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Purpose: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and 
may help to identify this condition. The aim of this study was to create models estimating skeletal 
muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and 
laboratory measures.

Material and Methods: The cross-sectional study population included 259 subjects with normal or 
impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensi-
tivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake 
(GU) was measured directly using [18F]FDG-PET. Serum metabolites were measured using nuclear 
magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle 
GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were 
created and tested using randomly selected training (n = 173) and test groups (n = 86). The models 
were compared to common fasting indices of insulin sensitivity, homeostatic model assessment—in-
sulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI).

Results:  WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI 
(ρ = 0.83 vs −0.67 and 0.66; P < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with 
the actual skeletal muscle GU was not significantly stronger than HOMA-IR’s or revised QUICKI’s 
(ρ = 0.67 vs −0.58 and 0.59; both nonsignificant) in the test dataset.

Conclusion:  Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory 
measurements from fasting serum samples and basic anthropometrics are promising rapid and inex-
pensive tools for determining insulin sensitivity in at-risk individuals.
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Surrogate insulin sensitivity indices are important for clinical studies where direct 
measurements would be too laborious and expensive. These indices have been usually 
validated against the euglycemic-hyperinsulinemic clamp study [1], which is the gold-
standard method to measure whole-body insulin sensitivity (M-value). The euglycemic-
hyperinsulinemic clamp [1] method is based on the glucose infusion rate, where glucose is 
kept steady at 5 mmol/L and insulin is infused at a constant rate, most commonly 40 mU/
m2 body surface area/minute. Skeletal muscle is the main site of glucose disposal during 
euglycemic hyperinsulinemia and the key organ in postprandial glucose disposal [2]. 
Positron emission tomography (PET) in combination with 18F-fluorine-labeled deoxyglucose 
([18F]FDG) and euglycemic-hyperinsulinemic clamp allows direct measurement of skeletal 
muscle insulin sensitivity independently of endogenous glucose production.

Recently, blood branch-chained amino acids (BCAAs), glutamine and glycine have been 
shown to robustly associate with prediabetes and type 2 diabetes (T2DM) and predict the 
risk of T2DM [3]. In addition, multiple studies have demonstrated that lipoprotein particle 
profiles vary according to the degree of glucose tolerance and insulin sensitivity [4–8] and 
can predict worsening of glycemia and incident T2DM [9–13]. Therefore, we hypothesized 
that serum metabolomics profiling could provide incremental information about the insulin 
resistance state in addition to insulin and glucose measurements, which form the basis of 
commonly used fasting surrogate indices of insulin sensitivity, such as the homeostatic 
model assessment—insulin resistance (HOMA-IR) [14] or revised quantitative insulin sen-
sitivity check index (QUICKI) which include also fasting free fatty acids (FFAs) [15].

In the present study, we aimed to create models for predicting skeletal muscle insulin 
sensitivity (Muscle-ISI) and whole-body insulin sensitivity (WB-ISI) by using routine clin-
ical and biochemical measurements and nuclear magnetic resonance (NMR)-metabolomics 
and compare the predictive performance of the new insulin sensitivity models to HOMA-IR 
and revised QUICKI. In addition, we aimed to evaluate associations of metabolites with 
muscle and whole-body insulin sensitivity to better understand the underlying metabolic 
patterns related to insulin resistance.

1. Participants and Methods

A. Participants

The study population consisted of 259 volunteers, who had participated the cross-sectional 
CMgene study (ClinicalTrials.gov: NCT03310502) which aims to investigate associations be-
tween tissue metabolism, blood biomarkers, and genetic variation. The subjects of CMgene 
were recruited from separate PET study projects investigating tissue metabolism using 
PET at Turku PET Centre (Turku, Finland). Subjects of this study consists of persons who 
participated in studies of muscle and M-value during euglycemic-hyperinsulinemic clamp 
[16–25] and had a fasting serum sample collected for metabolomics (Table 1). Recruitment 
for this study was done from 2002 to 2016. The population consisted of individuals with 
normal fasting glucose (NFG), impaired fasting glucose (IFG), or type 2 diabetes (T2DM). 
T2DM and IFG were defined by the American Diabetes Association criteria, T2DM by 
fasting glucose ≥ 7.0  mmol/L, 2-hour glucose ≥ 11.1  mmol/L or glycated hemoglobin A1c 
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(HbA1c) ≥ 6.5% and IFG by fasting glucose between 5.6 and 6.9 mmol/L [26]. Oral glucose 
tolerance test (OGTT) was not available for all participants, hence it was not used to define 
the prediabetes group in our study. Seventy-five percent of the subjects with T2DM had 
diabetes medication but only 2 used thiazolidinedione medication and none was using in-
sulin. HbA1c was 6.6% (5.9%–7.7%) among T2DM subjects in the training group and 6.4% 
(5.8%–7.3%) in T2DM subjects of the test group. Persons with a condition that could affect 
metabolism (alcohol or narcotics abuse, liver failure, or cancer) were excluded from the 
study. All participants gave a written informed consent. The study protocol was approved 
by the Ethics Committee of the Hospital District of Southwest Finland.

B. Study design

The PET studies were performed after an overnight fast. The consumption of alcohol 
and caffeine was prohibited 12 hours before the study, and subjects were instructed to 
avoid strenuous physical activity 24 hours before the study. The subjects were lying in a 
supine position throughout the euglycemic-hyperinsulinemic clamp and PET scanning. 
Two cannulas were inserted: one in an antecubital vein for the infusion of glucose and 
insulin and the injection of [18F]FDG, and the other in the opposite upper extremity ra-
dial artery or antecubital vein, which was warmed with a heating pillow to arterialize 
venous blood. Plasma glucose was maintained at euglycemia (~5 mmol/L) by a primed 
and then continuous insulin infusion at 40 mU/body surface area m2/min and 20% glu-
cose infusion based on plasma glucose measurements taken every 5 to 10 minutes [1]. 
The rates of M-value were calculated from steady state and reported as the average of 
3 separate 20-minute intervals, starting after reaching euglycemia (median 60 minutes 
from the start of insulin infusion). [18F]FDG was injected at approximately 80 minutes 
(interquartile range, 61–93 minutes, 78 minutes on average) from the start of insulin in-
fusion, and dynamic scans were performed to get images of femoral or upper arm regions 
as previously described [27, 28]. The timing when muscle was scanned varied according 
the original PET research protocol. Plasma radioactivity was measured from arterial or 
arterialized blood samples.

C. Measurement of skeletal muscle glucose uptake

[18F]FDG was synthesized using a modified method of Hamacher et al [29]. PET-scanners 
ECAT 931/08 (Siemens Molecular Imaging, Inc., Knoxville, TN), GE Advance, PET/CT 
Discovery VCT, and PET/CT Discovery 690 (General Electric Medical Systems, Milwaukee, 
WI) were used. The scanners were cross-calibrated against the same VDC-404 Dose cal-
ibrator (COMECER Netherlands, Joure, the Netherlands) to ensure the consistency of 
the results. All data obtained were corrected for dead time, decay, and measured photon 
attenuation. The Bayesian iterative reconstruction algorithm, using median root prior 
with iterations and a Bayesian coefficient of 0.3, was used for image processing when 
possible [30]. Skeletal muscle glucose uptake (GU) was measured by drawing regions of 
interest (ROI) to quadriceps femoris (n = 236) or deltoid (n = 23). Magnetic resonance im-
aging or computed tomography images were used as references for outlining the regions.

Skeletal muscle GU rates were calculated by graphically analyzing plasma and tissue 
time-activity curves to quantify the fractional phosphorylation rate (Ki) for [18F]FDG [31, 
32]. The GU rates were calculated by multiplying Ki by the plasma glucose concentration 
and dividing by the tissue density and a lumped constant. A lumped constant corrects for 
the differences in transportation and phosphorylation of [18F]FDG and glucose. A lumped 
constant value of 1.2 for skeletal muscle was used [27]. Muscle insulin resistance was de-
fined by having skeletal muscle GU rate lower than 33 μmol/kg tissue/min and whole-body 
insulin resistance by M-value less than 21 µmol/kg body weight/min [33].

https://doi.org/10.1210/jendso/bvaa026
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D. Biochemical analyses

Plasma glucose was determined in duplicate by the glucose oxidase method (Analox GM7 
or GM9, Analox Instruments, London, UK). Serum insulin concentration was meas-
ured by a double antibody radioimmunoassay (Phadeseph Insulin RIA kit, Pharmacia & 
Upjohn, Uppsala, Sweden), fluoroimmunometric assay (AutoDELFIA, PerkinElmer Inc, 
Turku, Finland) or automatized electro-chemiluminescence immunoassay (Cobas 8000, 
Roche Diagnostics GmbH, Mannheim, Germany). Alanine aminotransferase and aspartate 
aminotransferase were measured using automatized enzymatic method (Cobas 8000, Roche 
Diagnostics GmbH, Mannheim, Germany) and serum FFA concentration using an enzy-
matic assay (ACS-ACOD, Wako Chemicals GmbH, Neuss, Germany).

E. Serum NMR metabolomics

Metabolic biomarkers were quantified from serum from 259 individuals at fasting using 
high-throughput proton NMR metabolomics (Nightingale Health Ltd, Helsinki, Finland; 
University of Eastern Finland, Kuopio, Finland). This method provides simultaneous quanti-
fication of routine lipids, fatty acid (FA) composition, and various low-molecular metabolites 
including amino acids, ketone bodies, and gluconeogenesis-related metabolites in molar 
concentration units and lipoprotein subclass profiling with lipid concentrations within 14 
subclasses. The 14 lipoprotein subclass sizes were defined as follows: extremely large very-
low-density lipoprotein (VLDL) with particle diameters from 75 nm upwards and a possible 
contribution of chylomicrons, 5 VLDL subclasses (average particle diameters of 64.0 nm, 
53.6 nm, 44.5 nm, 36.8 nm, and 31.3 nm), intermediate-density lipoprotein (IDL) (28.6 nm), 
3 low-density lipoprotein (LDL) subclasses (25.5 nm, 23.0 nm, and 18.7 nm), and 4 high-den-
sity lipoprotein (HDL) subclasses (14.3 nm, 12.1 nm, 10.9 nm, and 8.7 nm). The following 
components of the lipoprotein subclasses were quantified: phospholipids, triglycerides, 
cholesterol, free cholesterol, and cholesteryl esters. The mean size for VLDL, LDL, and 
HDL particles were calculated by weighting the corresponding subclass diameters with 
their particle concentrations. Concentrations below the detection limits were considered as 
0. Details of the experimentation and applications of the NMR metabolomics platform have 
been described previously [34–36].

F. Statistical methods and mathematical modeling

Two regression models were constructed to predict skeletal muscle GU and M-value 
(Tables 2 and 3). We call these models Muscle-ISI and WB-ISI, respectively. The regression 
models were built using linear model with lasso regularization [37]. The data was randomly 
divided into training data (total n = 173; NFG = 61, IFG = 52, T2DM = 60) and test data 
(total n = 86; NFG = 30, IFG = 23, T2DM = 33) [38] (Table 1) using R function sample. Both 
models were built using the training data. Independent test data were used for testing.

Features for the final models were selected using the training data. Features used in 
model building are listed in Supplemental Table 1 [39]. For both models, the feature ranking 
was first determined by creating 100 models using 10-fold cross-validation and defining fre-
quency of each feature in the models. Features with frequency larger than 90% were then 
selected into the final model. Potential technical confounders (time of the clamp study or 
skeletal muscle scan) were evaluated by testing if they were significant predictors when 
added to the models.

The models were tested with the independent testing data, which were not used for model 
building. The models Muscle-ISI, WB-ISI, HOMA-IR and revised QUICKI were evaluated 
with Spearman correlations by comparing the estimated values with the measured values. 
HOMA-IR was calculated as fasting plasma glucose (mmol/L) * fasting serum insulin 
(mU/L) / 22.5 [14] and revised QUICKI as 1/(log plasma glucose (mmol/L) + log serum in-
sulin (mU/L) + log serum FFAs (mmol/L)) [15].
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Receiver-operating characteristic (ROC) analysis was used to find optimal cutoffs for 
Muscle-ISI, WB-ISI, HOMA-IR, and revised QUICKI for identifying  skeletal muscle or 
whole-body insulin resistance and comparing discrimination performance of these indices. 
Youden index, which puts equal weight on sensitivity and specificity [40], was used to de-
termine the cutoff points for Muscle-ISI, WB-ISI, HOMA-IR and revised QUICKI from the 
training data. The performance of Muscle-ISI and WB-ISI cutoff points was compared to 
HOMA-IR and revised QUICKI cutoff points by using McNemar’s test. Comparison between 
the actual skeletal muscle GU and M-value measurement and estimates from Muscle-ISI 
and WB-ISI were done using Wilcoxon signed rank test.

Table 3.  Coefficients in the Final (WB-ISI) Linear Regression Model for Whole-Body Insulin Sensitivity 
(M-value) Prediction

Feature Coefficient
Normalized  
Coefficient

Intercept 149 23.4
Age, years -0.0502 -0.66
BMI, kg/m2 -0.754 -4.52
Glucose, mmol/L -0.777 -1.09
Insulin, mU/L -0.154 -1.08
Free fatty acids, mmol/L -3.35 -0.79
Fraction of cholesterol esters of total lipids in medium HDL (%) 0.373 1.02
Alanine, mmol/L -16.6 -1.01
Acetoacetate, mmol/L -46.1 -1.93
LG10 Ratio of triglycerides to phosphoglycerides -16.7 -2.81
LG10 Ratio of saturated FAs to total FAs -53.2 -1.31
LG10 Glycine, mmol/L 23.2 1.91
LG10 Valine, mmol/L -6.48 -0.60
LG10 Acetate, mmol/L 6.23 0.61
Glycemic status (0 = NFG, 1 = IFG, 2 = T2DM) -2.85 -2.40

Estimate for M-value is calculated as a sum of the intercept and each subsequent row where the row values are 
obtained by multiplying value of the variable by the coefficient. Normalized coefficients describe how much var-
iation in each variable contribute to the model. All metabolite and biochemical measurements were from fasting 
samples (glucose from plasma and others from serum).
Abbreviations: BMI, body mass index; FA, fatty acid; HDL, high-density lipoprotein.

Table 2.  Coefficients in the Final (Muscle-ISI) Linear Regression Model for Skeletal Muscle Glucose 
Uptake (GU) Prediction

Feature Coefficient Normalized Coefficient

Intercept 62.0 38.2
BMI, kg/m2 -0.888 -5.33
Insulin, mU/L -0.171 -1.22
Free fatty acids, mmol/L -6.13 -1.45
Triglycerides in large HDL, mmol/L 185 2.62
Acetoacetate, mmol/L -81.6 -3.47
LG10 Phospholipids in small HDL, mmol/L -22.6 -1.42
LG10 Ratio of triglycerides to phosphoglycerides -36.7 -6.19
LG10 Alanine, mmol/L -46.7 -3.77
LG10 Glycine, mmol/L 37.9 3.16
Glycemic status (0 = NFG, 1 = IFG, 2 = T2DM) -6.45 -5.41

Estimate for skeletal muscle GU is calculated as a sum of the intercept and each subsequent row where the row 
values are obtained by multiplying value of the variable by the coefficient. Normalized coefficients describe how 
much variation in each variable contribute to the model. All metabolite and biochemical measurements were from 
fasting samples (glucose from plasma and others from serum). 
Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; IFG, impaired fasting glucose; NFG, normal 
fasting glucose; T2DM, type 2 diabetes.
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Associations between circulating metabolites and M-value and skeletal muscle insulin-
stimulated GU were tested using Spearman correlations. The mathematical modeling and 
statistical analysis were done using R statistical computing environment (version 3.4) [41]. 
The R package glmnet [42] was used for linear regression models with lasso regularization, 
heatmaps were created with the package gplots [43], and areas under the curve (AUCs) in 
ROC analysis were compared using the package pROC [44]. Correlation coefficients were 
compared using package WRS [45].

2. Results

A. Prediction of skeletal muscle glucose uptake and whole-body insulin sensitivity

The regression equations Muscle-ISI and WB-ISI for prediction of skeletal muscle GU and 
M-value are described in Tables 2 and 3. WB-ISI had higher correlation with the actual 
M-value than HOMA-IR or revised QUICKI in the test group, whereas correlation between 
Muscle-ISI and muscle GU was not significantly stronger than those between muscle GU 
and HOMA-IR or revised QUICKI (Tables 4 and 5, Fig. 1). The models gave significantly 
higher values than the actual skeletal muscle GU and M-value measurements in IFG 
subjects (Table 6). Medications are a possible error source which could lower the perfor-
mance of predictive indices. Muscle-ISI and WB-ISI had a significant correlation with 
the actual measurement among subgroups of subjects with metformin (n = 19) or statin 
therapy (n = 17) in the test group whereas correlations of HOMA-IR and revised QUICKI 
with muscle GU and M-value were mostly not significant (Supplemental Tables 2–5) [39]. 
Furthermore, the models performed well among persons without metformin (correla-
tion Muscle-ISI vs skeletal muscle GU ρ = 0.58, P < 0.001, WB-ISI vs M-value ρ = 0.80, 
P < 0.001) or statin medication (correlation Muscle-ISI vs skeletal muscle GU ρ = 0.65, 
P < 0.001, WB-ISI vs M-value ρ = 0.83, P < 0.001). Clamp or skeletal muscle study timings 
were not significant predictors of M-value or skeletal muscle GU when added to WB-ISI 
or Muscle-ISI models.

Metabolite predictors of insulin resistance in the models included glucose, FFAs, 
triglycerides to phosphoglycerides ratio, fraction of saturated fatty acids (FAs) from total 
FAs, small HDL phospholipids, large VLDL triglycerides, total serum triglycerides, alanine, 
valine, acetoacetate, and omega-3 FAs (Tables 2 and 3). On the contrary, markers of insulin 
sensitivity included large HDL triglycerides, fraction of cholesterol esters to total lipids in 
medium HDL, glycine, and acetate.

B. Correlations between insulin sensitivity with metabolites and fatty acids

Correlation testing in the whole population showed positive correlations between in-
sulin sensitivity and glycine and glutamine, whereas alanine, isoleucine, leucine, 
valine, phenylalanine and tyrosine had negative correlation with insulin sensitivity 
(Fig. 2a). Metabolites related to glycolysis correlated negatively with insulin sensitivity. 

Table 4.  Spearman Correlation Between Measured and Predicted Skeletal Muscle GU Values and P 
Values for Comparisons of Correlation Coefficients Between Different Indices

 

Spearman Correlation P Value P Value

Muscle-ISI HOMA-IR revQUICKI Muscle-ISI vs HOMA-IR Muscle-ISI vs revQUICKI

Training 0.80 ** -0.56 * 0.61 ** <0.001 0.003
Test 0.67 ** -0.58 ** 0.59 ** 0.280 0.357

Abbreviations: HOMA-IR, homeostatic model assessment—insulin resistance; Muscle-ISI, muscle insulin sensi-
tivity; revQUICKI, revised quantitative insulin sensitivity check index.

**P < 0.001; *P < 0.01.
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Monounsaturated and omega-3 FA concentrations were negatively correlated with in-
sulin sensitivity, while linoleic acid, omega-6 FAs, and total polyunsaturated FAs were 
positively correlated (Fig. 2b).

Figure 1.  Spearman correlations between skeletal muscle glucose uptake (GU) with Muscle-
ISI (a), HOMA-IR (b) and revised QUICKI (c) and whole-body insulin sensitivity (M-value) 
with WB-ISI (d), HOMA-IR (e), and revised QUICKI (f).

Table 5.  Spearman Correlation Between Measured and Predicted Whole-Body Insulin Sensitivity 
(M-value) and P Values for Comparisons of Correlation Coefficients Between Different Indices

 

Spearman correlation P value P value

WB-ISI HOMA-IR revQUICKI WB-ISI vs HOMA-IR WB-ISI vs revQUICKI

Training 0.86 * -0.66 * 0.70 * <0.001 <0.001
Test 0.83 * -0.67 * 0.66 * 0.017 0.020

Abbreviations: HOMA-IR, homeostatic model assessment—insulin resistance; Muscle-ISI, muscle insulin sensi-
tivity; revQUICKI, revised quantitative insulin sensitivity check index; WB-ISI, whole-body insulin sensitivity.

*P < 0.001.

Table 6.  Actual and Estimated Values for Whole-Body Insulin Sensitivity (M-value) and Skeletal 
Muscle Glucose Uptake (GU) in the Test Group

NFG IFG T2DM

Actual M-value, μmol/kg body weight/min 27.4 (19.0, 37.7) 17.4 (11.5, 29.2) 11.9 (8.7, 21.4)
Estimated M-value, µmol/kg body weight/min 31.5 (23.1, 39.1) 26.4 (14.2, 30.5)* 16.0 (11.7, 19.2)
Actual skeletal muscle GU, µmol/kg tissue/min 41.2 (26.7, 64.7) 26.6 (13.0, 42.5) 19.8 (12.9, 30.6)
Estimated skeletal muscle GU, μmol/kg tissue/min 51.3 (40.5, 65.4) 41.2 (28.4, 49.8)* 22.4 (13.3, 28.3)

Data represented as median (interquartile range). *P < 0.05 compared to the actual measurement.
Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; IFG, impaired fasting glucose; NFG, normal 
fasting glucose; T2DM, type 2 diabetes.

https://doi.org/10.1210/jendso/bvaa026
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C. Correlations between insulin sensitivity with lipoprotein subclass measures

Lipids typical of lipoprotein particle membranes such as sphingomyelins, cholines, and free 
cholesterol were positively correlated with insulin sensitivity, whereas triglycerides were 
negatively correlated (Fig. 2c). More detailed inspection of lipoprotein particle composition 
showed that triglycerides were negatively correlated with insulin sensitivity across all the 
studied lipoprotein subclasses (Figs. 3–5), except large and very large HDL (Fig. 5).

All lipids in VLDL subclasses were negatively correlated with insulin sensitivity; the 
correlations were strongest among the larger subclasses (Fig.  3a). Further examination 
of the VLDL subclass lipid fractions revealed that the fractions of free cholesterol and 
phospholipids to total lipids in the very large VLDL were negatively correlated with insulin 
sensitivity and free cholesterol and phospholipid fraction in the very small VLDL were pos-
itively correlated with insulin sensitivity (Fig. 3b).

Concentrations of LDL and IDL subclass lipids showed only weak correlations with in-
sulin sensitivity apart the triglycerides (Fig. 4a). However, fraction of phospholipids to total 
lipids in medium and small LDL were negatively correlated with insulin sensitivity simi-
larly to triglyceride fraction and fraction of cholesterol to total lipids had a positive correla-
tion to insulin sensitivity (Fig. 4b).

Fraction of triglycerides to total lipid content in very large HDL particles had negative 
correlation with insulin sensitivity (Fig. 4b). In contrast to large HDL particles, concen-
tration of small HDL particles was negatively correlated with insulin sensitivity (Fig. 5a). 
Evaluation of small HDL lipids showed that fractions of phospholipids, free cholesterol, 
and triglycerides to total lipids were negatively correlated with insulin sensitivity, while 
fractions of total cholesterol and cholesterol esters correlated positively (Fig. 5b).

Figure 2.  Correlation heatmaps between skeletal muscle glucose uptake (GU) and whole-
body insulin sensitivity (M-value) with metabolite (a), fatty acid (b), and lipoprotein measures 
(c). Abbreviation: FAs, fatty acids. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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D. Identifying insulin resistant subjects

Muscle-ISI and WB-ISI showed very good performance to discriminate between insulin re-
sistant and sensitive individuals (Fig.  6). AUC for Muscle-ISI was 0.85 and for WB-ISI 
0.90 in the test group. Also, HOMA-IR (AUC 0.78 for muscle and 0.80 for whole-body in-
sulin resistance) and revised QUICKI (0.82 and 0.80) had good performance in these tasks. 
WB-ISI was to superior to HOMA-IR and revised QUICKI for detecting whole-body insulin 
resistance (P = 0.018 and 0.004) in this group, whereas Muscle-ISI was not significantly 
better than HOMA-IR or revised QUICKI to determine skeletal muscle insulin resistance 
(P = 0.107 and 0.395) (Fig. 6).

We used ROC analysis among training subjects to find optimal cutoff points for Muscle-
ISI, WB-ISI, HOMA-IR, and revised QUICKI for distinguishing between persons with and 
without skeletal muscle and whole-body insulin resistance by using the previously published 
thresholds for skeletal muscle and M-value as reference standards [33]. The observed 
cutoffs to determine muscle insulin resistance were 41.2 for Muscle-ISI (87% sensitivity and 
84% specificity), 1.83 for HOMA-IR (76% and 76%), and 0.751 (83% and 75%) for revised 
QUICKI. For determining whole-body insulin resistance, we found cutoffs 23.6 for WB-ISI 
(86% sensitivity and 88% specificity), 1.83 for HOMA-IR (81% and 80%) and 0.751 for re-
vised QUICKI (89% and 78%). We then tested the performance of these cutoffs among test 
subjects. We found that the cutoff for Muscle-ISI had 82% sensitivity and 72% specificity, 

Figure 3.  Correlation heatmaps between skeletal muscle glucose uptake (GU) and whole-
body insulin sensitivity (M-value) with different lipoprotein subclasses: VLDL particles and 
lipids (a) and VLDL lipid fractions (b). ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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the cutoff for HOMA-IR had 74% sensitivity and 67% specificity, while revised QUICKI had 
86% sensitivity and 56% specificity to detect skeletal muscle insulin resistance. The cutoff 
for Muscle-ISI tended to have higher specificity than revised QUICKI (P = 0.070) in this 
task. The cutoff for WB-ISI had 86% sensitivity and 81% specificity, the cutoff for HOMA-IR 
had 80% sensitivity and 68% specificity, and the cutoff for revised QUICKI had 89% sensi-
tivity and 54% specificity for determining whole-body insulin resistance. WB-ISI had higher 
specificity than revised QUICKI (P = 0.002).

3. Discussion

In this study, we created Muscle-ISI and WB-ISI models for predicting skeletal muscle GU 
and M-value in a cohort spanning a wide range of body adiposity and insulin sensitivity. 
WB-ISI performed better than HOMA-IR or revised QUICKI in predicting M-value and 
may thus be useful for determining whether a person has insulin resistance when more ac-
curate methods are too costly, time-consuming, laborious or ethically not feasible. The sur-
rogate index for skeletal muscle insulin sensitivity was created and validated against the 
direct measurement of skeletal muscle insulin-stimulated GU and may be useful especially 
in research settings where muscle insulin sensitivity is of interest, but direct measurement 
is not feasible.

To build Muscle-ISI and WB-ISI we used linear model with lasso (least absolute shrinkage 
and selection operator) [37]. Lasso is a regression method, which does simultaneous vari-
able selection and regularization. While typical variable selection methods such as principal 
component analysis create new variables based on the original ones, lasso uses the original 

Figure 4.  Correlation heatmaps between skeletal muscle glucose uptake (GU) and whole-
body insulin sensitivity (M-value) with different lipoprotein subclasses: IDL and LDL 
particles and lipids (a) and IDL and LDL lipid fractions (b). ****P < 0.0001; ***P < 0.001; 
**P < 0.01; *P < 0.05.
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variables with regularized coefficients. Models built using lasso have only a few original 
features, which makes them easy to interpret. For example, the coefficient −0.888 for body 

Figure 6.  Receiver-operating characteristic (ROC) curve comparing sensitivity and spe-
cificity of (a) Muscle-ISI, HOMA-IR, and revised QUICKI for determining skeletal muscle 
insulin resistance in the test group and sensitivity and specificity of (b) WB-ISI, HOMA-IR, 
and revised QUICKI for determining whole-body insulin resistance. Area under the ROC 
curve for predicting skeletal muscle insulin resistance: Muscle-ISI 0.85, HOMA-IR 0.78, and 
revised QUICKI 0.82; Area under the ROC curve for predicting whole-body insulin resistance: 
WB-ISI 0.90, HOMA-IR 0.80, and revised QUICKI 0.80.

Figure 5.  Correlation heatmaps between skeletal muscle glucose uptake (GU) and whole-
body insulin sensitivity (M-value) with different lipoprotein subclasses: HDL particles and 
lipids (a) and HDL lipid fractions (b). ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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mass index (BMI) in model Muscle-ISI (Table 2) indicates that larger BMI is related to 
lower skeletal muscle GU.

Insulin, glucose and glycemic status appeared in the models for skeletal muscle GU 
and M-value, which is not surprising considering the compensatory insulin secretion and 
raising glucose levels in the insulin resistant state. FFA level in the models is a marker of 
adipose tissue lipolysis. FFAs are implicated to have a causal role in insulin resistance of 
various tissues [46]. Moreover, BMI is present in both models, which is unsurprising given 
that obesity is likely a causal factor for insulin resistance and precedes other metabolic 
disturbances [47, 48].

An increase in VLDL particles and lipids, especially in large, very large, and extremely 
large VLDL and chylomicrons, was correlated with a decrease in skeletal muscle and whole-
body insulin sensitivity. These findings agree with earlier reports connecting larger VLDL 
particles with lower insulin sensitivity, worse glycemic control and higher T2DM risk [4–6, 
8–13]. A likely cause for the association between VLDL lipids and insulin resistance is over-
production of VLDL particles and triglycerides from the liver and decreased hydrolysis of 
FAs from VLDL and chylomicron triglycerides by lipoprotein lipase in other tissues in an 
insulin resistant state [49, 50].

Higher fraction of triglycerides compared to total lipids was correlated with lower in-
sulin sensitivity across the HDL subclasses. HDL triglycerides reflect exchange of choles-
terol esters from HDL with triglycerides in VLDL and chylomicrons by the cholesteryl ester 
transfer protein (CETP) [51, 52]. This means that increase in HDL triglycerides is another 
sign of VLDL triglyceride overproduction. In addition, amount of plasma CETP is posi-
tively correlated with liver fat content [53], which associates cholesteryl exchange with he-
patic insulin resistance. Lipolysis of the large triglyceride-rich particles result in formation 
of smaller remnant particles which are rich in triglycerides and cholesteryl esters. These 
particles are a likely causal link between insulin resistance and cardiovascular disease be-
cause they can cross arterial walls themselves or, after further lipolysis, as small dense LDL 
and promote atherosclerosis [50, 54].

Increased monounsaturated fatty acids (MUFAs) were negatively and the ratio of omega 
6-FAs to total FAs positively correlated with insulin sensitivity, which agrees with a larger 
study where MUFAs were predictors of worse present and future glycemia and omega-6 FAs 
to total FAs was associated with better glycemic profiles [55]. Surprisingly, we found that 
omega-3 FAs were predictors of insulin resistance. However, while observational and an-
imal studies have found positive associations between omega-3 FAs and insulin sensitivity, 
trials using omega-3 FA supplementation in humans have shown no benefit on improving 
insulin sensitivity, which agrees with our finding [56].

We found negative correlations between insulin sensitivity and BCAAs (leucine, isoleu-
cine, valine) and aromatic amino acids (phenylalanine, tyrosine), whereas glycine and glu-
tamine had positive correlation. BCAAs and aromatic amino acids have been associated 
with increased T2DM risk and glycine and glutamine with lower T2DM risk [3]. Recent 
Mendelian randomization studies suggest that increased BCAAs may contribute to eti-
ology of T2DM [57] and that insulin resistance increases BCAA concentrations [58, 59]. 
Genes implicated in these studies suggest that defective catabolism of BCAAs may cause 
the increased blood BCAA concentrations. In addition, higher acetoacetate was correlated 
with lower insulin sensitivity in our study. Higher acetoacetate has been previously shown 
to associate with lower insulin secretion and predict future T2DM among middle-aged men 
[60]. Of note, acetoacetate had a nonsignificant positive correlation with insulin sensitivity 
among persons with IFG in the test group, which may have contributed to the overestima-
tion of Muscle-ISI and WB-ISI in this group.

An important finding in this study is that WB-ISI had higher correlation with the gold-
standard measurement of whole-body insulin sensitivity than HOMA-IR and revised QUICKI 
in the test group. This means that serum metabolomics can provide information about in-
sulin sensitivity beyond fasting glucose and insulin measurements. Similarly, Muscle-ISI 
had a good correlation with insulin-stimulated muscle GU in the test group, albeit not 
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significantly higher than correlations of muscle GU with HOMA-IR or revised QUICKI. 
Despite HOMA-IR having only moderate correlation with M-value, there is a considerable 
amount of literature supporting the usefulness of HOMA-IR when estimating risk of T2DM 
and cardiovascular disease [61–65]. Thus, WB-ISI and Muscle-ISI should also be able to pro-
vide clinically meaningful information about T2DM and cardiovascular disease risk.

High AUCs of the ROC curves in the test population show that Muscle-ISI (AUC 0.85) 
and WB-ISI (0.90) have good performance in determining insulin resistance, based on the 
previously published cutoffs for muscle insulin-stimulated GU and M-value [33, 66]. WB-ISI 
had higher AUC of the ROC curve when compared to HOMA-IR and revised QUICKI in the 
test group. This means that the newly developed indices may be useful for classifying per-
sons as insulin resistant or sensitive. Moreover, we have provided cutoff points for Muscle-
ISI and WB-ISI which can be used for this purpose. It should be noted that these cutoffs 
are meant to be used as a tool to assist identifying persons at risk and not as definite diag-
nostic criteria. Ideally an optimal tool to determine cutoffs to find persons at risk would be a 
population-based follow-up study which evaluates how a certain level of insulin resistance 
translates to future T2DM and cardiovascular disease risk. An Iranian population-based 
study found HOMA-IR values of 1.85 in women and 2.17 in men to optimally separate per-
sons who later develop T2DM and those who do not [67], but in general, this type of data 
is scarce and the cutoffs would need to be determined separately in different populations. 
More research should be performed in this area to determine the possible benefits for using 
cutoffs when identifying persons at risk.

Strengths of this study include direct determination of skeletal muscle insulin-stimulated 
GU and having a study population consisting of subjects of both sexes with wide range of in-
sulin sensitivity, BMI, and age. Direct measurement of skeletal muscle insulin-stimulated 
GU circumvents the possible confounding to M-value measurement by endogenous glucose 
production. In addition, the determination of serum metabolites is relatively inexpensive. 
Even though setting up an advanced NMR-metabolomic platform is an expensive task, cost 
per sample can be likely reduced to a less than $17 when analyses are performed continu-
ously in large scale [68], which would add only a small cost over that of traditional glucose 
and insulin measurements. The NMR-metabolomic panel used in this study is commercially 
available and has been already used to characterize hundreds of thousands of blood samples 
including samples from various large study cohorts [69].

This study has some limitations. The numbers of NFG, IFG, and T2DM subjects were 
too small to compare performance between the indices created here, HOMA-IR, and re-
vised QUICKI inside these subgroups, albeit the correlations between the new indices and 
gold-standard measurement was numerically highest in most comparisons (Supplemental 
Tables 6–7) [39]. The same is true for the comparison between indices evaluating skeletal 
muscle insulin sensitivity in the whole group. Because this study was based on previous 
independent projects, the timing of the clamp study and skeletal muscle scan was different 
across these projects and scan of quadriceps femoris was not available for 23 subjects in our 
study cohort. Nevertheless, timing of the clamp or scan time did not appear as significant 
predictor when added to WB-ISI or Muscle-ISI models and Muscle-ISI showed a significant 
correlation with muscle GU measured from deltoid among the 23 subjects. In addition, 
OGTT was not performed for all study participants, therefore we could not compare our 
models with tests of insulin sensitivity based on OGTT.

It should be noted that lipid and glucose medication could potentially reduce accuracy of 
insulin sensitivity models based on fasting blood lipid and glucose measures. Nevertheless, 
the use of these medications did not appear as predictors in the models created here and 
the models were relatively robust for the use of statins or metformin when tested separately 
in subgroups using these medications and compared to HOMA-IR and revised QUICKI. 
Finally, insulin measurement is known to vary according to the used assay. Even so, the 
associations found between M-value and HOMA-IR or revised QUICKI correspond well 
with the published literature [70].
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We have provided a skeletal muscle insulin sensitivity index validated against the gold-
standard measurement. Moreover, the WB-ISI model for whole-body insulin sensitivity 
created here can identify M-value better than HOMA-IR or revised QUICKI in subjects 
with varying level of glycemic control. In all, these models could be used as easy and inex-
pensive tools for identifying insulin sensitivity in large clinical studies or clinical setting 
where more complex measurements would be too costly or time consuming.
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