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Abstract

CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections 

and cancer. CD8 T cell development, maintenance, activation and differentiation are under the 

tight control of multiple transcriptional and post-transcriptional networks. Over the last two 

decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs 

(miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our 

understanding of the function of specific miRNAs has increased since the discovery of RNA 

interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we 

will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including 

differentiation into memory and exhausted cells.
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Introduction

CD8 T cells protect the host organism by eliminating virally infected and cancerous cells, 

yet CD8 T cells must first acquire cytotoxic function. Prior to antigen encounter, naïve CD8 

T cells are transcriptionally inactive and are maintained in a quiescent ‘resting’ state, in 

which they undergo minimal proliferation and rely primarily on oxidative phosphorylation, 

as they have very low metabolic demands. Maintenance of the quiescent state in the absence 

of infection or cancer is critical both for the long-term preservation of naïve cells, and to 

prevent unwarranted inflammation, including autoimmune diseases. Upon antigen 

recognition, naïve CD8 T cells increase the use of both glycolysis and oxidative 

phosphorylation to support the rapid proliferation of antigen specific cells, and the 

acquisition of effector functions. Although the majority of the responding cells die via 

apoptosis upon clearance of the invading pathogen or tumor, in an event known as 
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contraction, a small number of cells will survive and differentiate into long-lived memory 

cells which provide life-long antigen-specific protection to the host. However, this 

differentiation program is often coopted by the immunosuppressive environments 

established during cancer and chronic viral infection, diverting responding CD8 T cells into 

the exhausted state. CD8 T cell exhaustion is characterized primarily by a gradual loss of 

effector function and eventually compromised survival. It has been recognized that this 

population is heterogeneous and contains less differentiated progenitors that are required for 

the repopulation of exhausted cells1, 2, 3. Although the presence of these cells in pathological 

conditions is viewed beneficial to the organism as they protect from immune-related 

pathology during a chronic immune response4, 5, exhausted CD8 T cells fail to form the 

highly protective memory pool. Accordingly, a more comprehensive understanding of the 

molecular mechanisms which orchestrate CD8 T cell differentiation, and support the 

survival of CD8 T cells at each stage is of great interest.

Here, we will review the post-transcriptional regulation of gene expression mediated by non-

coding RNAs (ncRNAs) during CD8 T cell development and differentiation. NcRNAs 

include small non-coding RNAs called microRNAs (miRNAs), and long non-coding RNAs 

(lncRNAs). Specifically, this review will focus on miRNAs as they have been the most 

extensively studied. Although there is much less known regarding lncRNAs, we will also 

highlight the emerging evidence suggesting an important role for lncRNAs in CD8 T cells as 

well.

miRNA mediated regulation of gene expression

The most well-studied ncRNAs are miRNAs- short ~22 nucleotide (nt) RNAs that inhibit 

gene expression by sequence-specific Watson Crick base pairing to target mRNAs. Although 

it has been reported that up to 1,193 miRNAs have been identified in mice6, and 2,588 in 

humans7, 8, the use of stringent functional and molecular parameters during in silico analysis 

suggests the actual number of miRNAs is closer to 475 and 519 in mouse and human, 

respectively6. The genomic organization of miRNAs is an important factor which 

contributes to the tissue and context specific expression of these regulatory RNAs9. The 

expression of genes encoding miRNAs can be controlled by their own promoters or by the 

promoters of other genes. Interestingly, some promoters of miRNA encoding genes may 

control expression of one miRNA gene, or several10, 11. The latter are referred to as 

clustered miRNAs.

The generation of mature miRNAs is a multi-step process that has been well described in 

great detail previously8. For this review, it is important to know that the last step of miRNA 

biogenesis involves processing of the pre-miRNA intermediate precursor by the 

endonuclease Dicer to generate a fully mature double stranded miRNA, one strand of which 

is loaded into RNA-Induced Silencing Complex (RISC). The RISC contains the 

Argonauate-2 protein which binds to the miRNA and is critical for its mRNA-silencing 

function.

miRNAs bind their mRNA targets using a highly conserved motif in the 2–8 nt position in 

the 5’ end of the miRNA, which is termed the seed region. miRNAs are grouped together in 
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‘families’ based on the shared use of the same seed sequence for targeting mRNAs6. These 

miRNAs are generally distinguished by the placement of a letter following the miRNA 

name, and are referred to as ‘sister’ miRNAs (let-7a, let-7b, let-7c and etc.). Typically, the 

region of the mRNA to which the miRNA seed sequence binds is located in the 3’UTR, 

although non-canonical binding sites within the open reading frame of mRNAs have been 

described12, 13, 14. The degree of sequence complementarity between the miRNA seed 

sequence and the target mRNA determines the mechanism by which the expression of the 

mRNA is prevented. If a miRNA seed sequence is a perfect match to the target sequence in 

the mRNA, the poly-A tail is degraded, leading to destabilization of the mRNA8. Rather, if a 

miRNA binds with less-than-perfect complementarity, ribosomal progression is blocked by 

the RISC. The net result of both of these mechanisms is inhibition of gene expression at the 

post-transcriptional level.

Evidence of RNA interference in CD8 T cell immunity

It is important to note that miRNA-mediated RNA interference is a very ancient process that 

evolved at the dawn of multicellular organisms. Therefore, it is not surprising that many 

miRNAs and their targets co-evolved together and are ultra-conserved among different 

animals. Furthermore, many miRNA genes (e.g. let-7) were duplicated multiple times during 

evolution, suggesting a vital importance for such miRNAs in the regulation of various 

biological processes. It is also interesting to mention the peculiar co-appearance of some 

miRNAs and the adaptive immunity in early vertebrate animals. As such, it is likely that 

miRNA-mediated regulation is widespread and highly conserved throughout the adaptive 

immune system6. The significance of the contribution of RNA interference to T cell 

immunity was first observed by T cell specific deletion of the miRNA biogenesis enzyme 

Dicer, using Lck driven Cre. These mice had a smaller thymus, with reduced CD4 and CD8 

T cell numbers in the thymus, despite no defects in the proportion of CD4 and CD8 single 

positive cells, and the dramatic loss of mature T cells in the periphery15, 16. Interestingly, 

CD8 T cell specific deletion of Dicer caused cells to respond more rapidly to T cell receptor 

(TCR) stimulation, ultimately resulting in compromised differentiation into short-lived 

effector cells (SLECs), and a failure to survive contraction and seed the memory 

pool17, 18, 19. MiRNA profiling in naïve, effector, and memory CD8 T cells demonstrated 

that miRNAs are differentially expressed in different CD8 T cell states20. Since then, several 

miRNAs have been implicated in controlling the development, maintenance and 

differentiation of CD8 T cells.

miRNAs in the development and maintenance of naïve CD8 T cells

Efficient CD8 T cell responses in the periphery are only possible if mature CD8 T cells are 

successfully generated in the thymus. The first evidence elucidating the role of specific 

miRNAs in CD8 T cells came from the pioneering work of the lab of David Bartel, where 

the ectopic expression of miR-181 in hematopoietic stem cells blocked the development of 

CD8 T lymphocytes21. It was later shown that miR-181 targets multiple phosphatases, 

negative regulators of TCR-signaling, suggesting a potential positive role in thymic 

selection22. It is well documented that the compromised proliferation or survival of 

immature thymocytes may negatively affect the numbers of mature T cells. Depletion of 

miR-142 in T cell precursors triggered upregulation of the expression of the cell cycle 
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inhibitor, Cdkn1 resulting in severe lymphopenia due to the suppressed proliferation of 

thymocytes and mature T cells23. Recent publication demonstrated that miRNA cluster 

miR17–92 is critical for IL-7 signaling and therefore the survival of developing 

thymocytes24. Consistent with reports of Dicer-deficient mice, it was suggested that 

miRNAs may also be directly involved in lineage commitment and thymic selection by 

silencing of co-receptor genes and lineage specifying transcription factors Runx3 and 

Thpok, thus influencing productive CD8 T cell development25. However, the true impact of 

miRNAs in the development of mature αβ T cells in the thymus remains largely unknown.

Upon egress from the thymus, mature naïve CD8 T cells populate secondary lymphoid 

organs where they are retained for the lifetime of the host until they encounter their cognate 

antigen. In the adult organism, the fitness and longevity of naïve CD8 T cells become critical 

to preserve the diversity of the TCR repertoire because of the rapid decline of T cell 

development due to age-related thymic involution26. It has been shown that the maintenance 

of naïve T cells depends primarily on tonic TCR signaling through self-peptide:MHC 

interactions, and the cytokine IL-726, 27, 28. These signals keep T cells in a quiescent state 

resulting in low metabolism and minimal proliferation.

Investigation of specific miRNAs identified in the miRNA signature of CD8 T cells20, 

suggested the regulatory potentials of miRNAs in T cell maintenance (FIG-1 shows only 

non-coding RNAs that have been demonstrated experimentally to be involved in the 

maintenance and differentiation of CD8 T cells). Although only a fraction of such miRNAs 

have been characterized, it is reasonable to predict that the main function of miRNAs that 

are highly expressed in naïve T cells, and suppressed upon activation, is to maintain the 

quiescent phenotype of naïve cells by promoting survival while restricting cell activation and 

proliferation. It has been shown that the most highly expressed miRNAs29 in naïve T cells, 

such as miR-15018, 20, 30, 31, 32, miR-2620, 33, 34, miR-15/1620, 35, miR-142–3p/miR-142–

5p20, 33, 36, 37, 38, miR-34231, miR-3020, miR-18131, 36, miR-10134 and the let-7 family14 of 

miRNAs are downregulated after activation, through an as of yet unknown mechanism.

It was shown that miRNAs positively regulate the quiescent state of naïve cells by promoting 

IL-7 cytokine signaling and preventing cell activation by tonic TCR/MHC signals. For 

example, homeostatic cytokine signaling was shown to be dependent on miR-19139, which 

is expressed in both thymocytes and mature T cells. Specifically, miR-191 targets insulin 

receptor substrate 1 (IRS1), an antagonist of STAT5 activation that in turn is necessary for 

IL-7 signaling. Thus, upon T cell specific deletion of miR-191, aberrant IRS1 over-

expression led to compromised STAT5 signaling and therefore gradual loss of lymphocytes, 

including naïve CD8 T cells. Perhaps the most notable miRNAs demonstrated to play a role 

in the maintenance of naïve CD8 T cells is the let-7 family of miRNAs, which are 

abundantly expressed in naïve CD8 T cells14, 20, 40, 41. Loss of let-7 miRNA expression in 

naïve CD8 T cells resulted in upregulation of the activation marker CD44 and heightened 

expression of the IL-2 receptor beta chain, CD12214. Moreover, let-7 deficiency facilitated 

the entry of naive cells into the cell cycle, ultimately increasing the rate of proliferation14, 40. 

Consistent with this report, fetal derived T cells expressing the protein Lin28B, which 

inhibits let-7 expression, have a hyperactivated phenotype42. Not only is let-7 expression 

necessary to maintain the quiescent state of naïve CD8 T cells, but also to support the long 
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term survival of CD8 T cells, as indicated by rampant apoptosis of naïve CD8 T cells and 

lymphopenia in let-7 deficient mice40. The transcripts which let-7 miRNAs target to 

maintain naïve CD8 T cell quiescence and survival are not yet clear.

It is also important to limit the spontaneous activation of naïve CD8 T cells in the absence of 

cognate antigen and costimulation, as this may result in anergy43. In fact, miR-150 was 

demonstrated to suppress such activation of naïve CD8 T cells by inhibiting TMEM20 

expression to prevent the accumulation of intracellular calcium and activation of 

downstream signaling cascades that drive cells into an anergic dysfunctional state44.

The activation of CD8 T cells is dependent on modulation of miRNA expression

The activation of naïve CD8 T cells through TCR-peptide:MHC recognition, costimulation, 

and cytokines leads to the initiation of several signal transduction cascades. These signaling 

events trigger T cell reprograming on both chromatin and transcriptional levels, which is 

driven by transcription factors (e.g. RUNX3, AP-1, NF-AT, NF-kB, Notch, MYC, JAK/

STAT) in combination with chromatin remodeling complexes. Interestingly, signaling 

through the TCR drastically changes the expression of many miRNAs during initial T cell 

activation. In contrast to the vast majority of miRNAs that are expressed in naïve T cells and 

are downregulated by TCR signaling, the miR-17–92 cluster31, miR-22120, 31, 

miR130/30119, 20, miR-22220, 31, miR-2120, 31, 45, 46, miR-14633, 46, 47, 48, miR-2949, 

miR-3150, miR −193a50, miR-32050, miR −13231, 50, miR-101b50, miR-29850, miR-731, 50, 

miR-34550, miR-15531, 51, miR-34a52 and miR-720 are directly upregulated through TCR 

stimulation13, 53, 54, 55 which suggests they may positively regulate and support the 

activation of CD8 T cells. For example, the rapid upregulation of CD69 on activated T cells 

is critical for the retention of antigen specific T cells in lymphoid organs during priming, 

whereas its expression must be downregulated to facilitate effector cell egress to the site of 

inflammation. It has been reported that downregulation of CD69 is controlled by the 

miR-130/301 family of miRNAs that are gradually induced upon TCR-signaling19. 

Moreover, miR-155 limits the expression of the inhibitor of AKT, SHIP1, suppressor of 

cytokine signaling-1, SOCS1 and the protein tyrosine phosphatase Ptpn2 to amplify TCR 

and common gamma chain mediated cytokine signals53, 56, 57, 58, to improve effector CD8 T 

cell survival and function56, 59, 60. During T cell activation, costimulatory signaling through 

AKT is amplified by miR-21 that increases IFN-g production and consequently improves the 

anti-tumor function of cytotoxic T lymphocytes (CTLs) in vivo61.

The downstream effect of the afore mentioned transcriptional programs is a rapid 

proliferative burst, termed clonal expansion, and the acquisition of effector function, both of 

which significantly increase the demand for biomacromolecules. Accordingly, these 

transcriptional networks also change the metabolism of the cell by initiating glycolysis and 

increasing rates of oxidative phosphorylation62, 63. Thus, the initiation of these programs is 

essential for successful CD8 T cell differentiation. In fact, more evidence indicating that the 

early events of T cell activation may regulate the subsequent differentiation and fate of 

effector CD8 T cells has recently emerged64, 65, 66, 67, 68, 69.

Clonal expansion ensures that there are sufficient numbers of antigen specific CD8 T cells to 

clear an infection, and is initiated first by entry into the cell cycle, which can be observed by 
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exit from the G1 phase into S phase. The phosphatase Cdc25a, and a complex formed by 

Ccnd2 and Cdk6 is essential for progression into S phase. The let-7 miRNAs target the 

mRNA of all three of these proteins, and failure to downregulate let-7 severely impairs CD8 

T cell proliferation14. In addition, the cell cycle regulator Cdk4 is a direct target of miR-491, 

such that when miR-491 is overexpressed, CD8 T cell proliferation is inhibited70. The 

transcriptional network which drives proliferation downstream of these factors, is also 

regulated by miRNAs. MiR-720 restrains CD8 T cell proliferation by repressing the AP-1 

family member FOSB13. Several negative regulators of the cell cycle are also targeted by 

miRNAs to facilitate clonal expansion, including the transcription factors E2f7 and E2f8, 

which are direct targets of miR-14237. Cluster of miRNAs, miR-17–92 is induced by NFkB-

signaling through TCR-stimulation and inhibits expression of two tumor suppressors, PTEN 

the negative regulator of TCR-mediated activation and pro-apoptotic molecule Bim71. 

Overexpression of the miR-17–92 cluster in T cells resulted in lymphoproliferative disease 

and rampant autoimmunity. It was reported that another miRNA, miR-214, which is induced 

by co-stimulatory signals, can also accelerate the proliferation of CD8 T cells by targeting 

PTEN72. To further facilitate clonal expansion, activated CD8 T cells become less dependent 

on the homeostatic cytokines IL-7 and IL-15 and more dependent on the growth factor 

IL-273, 74. In fact, activated CD8 T cells upregulate the expression of CD25, the alpha-

subunit of high affinity IL-2 receptor, and downregulate miR-150, which has been reported 

to decrease expression of CD2518.

To accommodate the immediate increase in bioenergetic demands required to support clonal 

expansion, CD8 T cells modify their metabolism, not only by increasing rates of oxidative 

phosphorylation, but also initiating glycolysis62, 63. In fact, let-7 works as a molecular brake 

of this “metabolic switch” by targeting several of the enzymes and transporters involved in 

glycolysis14. Importantly, the expression of many of these genes is induced by the 

transcription factor MYC. Although it plays a central role in metabolism, the tight regulation 

of MYC is essential for T cell survival, as prolonged expression in some cases is associated 

with hyperproliferation in leukemia cancers75, while in others it can lead to apoptosis76. 

Accordingly, MYC has been shown to be a direct target of both let-7 and miR-720 in CD8 T 

cells13, 14. mTOR is a metabolic hub that also facilitates the metabolic switch in activated 

CD8 T cells. Interestingly, one of the consequences of PTEN suppression by miR-17–92 

cluster, is an indirect increase of mTOR activity54, 55.

Increased metabolism is also necessary to produce effector molecules, including cytotoxic 

proteins that mediate CD8 T cell killing of target cells. The acquisition of cytotoxic function 

is driven by a complex network of transcription factors including Eomes, T-bet and Blimp-1. 

It has been noted that many of the genes involved in CD8 T cell differentiation may not be 

accessible at first, and the chromatin will need to be remodeled before a transcription factor 

can bind to the promoter. Downregulation of two miRNAs miR-26a and mir-101 upon T cell 

activation, has been described to promote generation of polyfunctional effector cells by de-

repressing the histone methyltransferase and transcriptional repressor, EZH2 which 

positively regulates Notch signaling by suppressing its transcriptional inhibitors NUMB and 

FBXW734.

Wells et al. Page 6

Mol Immunol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once the chromatin has been made accessible, transcription factors can then bind target gene 

promoters and initiate their transcriptional programs. Upon TCR engagement, upregulation 

of miR-155 has been reported to enhance T-bet expression by targeting the SHIP-1 

phosphatase to drive IFN-g production while restraining type I interferon signaling and thus 

inducing STAT5 activation during anti-tumor and anti-viral responses77, 78, 79, 80. Consistent 

with these observations, mice deficient in miR-155 have impaired responses to both bacterial 

and acute viral infections, and in anti-tumor responses, while over expression of miR-155 

enhanced anti-tumor responses by inhibiting SOCS1 and SHIP1, and therefore promoting 

chromatin remodeling through upregulation of PRC2-associated factor Phf1956, 57, 81. A 

very elegant study performed by the Rudensky group took the issue even further by 

generating knockin mice with the mutated miR-155 site in the 3’UTR region of the SOCS1 

gene53. Interestingly, they demonstrated that miR-155-dependent regulation of SOCS1 in 

CD8 T cells is necessary for CD8 T cell responses during persistent chronic infection, and is 

dispensable during acute infection, suggesting that miR-155 regulates the function of CD8 T 

cells in acute viral infection through other targets.

Interestingly, several miRNAs were described as negative regulators of this program, and 

thus their downregulation is essential for efficient cytotoxic responses. MiR29, and the let-7 

miRNAs directly target Eomes and T-bet, consequently inhibiting expression of Granzymes, 

Perforin, and IFN-g14, 82, 83. Moreover, miR-23a inhibits Blimp-1 to suppress cytotoxic 

function84. In addition, the effector molecules themselves may also be regulated by 

miRNAs. It has been shown that miR-29 may also directly inhibit IFN-g expression85, while 

miR-139–3p specifically targets perforin18, adding another layer of regulatory complexity. 

In addition, it was observed that miR-491 can inhibit IFN-g production, although no 

mechanism was described70. It is important to mention that many processes that control the 

activation and differentiation of CD8 T cells have a profound impact on the formation of 

memory exhaustion suggesting potential importance of miRNAs regulating them in CD8 T 

cell fate (FIG-1).

miRNAs drive formation of the memory pool

Transition through the effector stage of CD8 T cell differentiation and survival during 

contraction is essential for the proper development of a functional memory pool. This 

includes changing cytokine dependence back to the homeostatic cytokines, IL-7 and IL-15, 

as they promote long term survival28, 74. Mir-146a has been shown to be important for the 

resolution of the T cell immune response by inhibiting IL-2 production through 

AP-147, 48, 86. It has also been suggested to be important for surviving contraction as it acts 

as an anti-apoptotic factor by directly targeting and suppressing the expression of FADD, 

Fas-associated death domain gene47. Mir-143 was also demonstrated to decrease cell 

apoptosis in a HER2 chimeric antigen receptor-T (CAR-T) cell model87. Another important 

component of memory CD8 T cell survival and function is the switch back to slow 

proliferation and a reduction in glycolytic metabolism. For example, re-expression of 

miR-143 in memory T cells facilitates metabolic reprograming by directly targeting GLUT1 

and suppressing glycolysis87. Conversely, miRNAs such as miR-17/92 are silenced in 

memory T cells, leading to inhibition of mTOR signaling through upregulation of upstream 

inhibitors of this pathway and therefore a reduction of effector-like metabolism55. Another 
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TCR-induced miRNA, miR-155, has a similar pattern of expression to miR-17/92 and was 

shown to be important in suppressing the differentiation of memory T cells. Specifically, 

miR-155 deficient T cells were demonstrated to preferentially differentiate into the 

extremely long-lived central memory subset88. This would be consistent with observations 

that high miR-155 expression is associated with T cell exhaustion. The role of miR-150 in 

CD8 memory lymphocytes is less clear. One report suggested that miR-150 is required for 

the function of memory T cells upon restimulation in vitro and in vivo29. However, later 

TCR-mediated downregulation of miR-150 has been reported to promote memory CD8 T 

cell differentiation and recall responses by derepressing the transcription factors FOXO1A 

and cMyb, which are direct targets of miR-150, and are responsible for the expression of 

Eomes and the pro-survival factors Bcl2 and Bclxl89, 90. The importance of cMyb regulation 

was further emphasized in a recent publication, where cMyb was implicated in 

differentiation of memory stem cells by antagonizing the expression of transcription factor 

Zeb2 that is required for terminal differentiation of CD8 T cells91. To fully understand the 

role of different miRNAs in memory formation more miRNAs and their targets need to be 

tested using multiple genetic models.

miRNAs in CD8 T cell exhaustion

Our knowledge of the role of miRNAs in exhausted CD8 T cells is extremely limited, but 

without a doubt could have important clinical implications for manipulating the immune 

responses, inhibiting autoimmunity and improving therapies against cancer and chronic 

infection. CD8 T cell exhaustion occurs in pathological conditions, when antigen persists, 

driving up expression of inhibitory receptors which suppress CD8 T cell function when 

engaged43, 92. T cells use this negative feedback mechanism to prevent hyperactivation, 

which may result in a cytokine storm and tissue pathology. Accordingly, although exhausted 

T cells come at the expense of clearance of the antigen, and are relatively fragile, the 

maintenance of exhausted T cells is important to prevent tissue damage caused by prolonged 

inflammation during chronic infection.

It has been shown that TCR-induced miR-155 is highly expressed in terminally exhausted T 

cells, and its overexpression leads to increased expression of inhibitory receptors. 

Importantly, miR-155 also supports the maintenance of T cells during chronic infection by 

facilitating lymphocyte survival53, 93. The inflammatory milieu associated with these 

infections includes type I interferons. The expression of miR-31 that is upregulated in 

activated CD8 T lymphocytes through NFAT, drives cell dysfunction by increasing 

sensitivity to type I interferons, in addition to upregulating the expression of inhibitory 

receptors50. Furthermore, CD8 T cells isolated from the immuno-suppressive tumor 

microenvironment of patients with renal cell carcinoma, have elevated expression of miR-29 

and miR-198 which compromises cytokine signaling and survival through direct inhibition 

of JAK3 and Mcl1 expression94. Alternatively, some miRNAs may have the ability to inhibit 

exhaustion. In fact, in a mouse melanoma model, miR-28 was downregulated in exhausted T 

cells and was proposed to increase cytokine production of activated T cells by directly 

binding the 3’UTR of mRNAs of inhibitory receptors PD-1, Tim-3 and Btla95. Mir-150 has 

also been demonstrated to directly target PD-1, as well as CTLA429 suggesting a potential 

role in the regulation of exhausted T cells. Moreover, bone marrow chimeras generated from 
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miR-142 KO bone marrow cells yielded fewer ‘exhausted’ T cells upon transfer into 

lymphoreplete hosts37. Since the role of only a few miRNAs have been tested (FIG-1), it is 

clear that more work needs to be done in order to fully characterize the impact of miRNAs in 

the differentiation of exhausted and memory T cells.

lncRNA mediated regulation of gene expression

In contrast to miRNAs, lncRNAs are greater than 200 nt in their mature form. Although also 

transcribed by RNAPII and processed with a 5’ cap, and a polyA tail, the genomic 

organization of lncRNAs is somewhat more complex than that of miRNAs and has important 

consequences for the function of the lncRNA96. Intergenic lncRNAs require their own 

promoter to be expressed as they are typically at least 1 kb away from a coding region while 

intronic lncRNAs are spliced out from the coding regions of the gene in which they are 

located. There are bidirectional lncRNAs that are positioned head-to-head with an adjacent 

gene, and coopt the use of that promoter in a bidirectional manner. As a result of these types 

of genomic organization, lncRNAs often overlap with protein-coding loci and serve to 

regulate the expression of these genes97, 98. The regulatory functions of lncRNAs extend 

beyond complementary base pairing to target transcripts of coding genes to inhibit 

expression. LncRNAs can function either in the cytoplasm or the nucleus, and can bind 

DNA, RNA, and proteins96, 99. The lncRNAs which are retained in the nucleus have been 

reported to serve as scaffold RNAs within nuclear bodies, to interact with ribonucleoprotein 

complexes to modify histone complexes, and in association with DNA to create R-loops that 

directly regulate transcription96, 99, 100, 101, 102. The most common types of lncRNAs are the 

cytoplasmic natural antisense transcripts (NATs) which are complementary to mRNA 

transcripts96, 103. These lncRNAs can function either in cis, in which the lncRNA and the 

target gene are located in the same genomic region, or in trans, where the lncRNA is 

expressed in a distinct genomic region than the target gene104.

lncRNAs in CD8 T cell biology

Interestingly, approximately 25% of the genes expressed in mouse and human CD8 T cells 

are lncRNAs, suggesting a functional importance for these genes105. It has even been 

suggested that there may be as many lncRNA genes as there are protein coding genes in the 

mammalian genome105. Actually, many antisense lncRNAs have been found to be highly 

homologous to protein coding genes and may have arisen due to duplication events106. The 

majority of these lncRNAs are expressed simultaneously with the mRNAs of protein coding 

genes to which they bind98. For example, the transcription factor Lef1 has two isoforms, a 

short isoform (dominantly negative) which is expressed in naïve CD8 T cells, and a long 

isoform (transcriptional enhancer) which is expressed in activated CD8 T cells. Antisense 

Lef1 ncRNA, Lef1as, specifically overlaps with the longer isoform and is more highly 

expressed in naïve cells suggesting its suppressive role98. The field of lncRNAs in CD8 T 

cell differentiation and function is still very young. Only several lncRNAs have been 

identified in various subsets of CD8 T cells, and the function of most of them is not 

known107, 108 (FIG-1). For example, Malat1 is highly expressed in T cell subsets, but its 

depletion had no effect on CD8 T cell responses to LCMV109. One of the best studied 

lncRNAs in CD8 T cells is NRON (non-coding RNA repressor of NFAT), which was first 
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found to modulate NFAT localization in a Jurkat cell line110. In fact, NRON is included in 

the ribonucleoprotein complex that, in addition to kinases, keeps NFAT phosphorylated, and 

thus out of the nucleus110. Consistent with this role, siRNA mediated knockdown of NRON 

results in increased IL-2 production from Jurkat cell line111. Moreover, NRON was found to 

be reduced in cytomegalovirus-driven ageing CD8 T cells in elderly patients, such that 

uncontrolled NFAT activity may contribute to the accumulation of this population of CD8 T 

cells112. Importantly, lncRNAs with positive regulatory functions have also been observed in 

CD8 T cells. NeST, one of the first described lncRNA in T cells113, improves CD8 T cell 

responses to bacterial and viral infections by acting as an ‘enhancer-like’ lncRNA by 

binding to the WDR5 component of the H3K4 methylase complex to open chromatin at the 

Ifng locus, thus promoting its expression114.

Some lncRNAs have also been implicated in exhaustion of CD8 T cells. For example, the 

lncRNA lnc-Tim3 is highly expressed in the tumor infiltrating lymphocytes (TILs) of 

hepatocellular carcinoma (HCC) patients. It was found that lnc-Tim3 binds to Tim3 to 

prevent its interaction with Bat3, leading to the accumulation of inactive Lck and therefore 

the disruption of TCR-signal115. Moreover, free Bat3 facilitates the nuclear translocation of 

acetyltransferase p300 and subsequent recruitment of p53 and RelA, leading to cell cycle 

arrest and potentially a survival signal in exhausted CD8 T cells115, 116. Further, 2B4 

expression in CD8 T cells from TB (tuberculosis) patients correlates with expression of 

lncRNACd244117. LncRNACd244 recruits EZH2 to the promoters of Ifng and Tnfa to 

establish a closed chromatin state, thus preventing their expression and contributing to T cell 

dysfunction. It is interesting to mention that some expressed lncRNAs in CD8 T cells 

overlap with annotated miRNAs (miR-22, miR-142 and miR-17–92 cluster), suggesting an 

unexplored role of lncRNAs in the regulation of these miRNAs during CD8 T cell 

differentiation.

Concluding remarks

Although much progress has been made in identifying and understanding the role ncRNAs 

play in CD8 T cell differentiation and function, there is much that remains to be learned. 

How the expression of these ncRNAs is of particular importance. Is everything regulated 

through TCR and costimulatory signals? Or can cytokine signaling have direct consequences 

on miRNA expression? There is even a possibility ncRNAs to regulate other ncRNAs. It has 

been reported that the lncRNA NEAT1 is upregulated in CD8 T cells from the hepatocellular 

carcinoma patients, and that NEAT1 inhibits miR-155 to reduce CD8 T cell cytotoxicity and 

survival118. The continued study of ncRNAs in CD8 T cells will have important outcomes 

not only for our understanding of CD8 T cell biology, and RNA biology, but also for the 

development of novel therapeutic strategies to improve disease.
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Highlights

• MicroRNAs and lncRNAs regulate CD8 T cell development and 

differentiation

• Non-coding RNAs guide CD8 T cell differentiation into effector CTLs, 

memory or exhausted lymphocytes

• The most studied microRNAs in CD8 T cell biology are let-7, miR-17–92, 

miR-150, miR-155
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Figure-1. 
Validated miRNAs (in red) and lncRNAs (in blue) that play a role in CD8 T cell 

development and differentiation.
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