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Abstract

Modern rational modulator design and structure-function characterization often concentrate on 

concave regions of biomolecular surfaces, ranging from well-defined small-molecule binding sites 

to large protein-protein interaction interfaces. Here we introduce beta-cluster as a pseudomolecular 

representation of fragment-centric pockets detected by AlphaSpace [J. Chem. Inf. Model. 2015, 

55, 1585], a recently developed computational analysis tool for topographical mapping of 

biomolecular concavities. By mimicking the shape as well as atomic details of potential molecular 

binders, this new beta-cluster representation allows direct pocket-to-ligand shape comparison and 

can be used to guide ligand optimization. Furthermore, we defined beta-score, the optimal vina 

score of the beta-cluster, as an indicator of pocket ligandability, and developed an ensemble beta-

cluster approach which allows one-to-one pocket mapping and comparison among aligned protein 

structures. We demonstrated the utility of beta-cluster representation by applying the approach to a 

wide variety of problems including binding site detection and comparison, characterization of 

protein-protein interactions and fragment-based ligand optimization. These new beta-cluster 

functionalities have been implemented in AlphaSpace 2.0, which is freely available on the web at: 

http://www.nyu.edu/projects/yzhang/AlphaSpace2.
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I. INTRODUCTION

Biomolecular recognition usually involves heterogeneous and diverse concave surfaces, 

ranging from well-defined singular deep pockets for binding native small molecules, which 

are traditionally considered as prime targets by drug molecules1, 2, to much larger and flatter 

binding interfaces for protein-protein and protein-peptide interactions, which usually consist 

of multiple small shallow binding cavities. As better understanding of concave biomolecular 

surfaces can present many opportunities for modulator discovery including lead 

optimization3, improved ligand screening4, and even the identification of previously 

unknown druggable sites5, many computational methods6–16 have been developed for 

biomolecular surface characterization. With the detected binding cavities, one key element 

for binding pocket comparison and analysis is pocket representation.

A number of pocket characterization methods use pocket lining atoms to represent the 

binding site with different levels of abstraction, including graph17–20, feature points21–24, 

and fingerprint models25–30. Fingerprint methods such as FLAP29 and KRIPO30 abstract the 

binding site into fingerprints by binning distances between pharmacophore elements within 

the binding site. Similarly, protein-ligand interactions can be encoded in distance-binned 

fingerprints as in TIFP28. Graph-based approaches such as ProBIS20 and SOIPPA19 

represent the binding site as condensed nodes. Both fingerprint and graph-based methods 

have the advantage of describing complex 3D binding sites into simpler 2D or 1D 

representations which are computationally efficient and can be used for rapid binding site 

comparison31. However, these abstract representations of binding sites would be devoid of 

detailed 3-D structural information and do not allow for the direct comparison between the 

binding site and their cognate ligands.

On the other hand, several grid-based computational methods32–37 have been developed to 

generate 3D representations of binding sites that can be used for direct comparison between 

binding sites and ligands. For example, Shaper33 fills a cavity with grid points to form an 

inverse image of the binding site, which can mimic volumetric properties of its potential 

binding ligands. Another grid-based method termed FLAPpharm uses the molecular 

interaction fields based on the GRID force field to compare binding sites and ligand 
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ensembles34. Along a similar direction, Sanner et. al. recently developed AutoSite38, in 

which AutoDock affinity maps are calculated for the entire surface followed by removing 

low-affinity points and then clustering to generate a pseudomolecular representation of 

potential binding sites. This AutoSite representation can mimic cognate ligands and can be 

used for direct comparison of the binding site and the ligand. However, generating 

pseudomolecules with grid-based methods is sensitive to placement of grid points as well as 

translation or rotation of a protein structure. Additionally, employment of finer grids over the 

entire protein surface would significantly increase computational cost.

Recently we developed AlphaSpace 1.039, a computational approach for fragment-centric 

topographical mapping of concave biomolecular surfaces based on alpha spheres - a 

geometric feature of a protein’s Voronoi diagram. In comparison with other Voronoi-based 

methods40–44, one novel feature of AlphaSpace is its introduction of alpha-atom, which has 

the same center as its associated alpha sphere but with an atomic radius of 1.8 Å. As alpha-

atoms are generated from surface alpha spheres and are selected to be within proper 

interaction distance from their associated pocket lining atoms, they can mimic the overall 

shape contour of their cognate ligand partner. For the 2P2I data set45, a good volume overlap 

and volumetric correlation between alpha-atoms and pocket-occupying inhibitors has been 

observed with an R2 of 0.77. Thus in AlphaSpace1.0, alpha-atoms have been employed to 

represent fragment-centric concave interaction regions, and the capacity of alpha-atoms to 

mimic potential binders has been exploited to develop a pocket-centric design strategy for 

PPI inhibitor optimization46, 47. However, due to the concavity of protein lining atoms, 

distances between neighboring alpha atoms are often much shorter than typical chemical 

bonds and thus overlapping alpha atoms cannot properly mimic molecular detail of the 

partner ligand, as illustrated in Fig. 1A.

In this work, we introduce beta-cluster, a pseudomolecular representation that can 

realistically mimic molecular features and properties of partner ligands that can be 

accommodated in the cavity. Being a tessellation-based method instead of grid-based, beta-

cluster is naturally formed in the concave region and avoids the uncertainty of grid point 

positioning. By mimicking the shape as well as atomic details of potential molecular 

binders, this new beta-cluster representation can not only be used for pocket 

characterization, but also allows for direct pocket-ligand shape comparison and can be used 

for ligand optimization as well as pocket-guided docking. Furthermore, we defined the 

BScore, which is the maximum docking score of beta-clusters, as an indicator of pocket 

ligandability, and developed an ensemble beta-cluster approach which allows one-to-one 

pocket mapping among aligned protein structures. To illustrate applicabilities of beta-cluster, 

we apply our new representation of concave surfaces to diverse problems including PPI 

interfaces, traditional binding sites and whole biomolecular surfaces.

II. METHOD

A. Beta-cluster representation of pockets

In order to generate a pseudomolecular representation of fragment-centric pockets detected 

by AlphaSpace with better connectivity properties, we cluster alpha-atoms using their 

pairwise distances and the complete linkage method48 in the hierarchical clustering 
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implementation of Scipy package49 with a distance cut-off of 1.6 Å, a typical aliphatic 

carbon-carbon bond distance, to eliminate unphysical and extremely close-contact alpha 

atoms while retaining its overall shape. The complete linkage method generates spherical 

clusters and each cluster centroid is represented as a beta-atom. The combination of all beta-

atoms in a given fragment-centric pocket forms a beta-cluster, which is the pocket’s 

pseudomolecular representation, as illustrated in Fig 1B. The alpha-space value for each 

alpha atom in the cluster is summed to obtain the alpha-space of the beta-cluster. Other beta-

cluster attributes, including the solvent accessible surface area and the volume, are 

calculated the same as for a real molecule with a van der Waals radius of 1.6 Å for each beta 

atom.

B. Beta Cluster Score (BScore).

With beta-cluster mimicking potential molecular binder of a fragment-centric pocket 

detected by AlphaSpace, we define beta-score, a maximum docking score of the beta-cluster, 

as an indicator of pocket ligandability. Based on the AutoDock Vina scoring function50, a 

probe atom corresponding to various Vina atom types (C, N, O, F, P, S, Cl, Br, I) is placed at 

each beta atom location and AutoDock Vina score is calculated for that probe atom. The 

beta atom type and score are determined by the probe type with the best vina score (highest 

affinity). Beta atom types can also be generally classified as polar/non-polar and hydrogen 

bond donors/acceptors based on the strength of the Vina interaction terms. Finally, the 

BScore is obtained by summing the best vina score of each beta atom in the beta cluster, 

which provides an estimate of pocket ligandability.

C. Pocket mapping with aligned protein structures.

Given several aligned protein structures and their determined beta-atoms, consistent pocket 

mapping among different structures can be achieved by determining ensemble pockets. First, 

several proteins are aligned together, and each one is processed separately to generate 

corresponding beta atoms along concave surfaces. Second, all determined beta atoms from 

different structures are superimposed based on structural alignment and re-clustered 

altogether by hierarchical clustering using the average linkage method51. This places 

spatially close beta-atoms from different protein structures into an ensemble beta-cluster. 

After the clustering step, each individual beta atom in ensemble beta-clusters is re-mapped 

to its corresponding protein structure. Statistical properties such as the mean, median, or 

variance of the distribution pocket attributes can be calculated for the ensemble beta-clusters 

adding more information for the analysis of concave surfaces. A collection of individual 

pockets coming from the same ensemble beta-cluster are considered to be matched and 

forms an ensemble pocket. One advantage of ensemble pockets over our previous pocket 

matching method is the use of structural alignment of the protein to generate consistent 

pocket definitions that are less sensitive to minor structural changes on the protein surface. 

Because the alignment is done before the clustering step, it allows pocket-mapping among 

homologous proteins that share a similar protein fold.

In this work where we apply the ensemble pocket approach to identify the same pockets 

across different surface states or different homologous proteins, we used the Matchmaker52 

program implemented in Chimera53. Matchmaker allows for the superimposition of protein 

Katigbak et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structures using their global sequence alignment or a user-specified alignment based on 

select residues from the target structures. Restricting the alignment to active site or interface 

residues allows for consistent matching of surface pockets that are less affected by large 

conformational changes observed for multidomain proteins. We employed a two-step 

process to superimpose the protein structures: an initial superimposition was performed 

using the global sequence alignment, if the global RMSD of the aligned structures fell below 

1.5 Å then the structure pairs were considered sufficiently aligned for processing of the 

ensemble pockets; then for structure pairs that have RMSD >1.5 Å , a second 

superimposition step was performed using residues selected to be within 5.0 Å from the 

largest ligand-bound structure in the ensembles to be analyzed. Finally, visual inspection of 

beta atoms on their respective protein surface was performed to ensure alignment quality.

D. Beta-Cluster and Ligand Features.

Since beta-cluster is sufficiently molecule-like, it allows the direct comparison between beta-

cluster and ligand. Meanwhile, a variety of features can be easily calculated for both beta-

clusters and ligands, as listed in Table 1, which include geometric features like surface area 

and volume, as well as chemoinformatic features like those from ChemoPy54. To show the 

“ligand-like” properties of the beta clusters, we also calculate shape similarity features using 

the distribution of moments with the USR formulation55–57.

E. Datasets

The small-molecule dataset was constructed based on the protein-ligand complexes retrieved 

from the 2013 release of the scPDB data sets61. First we screened the scPDB 2013 release 

and removed structures that did not have any binding data according to the 2016 release of 

the PDBbind refined set62, which reduces the number of protein-ligand structures from 

~10,000 to 996. The scPDB/PDBbind refined set was further reduced by aggregating all 

protein family structures using their UNIPROT accession number. The protein-ligand 

complex structure corresponding to the highest affinity ligand from PDBBind was selected 

as the representative structure for that UNIPROT group. This non-redundant dataset is called 

the small-molecule dataset and is composed of 293 structures with properties listed in SI. 

This data set has been used to determine the clustering parameters for beta-cluster and to 

investigate correlations between the properties of the ligand and the binding site as 

represented by the beta-cluster.

To demonstrate applicability of beta-cluster representation, we applied our beta-cluster 

approach to various data sets that are relevant to fragment-based drug-design (FBDD) and 

identification of cryptic pockets. The Ichihara Set63 was used to investigate the ability of 

beta-clusters to make meaningful suggestions for FBDD, which consists of 21 lead/fragment 

pairs of structures where a lead ligand retains its fragment-binding pose. We applied BScore 

and pocket matching on a reduced set of the latest release of the 2P2I dataset64 in which, 

only the structure of the maximum affinity small-molecule PPI inhibitor is analyzed for each 

PPI interface. The CryptoSite database65 was analyzed to demonstrate the pocket matching 

capabilities of beta clusters across multiple states of the same protein. The CryptoSite 

database consists of 79 pairs of unbound (apo) and ligand bound (holo) structures of the 

same protein selected for their structural and functional diversity. Calmodulin and Ca2+ 

Katigbak et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ATPase 1 were excluded due to the lack of a good structural alignment between the apo and 

holo pairs while Kynurenine aminotransferase II and Serum transferrin were excluded due to 

the small size and charged nature of their cognate ligands. This leaves 75 pairs of structures 

in the CryptoSite dataset for our analysis.

III. RESULTS and DISCUSSION

In this section, we present results to establish three new features of AlphaSpace2.0: beta-

cluster as a pseudomolecular representation of detected pockets, beta-score as an indicator of 

ligandability, and pocket mapping/comparison with aligned biomolecular structures. The 

applicability of these new features is demonstrated by applying them to a diverse collection 

of datasets that are closely related to important problems in structure-based inhibitor design. 

Finally, we use two important classes of PPI related disease targets; MDM2/MDM4 and Bcl-

xL/Bcl-2, to retrospectively illustrate how AlphaSpace 2.0 can be used to facilitate the 

discovery of more potent and specific PPI inhibitors.

Beta-clusters Mimic the Shape of Binding-Site Ligands

To establish the pseudomolecular nature of beta-cluster, we determined shape similarities 

and property correlations of beta clusters against their cognate ligand partners for the high-

quality, small-molecule dataset which consists of 293 protein-ligand complexes. The results 

in Fig 2. show that there are good correlations between ligand and beta cluster features, 

including volume, surface area and span. This clearly demonstrates the ability of beta 

clusters to mimic the shape of potential molecular binders. Meanwhile, one basic 

assumption in rational inhibitor design is that similar binding sites would interact with 

similar ligands. Thus we are motivated to directly examine correlations between ligand 

similarities and beta-cluster similarities using two similarity measures: one is USR similarity 

which is a shape similarity based on statistical moments of pairwise distance distribution 

derived from the USR features56, 57; the other is OASA similarity which is based on the total 

and pharmacophore-atom types of the occluded surface area of the protein surface60 

encoded into a feature fingerprint. Both are alignment independent measures, which allow 

for structural patterns to be compared without the need for computationally exhaustive 

methods like clique detection or geometric hashing. The results in Figure 3 show the 

correlation of the similarity features with an R of 0.74 for the USR similarities and 0.88 for 

the OASA fingerprint. Non-contacting beta atoms and ligand atoms contribute to the noise 

and reduce the shape similarity for the USR features while the OASA fingerprints suffer 

from less noise due to common occluded surface area for both beta clusters and ligands. Fig. 

S1 illustrates two examples how highly similar ligands bind to pockets represented by highly 

similar beta clusters. Only considering overlapped beta atoms and ligand atoms greatly 

increases the correlation of USR similarity with an R of 0.94 while the OASA similarity 

fingerprint also increases to 0.97, which indicates that beta clusters can mimic important 

pocket-occupying portions of the ligand to a high degree.

Using Beta-cluster Score (BScore) to Estimate Pocket Ligandability

Besides quantifying geometric similarity between beta-clusters and ligands, we have 

analyzed their energetic similarity using the AutoDock Vina Scoring function by plotting the 
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ligand vina score against the corresponding contact pockets’ BScore. The results in Fig. 4a 

show that BScore tends to be more negative than the calculated vina score for the ligand 

among all structures in the small-molecule dataset except for 1QK4. This is not surprising 

since the contact pockets tend to have unoccupied beta atoms that would otherwise 

contribute to favorable protein-ligand interactions. Meanwhile, since the overall shape of 

beta clusters is derived from the Voronoi tessellation of the concave binding site, they 

naturally represent a maximum possible pseudomolecule packing for that site. Thus, it 

would be reasonable to consider BScore as an estimate of pocket ligandability. Ligands that 

have almost complete beta cluster coverage tend to fall closer to the diagonal line indicating 

that these ligands are well optimized energetically to their binding sites. On the other hand, 

ligands that have large Vina Score affinity differences with their beta clusters tend to have 

low ligand coverage of the binding site and can possibly be further optimized by maximizing 

the overlap of the ligand and the beta cluster as shown in the case of 3ISS in Fig 4b. The 

individual energetics of the beta atoms also reveals characteristics of localized sites that can 

facilitate rational ligand design.

Detected Pocket Communities Represent Potential Binding Sites

We used BScore and alpha space volume to rank detected pocket communities for the small-

molecule dataset. Table 2 shows the performance of the community ranking in predicting the 

small-molecule binding site as highest ranking communities. Top 1 ranking communities 

based on the alpha space volume and the BScore were predicted to be the small-molecule 

binding site of the cognate ligand with a success rate of >78%. We observe that all small 

molecule binding sites can be detected by AlphaSpace as one pocket community. Top 3 

ranking communities include the small-molecule binding site for any criteria with a success 

rate of >95%. The last entry in Table 2 shows the success rate by selecting top ranking 

communities based on either the alpha-space or the BScore criteria. By using the union of 

top ranking communities from each criteria , the top 1 success rate improves to 87% while 

the top 3 success rate improves to 98%. These results further confirm that AlphaSpace can 

be a useful tool in detecting potential binding sites, which allows the prioritization of high-

ranking communities for subsequent studies.

It should be noted that high or mid ranking communities that do not overlap with the binding 

site ligands may have other functional roles such as allosteric binding sites66 or protein-

protein/peptide interfaces. Cyclin-dependent kinase 2 (CDK2) provides an excellent 

example to illustrate how AlphaSpace and BScore can be used to identify multiple 

functionally important binding interfaces for a single protein. Based on the CDK2 monomer 

structure obtained from the CDK2/Cyclin A complex67, in which CDK2 is bound to ATP 

and a short substrate peptide, we carried out AlphaSpace analysis and detected 16 different 

pocket communities, as shown in Fig. 5, and their properties are listed in Table 3. We can 

see that the ATP binding site associated community (community 1) is ranked at the top in 

terms of both the BScore and alpha-space, followed by one of the substrate binding 

communities (community 2). Among 13 remaining detected communities, by analyzing 

other available CDK2 and related CDK crystal structures, we find that 6 of these are indeed 

involved in binding other proteins, peptides, and even fragments as shown in Table 3 and Fig 

6. For example, important binding residues from the p27 peptide inhibitor68 are found to 
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overlap with the 5th ranking community. Adjacent to this community is a low-ranking 

community that binds a conserved helix-loop found in all cyclins. The 4th and 9th ranking 

communities formed the cavity in the C-lobe and A-loop region, which is found to bind 

loops and helices from Cyclin A67 and Cyclin E69 that may stabilize the open A-loop 

conformation of the active state of CDK2. Alignment of the CDK1/CKS270 complex to 

CDK2 shows that the 13th community belongs to the binding site for this regulatory protein. 

Lastly, a high-scoring fragment-binding site, the 7th community, is found at the solvent 

exposed region of the C-lobe; a largely uncharacterized region of kinases that may have 

some functional importance as an allosteric site based on its ability to bind small molecules 

as shown in multiple crystal structures71–73. In total, 9 out of the 16 detected communities 

are confirmed to be involved in true binding sites which indicates that the AlphaSpace 

community definition is sufficiently sensitive for potential binding site identification.

Beta-Cluster can Guide Ligand Optimization

The results for the retrospective analysis of Fragment to Lead pairs from the Ichihara set are 

listed in Table 4. The Ichihara Set63 is composed of 21 pairs of ligand bound structures 

covering various important drug targets. For each pair, its fragment member forms the 

“core” scaffold of the ``lead” and both members have the similar binding mode. Here we 

employ this dataset to demonstrate how beta-cluster can be used to help guide ligand 

optimization. For 16 out of 21 systems, the highest-ranking community is the small-

molecule binding site with BScore ranging from −15.5 kcal/mol for DPP to −42.8 kcal/mol 

for PPAR. The large affinity of PPAR is not surprising considering that this target is known 

to be highly druggable with several contiguous pockets in the binding site that determine the 

binding mode and activity of PPAR modulators. For 19 out of 21 structures the small-

molecule binding site is found among the top 2 ranking communities, thus the community 

ranking demonstrates the ability of beta clusters to detect and enrich large surface regions of 

interests which can be useful for focused, high-throughput studies involving only ligandable 

sites. Within each binding community, the sub-pocket partitioning of AlphaSpace allows for 

the identification of localized interaction sites that is the preferred binding site for the initial 

fragment. These core pockets are akin to hot-spots found in PPIs and function as “seeds” for 

the fragment-based drug design process. Assigning core pockets allows for finding 

complimentary ligand shapes and pharmacophoric interactions that can maximize initial 

fragment binding which would carry into an elaborated lead molecule. Out of the 21 

systems, only p38 and PKB have core binding community pockets not in the top 1 rank. 

Nonetheless, all 21 fragment associated core pockets are in the top 2 indicating the ability of 

BScore to identify the most important pockets for fragment binding. Using BScore ranking 

information at the global and local level, beta clusters can be used as a prospective tool for 

the judicious selection of ligandable communities and preferred fragment-targetable pockets 

within the community.

We also apply the concept of optimizability of the binding to the Ichihara dataset, i.e. 

%optimized, which is calculated as the ratio between the BScore of contact beta atoms 

within 1.8 Å of any ligand atoms and sum of the BScore of all the beta atoms of the binding 

site associated community. The higher the value of %optimized indicates the greater overlap 

between ligand and beta-cluster, i.e., the higher pocket-ligand complementarity. On the other 
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hand, a lower %optimized value suggests that there is more room for further inhibitor 

optimization. Fig. 7A shows the %optimized for each fragment/lead pair in the dataset while 

Fig 7B shows the relationship between the change in the %optimized scores with the 

normalized experimental affinities in going from the fragment to the lead structure. For all 

systems investigated in the Ichihara set, an improvement in the %optimized score of the 

fragment to the lead is correlated with an improvement in the affinity as measured by the 

pIC50 values compiled by Ferenczy and Keseru74.

To illustrate how AlphaSpace2 would be used for ligand optimization, we performed a more 

detailed retrospective analysis of the PDE and jak2 fragment/lead pairs. Fig 8 shows the 

overlay of the binding site communities for PDE and jak2 with the fragment and lead pairs 

shown along with other high-affinity ligands. For both systems, the initial fragment is 

observed to partially occupy several high-scoring pockets, with neighboring unoccupied 

pockets highlighted in orange which would be preferable sites for elaboration. For PDE, a 

nitrophenyl group was used to target this pocket which improves the affinity of the 

elaborated ligand from 82 μM to 21 nM75. For jak2, the indazole core fragment was grown 

with a phenyl moiety to target this neighboring pocket, which increased the affinity from 

40.9 μM to 1.6 μM76. After this first iteration, another unoccupied pocket is still accessible 

for further fragment extension, which was subsequently utilized by the final lead compound 

with a butylsulfonamide moiety. This leads to a potent inhibitor with an affinity of 78 nM. 

We can see that the fragment-centric pocket representation can clearly indicate those 

preferred sites for further fragment extension. Considering that there remain unoccupied 

pockets in PDE and jak2 for the lead member in the Ichihara Set63 , we have searched the 

PDBBind database and literature for other ligands that can possibly target remaining 

unoccupied pockets in PDE and jak2 to further improve potency, as shown in Fig. 8. For the 

PDE lead, the original authors have already performed a QSAR study77 for the initial 

carboxyl pyrazole scaffold with R1=Phenyl, R2=−4-Chloro-phenyl, R3=-H. This particular 

substitution extends into a mid-scoring pocket and has the second highest potency amongst 

the first-round optimizations (150 nM compared to 31 nM) but was unfortunately not further 

optimized. Comparison with the ligand from PDB ID: 4WCU indicates that moieties from 

R2 can be extended to interact with this pocket and thus possibly increase the potency for 

this lead78. Likewise, a phenyl fragment from the ligand in PDB ID: 5K1I extends into this 

partially occupied pocket, while a benzoic acid like fragment extends into another high-

scoring pocket greatly contributing to ligand binding affinity79. Jak2 appears to be further 

optimizable based on the presence of two nearby high-scoring pockets close to the E1 and 

gatekeeper regions of the kinase binding site. This can be observed by the overlay with the 

ligand of PDB ID: 4JI9, in which its methyl-piperazine moiety extends into the unoccupied 

E1 pocket80. Similarly, a fluoro-hydroxy phenyl fragment of the ligand from PDB ID: 5TQ8 

points towards the high-scoring pocket associated with the gatekeeper site81. Both 

unoccupied pockets can be easily elaborated from the aminoindazole core of the selected 

Jak2 lead molecule which is a shared scaffold of the ligand in 5TQ8. Finally, we also 

extended our community based analysis to other systems in the Ichihara set that had an 

excess of >5 pockets that would be ideal candidates for further elaboration of either the 

initial fragment or the more potent lead ligands. Fig. S2 shows the overlay of these selected 

systems with the potency of the leads from the Ichihara set as well as more elaborated 
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ligands from the PDB that co-target nearby unoccupied pockets. We can see that the more 

advanced ligands not only occupy lead-molecule binding pockets but also display extensive 

overlaps to nearby, high-scoring, unoccupied pockets suggesting that AlphaSpace and beta 

clusters not only identify preferred sites of initial fragment binding but can also be used to 

guide the optimization of lower affinity fragments into more potent lead molecules.

Analysis of Protein-Protein Interactions using Beta Clusters

Pocket matching was performed for the apo, inhibitor-bound (iPPI), and holo-PPI complexes 

of the 2P2I set to determine how certain pocket structures are conserved in various states of 

the PPI. All of the iPPI associated matched ensembled pockets were included in the analysis 

across the different surface states of the 2P2I set. Fig 9 shows BScores of pockets for various 

proteins in the 2P2I. Bcl-2 and Bcl-xL have the best BScore for iPPI pockets consistent with 

the wide availability of high-affinity inhibitors for these systems. On the other hand, TNFa 

has the worst BScore for its iPPI pockets followed by H-Ras and K-Ras, all of which are 

targets that have been well known to be challenging for inhibitor design. The variability in 

BScore among different surface states indicates the effect of protein plasticity on 

ligandability of iPPI binding sites. For 20 out of 21 systems, BScore difference among apo, 

iPPI, and PPI beta clusters is less than 8 kcal/mol indicating that “hot spot” regions are 

conserved for various states of the PPI interface. Only Bcl-xL shows a drastic BScore 

difference between apo and iPPI/PPI bound states, nonetheless the apo state of Bcl-xL may 

be still more ligandable than some other PPIs. It should be noted that other authors have 

commented on the flexibility of Bcl-2 family proteins and how ligands can induce different 

conformations from the apo state, leading to the formation of more druggable, fragment-

centric cavities82, 83.

Meanwhile, we examined complementarity of the ligand partners for the iPPI and PPI 

associated pockets, as shown in Fig. 10. Only 2 out of 21 systems with %optimized value 

higher for the PPI structures than for the iPPI structures indicates that, at least for those iPPI 

associated pockets, small-molecule ligands have been optimized to have higher 

complementarity for the binding site to some extent. The better complementarity for iPPI 

structures is not surprising considering that small-molecules take advantage of shape 

moieties not available to natural amino-acids. On the other hand, shallow binding sites such 

as in cIAP1, XIAP, and ZIPa can only accommodate similarly flat molecular shapes thus 

showing similar %optimized values for iPPI and PPI structures.

Pocket Comparison for the CrypticSite Dataset

One-to-one pocket matching was performed for apo/holo pairs of the CryptoSite dataset and 

BScores of binding site pockets were calculated and compared as shown in Fig 11A. As 

expected, the apo state of the proteins tends to be less ligandable than the holo state, with the 

mean BScore of −12.1 kcal/mol for the apo state versus −18.8 kcal/mol for the holo state. In 

total, 72 proteins have improved holo state Bscores while only 3 proteins have apo states 

having better BScores with difference less than 3.0 kcal/mol. On the other hand, there are 17 

highly perturbed apo/holo pairs, with the holo state more ligandable by BScore difference 

larger than 10.0 kcal/mol. To quantify the structural changes between the apo and holo 

states, we calculate the OASA fingerprint similarity scores between the matched contact 

Katigbak et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pockets of the apo/holo pairs. The distribution of the OASA similarity scores for the apo/

holo pairs is shown in Fig. 11B. We observe 21 apo/holo pairs that have high OASA 

similarity scores >0.80. Visualization of the top 3 most similar apo/holo pairs reveals similar 

surface states at the binding site with global RMSD differences all less than 0.6 Å. On the 

other hand, there are 13 apo/holo pairs with OASA similarities less than 0.5. Examination of 

three least similar apo/holo pairs reveals that the main binding surface difference between 

apo/holo pairs is the loss of pockets in the apo state due to occlusion by loops or large 

movements in the secondary structure.

As shown in Fig. 11A, some apo-structures in the CrypticSite dataset consist of ligandable 

binding sites with BScore more negative than −20.0 kcal/mol, which suggests that these apo-

structures may already be targetable in the first place consistent with the extended analysis 

of the CryptoSite by Vajda et al using their hot-spot mapping method FTMAP84.

Pocket Comparison of NMR Structures for MDM2 and MDM4

The oncogene proteins MDM2 and MDM4 play an important role in many cancers, 

functioning as a negative regulator of the p53 tumor suppressor protein85–87. Both of them 

can bind a conserved α-helix segment of p5388. Because of their importance in cancers, dual 

targeting of MDM2 and MDM4 proteins has been an active area of research, yielding small-

molecule PPI disruptors, such as Nutlins89, 90. Here we applied our ensemble pocket 

approach to help understand similarities and differences between binding interfaces of 

MDM2 and MDM4 on a total of 40 NMR structures from both MDM2/p7391 (PDB: 2MPS) 

and MDM4/p5392 (PDB: 2MWY) by using the first structure of MDM2 as the reference for 

alignment. From the results in Fig 12, we can see that TRP, PHE and LEU pockets 

corresponding to hot-spot residues of binding partners for MDM2/MDM4 are important 

local interaction sites for MDM2 and MDM4 based on BScore. Among them, the LEU 

pocket is slightly more favorable for binding in MDM2 compared to MDM4 which has a 

BScore difference of ~1.0 kcal/mol. Among the rest of the detected pockets at the interface, 

pockets 8 and 9 are uniquely associated with MDM4, which have favorable levels of 

ligandability of −3.1±1.2 and −1.7±0.9 kcal/mol respectively. On the other hand, pocket 7 of 

the MDM2 interface is more ligandable than its MDM4 counterpart with a score of −2.5±0.6 

kcal/mol. Of the remaining pockets, the mid-scoring pocket 1 is optimally positioned near 

the LEU pocket and may be further explored for the design of dual MDM2/MDM4 PPI 

disruptors. Throughout this analysis, we leveraged the ability of our ensemble pockets to 

consistently assign pockets sets for the interface allowing for direct comparison of MDM2 

and MDM4 despite that their PPI interface residues are not the same.

AlphaSpace2 Studies of Bcl-2 family Proteins

Finally, we applied beta AlphaSpace2 to study an important class of PPI related disease 

targets, Bcl-xL and Bcl-2. Both targets belong to the Bcl-2 family proteins and act as 

regulators of apoptotic pathways by binding and sequestering pro-apoptotic signaling 

ligands93. Increase in expression of Bcl-2 or Bcl-xL is associated with resistance to pro-

death signals, contributing to multiple diseases such as cancers and tumorigenesis94. By 

applying AlphaSpace to map the Bcl-xL/BAK (PDB ID: 1BXL) PPI interface, we were able 

to detect and assign hot-spot associated pockets. As shown in Fig 13, twelve Bcl-xL pockets 
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are detected at the PPI interface and are labeled P1 to P4 corresponding to the hot-spot 

residue annotation for Bcl-2 family proteins and pockets 1 to 8 corresponding to additional 

pockets on the interface. We can see that BScores are able to correctly predict and rank hot-

spot residue associated pockets as the top 4 ranking pockets with scores more negative than 

−3.0 kcal/mol, which is very consistent with experimental ΔΔG from alanine scanning 

mutation experiments of the BAK peptide95. This demonstrates the ability of BScore in 

correctly identifying important hot-spot interaction sites. The %-optimized score of each 

pocket also shows the potential to improve ligand/pocket complementarity based on the 

overlap of ligand and beta atoms. Among hot-spot pockets, P4 has the lowest %optimized 

score of 20% while other hot-spot pockets have %optimized scores >60%, suggesting a path 

to improve the affinity of BAK based peptides by designing mutants on the I85 position that 

maximize the occupation of P4. We also identified mid-scoring, auxiliary pockets 2 and 4 

which are adjacent to the hot-spot, core pockets that may further improve the affinity of the 

BAK peptide. Finally, mid-scoring unoccupied pockets 1, 3, and 5 might be further utilized 

in the design of non-native peptide-based Bcl-xL PPI disruptors.

There has been significant interest to develop Bcl-2 or Bcl-xL specific inhibitors, while the 

main challenge comes from the close homology and sequence similarity of Bcl-2 family 

proteins96. Here we applied AlphaSpace to analyze BAX bound complexes of Bcl-297 (PDB 

ID: 2XA0) and Bcl-xL98 (PDB ID: 3PL7), as shown in Fig 14. The ensemble pocket 

clustering is able to assign the important P1, P2, P3, and P4 pockets on both Bcl-2 or Bcl-xL 

surfaces with a score of ~2.5 kcal/mol while also assigning unique pockets specific to either 

Bcl-2 or Bcl-xL. Among the conserved hot-spot pockets, significant BScore differences 

observed for P1, P3 and P4 pockets indicate that these pockets may contribute to differential 

binding profiles between Bcl-2 and Bcl-xL. The more favorable BScore for the P4 pocket of 

Bcl-xL suggests that this pocket contributes strongly to the affinity of Bcl-xL ligands while 

this interaction site may be dispensable for Bcl-2. Indeed, Elmore et al99.were able to design 

Bcl-2 specific inhibitors that intentionally avoided the P4 site causing a drastic drop in 

affinity for Bcl-xL while only leading to a modest change for Bcl-2, ultimately leading to the 

design of the first FDA approved Bcl-2 family inhibitor, Venetoclax.

CONCLUSION

In this paper, we introduced beta-cluster as a pseudomolecular representation of fragment-

centric pockets detected by AlphaSpace, which is demonstrated to mimick the shape as well 

as atomic details of potential molecular binders. This new beta-cluster representation allows 

us to develop two new features for pocket characterization and comparison: one is beta 

cluster score (BScore), the best vina score of the beta-cluster, as an indicator of pocket 

ligandability; the other is an ensemble beta-cluster approach for one-to-one pocket mapping 

and comparison among aligned protein surfaces. We demonstrated utility and applicability 

of these introduced features to a wide variety of problems, including binding site detection 

and comparison, PPIs and fragment-based ligand optimization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of how clustering alpha atoms in the alpha cluster leads to a more realistic, 

pseudomolecular representation of the concave site. (A). The full alpha-cluster is obtained 

with the average-linkage algorithm as in AlphaSpace1.0. Non-contact alpha atoms, which 

are more than 1.8 Å away from any ligand atom, are colored in light orange. Removing 

those non-contact alpha atoms yields the cut alpha-cluster. We can see that the cut alpha-

cluster has a shape contour similar to the ligand, but distances between neighboring alpha 

atoms are often much shorter than typical chemical bonds and thus overlapping alpha atoms 

can not properly mimic molecular detail of the partner ligand. (B). By clustering alpha 

atoms into beta atoms, it leads to a more ligand-like pseudomolecule representation, a beta-

cluster. The blue edges in the cut beta-cluster are calculated based on a minimum spanning 

tree algorithm, and are used for illustration.
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Figure 2. 
The correlation between various molecular features of cognate ligands against their 

corresponding beta clusters. (A) Volume R=0.84, (B) Solvent Accessible Surface Area 

(ASA) R=0.84, (C) Occluded Surface Area (Occl. ASA) R=0.92, and (D) Span R=0.74. For 

all molecular features, beta clusters tend to be greater in magnitude due to the larger size and 

extent of the concave surface compared to the cognate ligand. The line of best fit is shown as 

the black solid line to show the quality of the linear fit for both the ligand and beta cluster 

features. To capture the variance within the correlation plots, +/− one unit of the standard 

deviation of the ligand features from the line of best fit is plotted as dashed black lines. Only 

considering overlapped ligand and beta clusters, R-values can increase to 0.96, 0.98, 0.98 

and 0.96 for the volume, ASA, occluded ASA and molecular span respectively.
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Figure 3. 
Similarity scores of ligands correlated against the same similarity scores of the 

pseudomolecular beta clusters. (A) and (B) show the correlation of the USR (R=0.74) and 

the Occluded ASA pharmacophore fingerprint (R=0.88) similarities respectively for the full 

beta clusters. (C) and (D) plot the same correlation properties but for overlapped portions of 

ligands and beta clusters with an improvement in the R-value of 0.94 for the USR and 0.97 

for the Occluded ASA similarities. The y=x line is also plotted as the black solid line to 

show the quality of the linear fit for both the ligand and beta cluster properties. To capture 

the variance within the y=x plot, +/− one unit of the standard deviation of the ligand 

similarities from the y=x is plotted as dashed black lines.
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Figure 4. 
(A) The correlation of the Ligand AutoDock Vina score plotted against the AutoDock Vina 

based BScore for the beta clusters. The y=x line is plotted as a solid black line. For the 

majority of the beta cluster/ligand score pairs, the beta clusters have a lower (more 

favorable) score due to the larger size of the concave surface compared to the ligand. (B) 

shows two extreme examples where the ligand has a slightly more favorable score compared 

to its corresponding beta clusters (1QK4) and where the beta cluster is much more favorable 

than the ligand (3ISS). In both examples, contact beta atoms are colored green while non-

contact beta atoms are colored red.

Katigbak et al. Page 22

J Chem Inf Model. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Beta Cluster communities for the active state, CDK2 monomer. Each community is labeled 

from 1 to 16 colored accordingly. Details for the community features are shown in Table 3.

Katigbak et al. Page 23

J Chem Inf Model. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Various communities from the global surface mapping of CDK2 identified as binding sites 

from the alignment and annotation of similar or homologous proteins. Each community is 

colored and labeled according to the scheme in Table 3. The aligned binding partners are 

shown along with their corresponding PDB ID and partner name.
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Figure 7. 
Beta cluster complementarity and optimizability for the lead/fragment pairs in the Ichihara 

set. The %optimized score of the beta clusters improves in going from the fragment to the 

lead structures for all systems indicating better complementarity of the lead structures for the 

binding site. (B) Ligand Affinity (pIC50) vs the %optimized Score for all systems in the 

Ichihara set with lines connecting the fragment (red) to the lead (green) structures.
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Figure 8. 
Illustrated pocket-guided optimization for the lead molecules of the PDE and Jak2 systems 

in the Ichihara set. Multiple, high and mid-scoring pockets were identified for the binding 

site communities that had limited overlap with the original lead molecule. Lead molecules 

from the Ichihara set are shown and colored dark grey while more potent binders found in 

the PDB that target these alternative pockets are shown in tan. High (BScores <−2.5 kcal/

mol), mid (−2.5 kcal/mol >= BScores < −1.5 kcal/mol), and low (BScores >= −1.5 kcal/mol) 

scoring pockets are colored green, blue, and rosy brown respectively. Unoccupied pockets 

that overlap extensively with the elaborated fragments of the more potent ligands are 

highlighted in orange.
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Figure 9. 
Comparisons of the beta cluster ligandabilities as measured by the BScores (kcal/mol) for 

the interface region of the 2P2I set for different surface states. For most systems, the 

BScores across different states are within +- 8.0 kcal/mol of each other. Only Bcl-xL, which 

has a large structural change for the apo state compared to the bound iPPI and PPI states 

shows a large BScore difference of more than 8.0 kcal/mol.
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Figure 10. 
Comparison of the %optimized scores for the iPPI and PPI bound states of the interface 

regions of the 2P2I. For 19 out of 21 systems, the iPPI bound structures achieve a higher 

%optimized score due to the ability of non-natural small molecules to interact with concave 

areas of the interface that are not accessible by the native PPI partner.
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Figure 11. 
(A) Correlation plots for the apo and holo state matched beta clusters from the CryptoSite 

set. The diagonal line which shows perfect correlation between the apo and holo state scores 

is plotted as a solid black line. Points outside the solid grey lines represent apo/holo pairs 

with substantial BScore differences of +- 10.0 kcal/mol, while pairs inside the dashed grey 

lines represent minimally perturbed sites between the apo and holo states with a score 

difference of only +- 3.0 kcal/mol. (B) the distribution of the Occluded ASA similarities for 

the Cryptosite apo/holo pairs.
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Figure 12. 
Ensemble matched pockets for 40 NMR structures of MDM2 and MDM4. Pocket ID’s and 

BScores are listed in companion table. High (BScores <−2.5 kcal/mol), mid (−2.5 kcal/mol 

>= BScores < −1.5 kcal/mol), and low (BScores >= −1.5 kcal/mol) scoring pockets are 

colored green, blue, and brosy brown respectively. Orange and magenta highlighted pockets 

correspond to pockets of interests for the MDM2 and MDM4 interface respectively.
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Figure 13. 
Surface mapping of the Bcl-xL/BAK complex using beta clusters. Corresponding pocket IDs 

and features are listed in the companion table. High (BScores <−2.5 kcal/mol), mid (−2.5 

kcal/mol <= BScores < −1.5 kcal/mol), and low (BScores >= −1.5 kcal/mol) scoring pockets 

are colored green, blue, and rosy brown respectively.
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Figure 14. 
Ensemble pocket matching of Bcl-xL (left) and Bcl-2 (right) complexes bound to BAX 

peptide. The corresponding pocket ID’s and BScores are listed in the companion table. High 

(BScores <−2.5 kcal/mol), mid (−2.5 kcal/mol >= BScores < −1.5 kcal/mol), and low 

(BScores >= −1.5 kcal/mol) scoring pockets are colored green, blue, and rosy brown 

respectively. Detailed interactions of the ensemble pockets with the side-chains of BAX are 

shown in the lower images. Bcl-xL and Bcl-2 critical pockets are highlighted in orange and 

magenta respectively.
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Table 1

Selected features and their descriptions available for beta-clusters and ligands.

Feature Beta -Cluster/
Ligand only? Description

1 Alpha-Space Beta-Cluster Only Sum of alpha-space associated with all alpha atoms in the beta-cluster

2 BScore Beta-Cluster Only Sum of the maximum affinity scores for the beta atoms using AutoDock Vina50 atom 
probes

3 Occupancy Beta Cluster Only Overlapping volume of ligand and beta-cluster divided by total volume of beta-cluster

4 Coverage Ligand Only Overlapping volume of ligand and beta-cluster divided by total volume of ligand

5 Tanimoto Overlap Both Grid-based similarity measure of the overlap between the Beta cluster and Ligands58

6 Volume Both Grid-based van der Waals volume of the beta clusters with a radius of 1.6 Å for each beta 
atom

7 Accessible Surface 
Area (ASA) Both Accessible surface area defined by Grant et al59 with a radius of 1.6 Å for each beta atom

8 Occluded ASA Both
Difference in the ASA of covered and non-covered protein lining atoms with 

pharmacophoric atom types60

9 Exposed ASA Both Solvent exposed ASA of molecule in complex with the protein

10 USR Both Shape similarity features55–57 based on the statistical moments of pairwise distance 
distribution
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Table 2

Performance of the beta cluster features of pocket communities in identifying binding sites. The success rate 

and absolute number of identified sites in parenthesis are shown.

Success Rate (%) of Identifying Binding Site Community by Ranking

N=293 Top 1 Top 3 All Communities

alpha-space 78.8 (231) 96.2 (282) 100 (293)

Bscore 79.9 (234) 95.9 (281) 100 (293)

alpha-space or BScore 87.0 (255) 98.3 (288) 100 (293)
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Table 3

Detected Communities and their features for AlphaSpace mapping of CDK2 shown in Fig 5. Binding partners 

detected from other CDK2 or related CDK proteins are listed in the “Binding Partners” column.

Community Index Binding Partners Color alpha-space (Å3) BScore (kcal/mol) Volume (Å3) % Occupied

1 ATP Green 1470 −28.6 878 30

2 Substrate (P,P+1,P+4) Yellow 1155 −18.7 757 21

3 None Pink 889 −15.3 622 -

4 Cyclin A, Cyclin E Teal 886 −19.8 732 14

5 p27 Inhibitory Protein Orange 659 −13.6 547 -

6 Substrate (P-2,P-3) Blue 647 −15.5 509 14

7 Fragment binding Site Purple 457 −10.3 414 30

8 None Lt Blue 406 −9.6 258 -

9 Cyclin A, Cyclin E Peri 350 −5.4 219 54

10 None Peach 335 −6.7 247 -

11 None Tan 286 −5.5 185 -

12 None Plum 283 −7.3 351 -

13 CKS2 Regulatory Protein Lt Green 260 −6.9 242 37

14 Cyclin A, Cyclin E Olive 173 −5.7 212 64

15 None Red 131 −3.4 120 -

16 None Lt Pink 111 −2.0 77 -
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Table 4

Ranking and BScores (in kcal/mol) of beta cluster communities of the binding sites of the Fragment structures 

listed in the Ichihara set. The local rank and BScores of the core pockets are also shown. Core pockets are 

defined as beta cluster pockets that have extensive contacts with the fragment ligand.

Ichihara ID Fragment PDB Lead PDB Binding Site Rank (BScore) Core Pocket Rank (BScore)

Aurora 2W1D 2W1G 1 (−26.3) 1 (−5.9)

BACE 1 2OHM 2OHU 1 (−28.6) 1 (−4.1)

BACE 2 2V00 2VA7 1 (−39.8) 1 (−5.3)

Biotin Cbx 2W70 2W71 1 (−40.2) 1 (−5.2)

CDK2 1 1VYZ 1VYW 1 (−26.5) 1 (−6.7)

CDK2 2 2VTA 2VU3 2 (−21.3) 1 (−6.5)

DPP 3CCB 3CCC 10 (−15.5) 1 (−6.9)

HSP90 1 2QFO 2QG0 1 (−25.9) 1 (−5.0)

HSP90 2 3FT5 3FT8 1 (−22.6) 1 (−7.4)

HSP90 3 2WI2 2WI7 1 (−19.6) 1 (−5.9)

NS5 prase 3CIZ 3CJ5 4 (−22.1) 1 (−4.6)

PDE 1Y2B 1Y2K 1 (−33.8) 1 (−8.0)

PKB 1 2UW3 2UW7 1 (−34.6) 1 (−7.4)

PKB 2 2UVX 2VO6 1 (−33.4) 2 (−6.0)

PPAR 3ET0 3ET3 1 (−42.8) 1 (−7.3)

Jak2 3E62 3E64 1 (−34.7) 1 (−6.1)

Lta4H 3FU0 3FH7 1 (−38.9) 1 (−10.1)

p38a 1 1W84 1WBT 3 (−26.8) 2 (−3.9)

p38a 2 1W7H 1W83 1 (−45.2) 1 (−7.0)

Pantho synthase 3IMG 3IUE 1 (−42.6) 1 (−7.3)

uPA 2VIN 2VIW 2 (−22.1) 1 (−5.4)
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