.1371/journal.pcbi.1007650.g009
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intensity function

lðt; k j HtÞ ≔ lim
Dt;Dk!0

E
number of events whose mark within ðk; kþ Dk�

occurred at ðt; t þ Dt�

�
�
�
�
�
Ht

" #

DtDk
;

where k 2 Rdk is a mark attached to each event, and Ht is the history of this process up to t
that contains the information about external covariates. Using point process for modeling the

series of events, we choose a family of conditional intensity function indexed by parameters

and estimate these parameters given the observed data.

We consider that the marked spike sequences are generated from a spatio-temporal inho-

mogeneous Poisson process whose rate depends on the external stimuli xt. This means that the

Fig 10. Spike generation model. Given the external stimulus x, the marked spike sequences κ are generated from the marked point process whose

intensity is λ(κ j x, ξ). Each mark in these sequences indicates a fluorescent footprint of a spike emitted by each neuron, and this mark is expressed as a

transformed version Gκr in this figure. Because each neuron in the movie has a characteristic fluorescent footprint and a characteristic receptive field

for stimulus x, λ(κ j x, ξ) can be expressed as the multimodal function with peaks corresponding to each neuron. The blue and green components

indicate the mean florescent footprints and the receptive fields of two different neurons, respectively.

https://doi.org/10.1371/journal.pcbi.1007650.g010
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conditional intensity function is expressed as

lðt; k j HtÞ ¼ lðk j xt; xÞ

where λ(κ j x, ξ) is a function defined on the product spaceRdk � Rdx and ξ is a parameter of

the function. This λ(κ j x, ξ) indicates how often spikes occur and what kinds of spikes occur

depending on the external stimulus x; λ(κ j x, ξ)Δ is the probability of observing a spike whose

fluorescent footprint is κ in an interval with length Δ when the stimulus takes x.

What kind of parametric model is suitable for expressing this λ(κ j x, ξ)? As explained in

Introduction, when a neuron spikes, the calcium ion concentration inside this neuron rises

sharply. Thus, each neuron emits a fluorescent footprint similar to its cell shape. Because we

assume that the spiking rate is modulated by an external stimulus, each neuron also has a char-

acteristic receptive field for the stimulus x. Therefore, the contribution of each neuron to λ
(κjx, ξ) may become unimodal on the product space Rdk � Rdx . Hence, λ(κ j x, ξ) can be

expressed as a multimodal function of κ and x with peaks corresponding to each neuron.

Therefore, we model λ(κ j x, ξ) as a mixture of kernel functions. Let f(κ, x j θ) be a kernel

function defined onRdk�dx
indexed by θ, and let ξ be a finite measure defined on Θ. We assume

that λ(κ j x, ξ) is expressed as the integral f(κ, x j θ) respect to ξ as

lðk j x; xÞ ¼
Z

Y

f ðk; x j yÞ xðdyÞ: ð3Þ

Let ξ be a discrete measure defined on Θ, let fukg
1

k¼1
be atoms of this ξ, and let fpkg

1

k¼1
be

the weights attached to these atoms. Then, λ(κ j x, ξ) in (3) is also expressed as

lðk j x; xÞ ¼
X1

k¼1

pkf ðk; x j ukÞ:

This expression can be interpreted as follows. An infinite number of neurons are influenced

by the external stimulus. When the stimulus takes value x, the k-th neuron emits a spike whose

mark is κ in a unit time interval with the probability πk f(κ, x j uk). Note that the integral of πk f
(κ, x j uk) with respect to κ refers to the firing rate of the k-th neuron when the stimulus takes

x, which is the tuning curve of this neuron.

In our model, we assume that f(κ, x j θ) is expressed as the product of two kernels defined

on Rdk
and Rdx

, respectively, as

f ðk; x j yÞ ¼ f kðk j ykÞ f xðx j yxÞ; ðy
k
; y

x
Þ 2 Y

k
�Y

x
:

Here, fκ(κ j θκ) is the distribution of the fluorescent footprints emitted by a neuron,

fx(x j θx) is the normalized tuning curve of the neuron, and θκ 2 Θκ and θx 2Θx are the param-

eters of the kernels. This decomposition means that an external stimulus does not affect the

shape of the fluorescent footprint of each spike. This assumption seems to be reasonable. To

simplify the estimation procedure, we select a Gaussian kernel for fκ(κ j θκ):

f kðk j ykÞ ¼ Nðk j mk;Lk
Þ; y

k
¼ ðmk;L

k
Þ

where N(� j �) is a Gaussian kernel defined on Rdk
, μκ is a mean vector, and Λκ is a precision

matrix about κ. For f x(x j θx), we select an appropriate kernel according to the type of stimulus

we focus on. For example, if the stimulus takes a value on a Euclid space and the receptive field

of the neuron has a unimodal shape, then a Gaussian kernel may be suitable. If the stimulus

takes a value on the sphere, then the von Mises kernel is more appropriate for this fx(x j θx).
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For notational simplicity, we use these general notations for fκ and f x in the remainder of this

paper.

The likelihood of ξ, given κ, is expressed under the notion of the point process. In our

model, we use a discretized expression for the point process. Consider that the sampling

interval Δ is sufficiently small and assume that each bin ((r − 1)Δ, rΔ], r = 1, . . ., R contains

at most one spike. Under this assumption, the probability of observing a spike whose footprint

is κr in ((r − 1)Δ, rΔ] is λ(κr j xr, ξ)Δ and that of not observing any spike in ((r − 1)Δ, rΔ] is

1 −
R
λ(κ j xr, ξ)dκ Δ. Multiplying these probabilities for the all bins and approximating the

term 1 −
R
λ(κ j xr, ξ)dκ Δ as

1 �

Z

lðk j xr; xÞdkD � exp �
Z rD

ðr� 1ÞD

Z

Rdk
lðk j xt; xÞ dk dt

� �

;

we obtain the likelihood of ξ, given κ, as

pðκ j xÞ ¼ exp �
Z T

0

Z

Rdk
lðk j xt; xÞ dk dt

� �
Y

kr 6¼;

ðlðkr j xr; xÞDÞ

¼ exp � T
Z

Rdx

Z

Rdk

Z

Yx

Z

Yk
f kðk j ykÞ f xðx j yxÞ xðdyk; dyxÞ dk ZðdxÞ

� �

�
Y

kr 6¼;

Z

Yx

Z

Yk
f kðkr j y

k
Þ f xðxr j y

x
Þ xðdyk; dyxÞD

� �

:

Here, η is an empirical measure of {xt}t2(0,T] approximated by

Z �
1

R

XR

r¼1

dxr :

For the sake of notational simplicity, we omit the conditioning by x in the following

equation.

Prior. To estimate ξ and other hyperparameters from the data, we take a Bayesian

approach. In other words, we set a prior for ξ and calculate a posterior of ξ given the observed

data. Specifically, we adopt a mixture of weighted gamma processes as a prior for ξ.
A weighted gamma process is a stochastic process defined on the space of finite discrete

measures. A random measure ξα is said to be distributed according to a gamma process with

parameter α if

xaðAÞ � GammaðaðAÞÞ; A � Y

where α is a finite measure on Θ, and Gamma(α(A)) is a gamma distribution with mean and

variance α(A). A random measure ξα,β is said to be distributed according to a weighted gamma

process with parameters α and β if

xa;bðAÞ ¼
Z

A
bðyÞ xaðdyÞ; A � Y

where β is a nonnegative function defined on Θ. These processes can be considered as random

variables defined on the space MðYÞ that is composed of all finite measures on Θ. The proba-

bility measure of ξα,β defined on MðYÞ is denoted as Gðdx j a; bÞ. It is known that this process

can be used as a prior for intensity estimation [22, 23, 24].

Although a weighted gamma process is also a conjugate prior for ξ in our model, it is diffi-

cult to handle the posterior expressed as this process because the weighted gamma process
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generates a random discrete measure whose support consists of an infinite number of atoms,

and we cannot simulate samples from this process on the computer. [24] addressed this prob-

lem by using a mixture of gamma processes instead of the weighted gamma process.

In our model, we modify the definition of the mixture of gamma processes in [24]. We

define GKð�Þ as

GKðdx j a0; b0;H; uxÞ ¼

Z

G dx

�
�
�
�
�

a0

K

XK

k¼1

dðukk ;u
x
kÞ
; b0

 !
YK

k¼1

HkðdukkÞ;

where α0 > 0 and β0 > 0 are scalar parameters, uk ¼ fukkg
K
k¼1
; ux ¼ fuxkg

K
k¼1

are kernel parame-

ters, and Hκ is a prior for uk defined by

HkðdukÞ
duk

¼ NWðmk;Lk
j mk; gk; nk; SkÞ:

Here, NW(�j�) is a normal-Wishart distribution, with location vector mκ and scale matrix

Sκ. The parameters γκ> 0 and νκ> dκ − 1 are scalars. We formulate ux as hyperparameters.

Because the dimension of uxk is relatively small in our problem, this formulation works reason-

ably well. In the estimation step, we calculate the posterior of uk and also estimate ux in the

empirical Bayes approach.

Fig 11 shows how ξ and the intensity function are related to each other.

Another expression of the generative model

To construct an efficient estimation procedure, we provide another expression of our genera-

tive model.

First, we introduce a new latent variable. Because we set the mixture of weighted gamma

processes as a prior for ξ, each atom of ξ corresponds to one of ðukk ; u
x
kÞ; k ¼ 1; . . . ;K. Here,

Fig 11. Prior. Intensity function λ(κ j x, ξ) is expressed as the sum of kernels, and it is indexed by the discrete measure ξ defined on Θκ ×Θx. This

discrete measure ξ consists of atoms fðmkk ;L
k

k ; y
x
kÞg and each mkk ;L

k

k ; y
x
k corresponds to the mean fluorescent image, the precision matrix of the

fluorescent images, and the tuning curve parameter of each neuron. A weight attached to each atom expresses the average firing rate of this neuron. We

set the mixture of gamma processes GKðdx j a0; b0;H; uxÞ as a prior for this ξ.

https://doi.org/10.1371/journal.pcbi.1007650.g011
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we introduce a new latent variable z = {zrk}r = 2, . . ., R; k = 1, . . ., K indicating which of the parame-

ters ðukk ; u
x
kÞ; k ¼ 1; . . . ;K generates κr. We define z as

zrk ¼
1; if the kernel with parameter ðukk ; u

x
kÞ generates kr;

0; otherwise;

(

r ¼ 2; . . . ;R; k ¼ 1; . . . ;K:

Note that if κr = ; at r, all of zrk, k = 1, . . ., K are 0.

The likelihood function of ξ given (κ, z) is

pðκ; z j xÞ ¼ exp � T
Z

Rdx

Z

Rdk

Z

Yx

Z

Yk
f kðk j ykÞ f xðx j yxÞ xðdyk; dyxÞ dk ZðdxÞ

� �

�
Y

kr 6¼;

YK

k¼1

ðf kðkr j u
k

kÞ f
xðxr j u

x
kÞ xðdu

k

k ; du
x
kÞDÞ

zrk :

The complete likelihood of ξ is

pðy; c; κ; z j xÞ

¼ pðy; c j κÞ pðκ; z j xÞ

¼ Nðc1 j m
c
init; ðS

c
initÞ

� 1
Þ
Y

kr 6¼;

dkrðcr � Fcr� 1Þ
Y

kr¼;

Nðcr � Fcr� 1 j 0;VÞ
YR

r¼1

Nðyr � Gcr j 0;WÞ

� exp � T
Z

Rdx

Z

Rdk

Z

Yx

Z

Yk
f kðk j ykÞ f xðx j yxÞ xðdyk; dyxÞ dk ZðdxÞ

� �

�
Y

kr 6¼;

YK

k¼1

ðf kðkr j u
k

kÞ f
xðxr j u

x
kÞ xðdu

k

k ; du
x
kÞDÞ

zrk :

Since the equality κr = cr − Fcr−1 holds when κr 6¼ ;, this likelihood depends on κr only

through cr and cr−1. Therefore, we can remove κ from this equation. The likelihood of ξ can be

expressed as

pðy; c; z j xÞ

¼ Nðc1 j m
c
init; ðS

c
initÞ

� 1
Þ
YR

r¼2

Nðcr � Fcr� 1 j 0;VÞ
ð1�
PK

k¼1
zrkÞ
YR

r¼1

Nðyr � Gcr j 0;WÞ

� exp � T
Z

Rdx

Z

Rdk

Z

Yx

Z

Yk
f kðk j ykÞ f xðx j yxÞ xðdyk; dyxÞ dk ZðdxÞ

� �

�
YR

r¼2

YK

k¼1

ðf kðcr � Fcr� 1 j u
k

kÞ f
xðxr j u

x
kÞ xðdu

k

k ; du
x
kÞDÞ

zrk :

Under this likelihood, the posterior of the hidden variables is characterized by the following

proposition.

Proposition 1. Under our generative model and the prior

GKðdx j a0; b0;Hk; uxÞ;
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the posterior of (c, z, ξ), given ux and y, is

pðdc; dz; dx j ux; yÞ ¼
Z

G dx

�
�
�
�
�

XK

k¼1

a0

K
þ
XR

r¼2

zrk

 !

dðukk ;u
x
kÞ
; b
�

 !

pðdc; dz; duk j ux; yÞ:

Here, pðdc; dz; duk j ux; yÞ is the posterior of ðc; z; ukÞ, given ux and y, that is proportional to

pðdc; dz; duk j ux; yÞ

/ Nðc1 j m
c
init; ðS

c
initÞ

� 1
Þ
YR

r¼2

Nðcr � Fcr� 1 j 0;VÞ
ð1�
PK

k¼1
zrkÞ
YR

r¼1

Nðyr � Gcr j 0;WÞ

�
YR

r¼2

YK

k¼1

ðb
�
ðuxkÞ f

kðcr � Fcr� 1 j u
k

kÞ f
xðxr j u

x
kÞDÞ

zrk

�

Z YR

r¼2

YK

k¼1

Pðdukk ; du
x
kÞ

zrk

 !

DP dP

�
�
�
�
�

a0

K

XK

k¼1

dðukk ;u
x
kÞ

 ! !

dc dz
YK

k¼1

HkðdukkÞ;

where

b
�
ðy

x
Þ ¼

b0

1þ b0T
R

Rdx f xðx j y
x
ÞZðdxÞ

andDP dP j a0

K

P
k¼1
dðukk ;u

x
kÞ

� �
is a Dirichlet process with base measure a0

K

PK
k¼1
dðukk ;u

x
kÞ

. A random

measure P distributed according toDP dP j a0

K

P
k¼1
dðukk ;u

x
kÞ

� �
can be expressed as

P ¼d
XK

k¼1

pkdðukk ;u
x
kÞ
;

π ¼ ðp1; . . . ; pKÞ � Dir
a0

K
; . . . ;

a0

K

� �
:

This distribution pðdc; dz; duk j ux; yÞ can be expressed as the marginal distribution by intro-
ducing an additional hidden variable π = (π1, . . ., πK) as

pðdc; dz; duk j ux; yÞ ¼
Z

SK� 1

pðdc; dz; dπ; duk j ux; yÞ:

Here, pðdc; dz; dπ; duk j ux; yÞ is the posterior of ðc; z; π; ukÞ, given ux and y, that is propor-
tional to

pðdc; dz; dπ; duk j ux; yÞ

/ Nðc1 j m
c
init; ðS

c
initÞ

� 1
Þ
YR

r¼2

Nðcr � Fcr� 1 j 0;VÞ
ð1�
PK

k¼1
zrkÞ
YR

r¼1

Nðyr � Gcr j 0;WÞ

�
YR

r¼2

YK

k¼1

ðb
�
ðuxkÞ f

kðcr � Fcr� 1 j u
k

kÞ f
xðxr j u

x
kÞDÞ

zrk

�
YR

r¼2

YK

k¼1

p
zrk
k Dir π

�
�
�
�
a0

K
; . . . ;

a0

K

� �

dc dz dπ
YK

k¼1

HkðdukkÞ:

The proof of this proposition is given in S1 Appendix. This proposition enables us to calcu-

late the marginal posterior of ðc; z; ukÞ without considering ξ by using the efficient estimation

procedure described in the next section.
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Variational inference

To obtain the approximate posterior, we use a variational inference approach [25, 26]. The log

marginal likelihood of y can be decomposed as

log pðyÞ ¼ LðqÞ þ KLðq jj pÞ;

LðqÞ ≔Eqðc;z;π;ukÞ log
pðy; c; z; π; uk j uxÞ

qðc; z; π; ukÞ

� �

;

KLðq jj pÞ ≔Eqðc;z;π;ukÞ log
qðc; z; π; ukÞ

pðc; z; π; uk j ux; yÞ

� �

:

Here, q is an arbitrary distribution of ðc; z; π; ukÞ, and KL(q||p) is the Kullback–Leibler

divergence between q and the true posterior pðc; z; π; uk j ux; yÞ. Because the left-hand side of

this equation is independent of q, maximization of LðqÞ with respect to q corresponds to mini-

mization of the Kullback–Leibler divergence between q and the true posterior. If q is the true

posterior, then LðqÞ takes the maximum value. This LðqÞ is called the evidence lower bound.

However, it is difficult to calculate LðqÞ for an arbitrary q. Therefore, we specify the distri-

bution family Q that makes it is easy to calculate LðqÞ, and find the distribution with the larg-

est LðqÞ among this family. In other words, we solve the constrained functional optimization

problem

arg max
q2Q

LðqÞ

and consider the solution of this problem as the approximation of the true posterior.

In this paper, we introduce an independence constraint

qðc; z; π; ukÞ ¼ qðcÞ qðzÞ qðπÞ qðukkÞ:

Under this constraint, we maximize LðqÞ using coordinate ascent maximization. In the esti-

mation step, we update the posterior of each parameter to the distribution that maximizes

LðqÞ, while keeping the distributions of the other variables as fixed. Under our model, the fol-

lowing distribution families satisfy the stationary condition of the functional optimization

problem:

qðcÞ ¼ Nðc j fmcrg
R
r¼1
; fSc

rg
R
r¼1
; fSc

r� 1;rg
R
r¼2
Þ;

qðzÞ ¼
YR

r¼2

1 �
XK

k¼1

zrk

 !ð1�
PK

k¼1
zrkÞYK

k¼1

z
zrk
rk ;

qðπÞ ¼ Dirðπ j a1; . . . ; aKÞ;

qðukÞ ¼
YK

k¼1

qðukkÞ ¼
YK

k¼1

NWðmkk ;L
k

k j m
k

k ; g
k

k ; n
k

k ; S
k

kÞ:

The details of these distributions are shown in S1 Appendix. Therefore, instead of numeri-

cally updating the distribution, we can maximize LðqÞ with respect to the parameters of these

distribution families.

At each iteration, we update the distribution of each parameter one by one and also maxi-

mize LðqÞ with respect to the hyperparameters. We repeat this operation several times and

obtain the variational posterior q̂. By calculating the variational expectation of the hidden vari-

ables using this q̂, we obtain the deconvolution result.
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Supporting information

S1 Appendix. Technical appendix. The supplementary material includes the technical details

of our model. We provide a proof for Proposition 2, the updated formulas in the estimation

step, implication of the obtained posterior under our model, and some heuristic techniques for

obtaining a good posterior approximation.
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