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Development and Validation of 
a Semi-Automated Surveillance 
Algorithm for Cardiac Device 
Infections: Insights from the VA 
CART program
Archana Asundi1, Maggie Stanislawski   2,3,4, Payal Mehta5, Hillary J. Mull   6,7, 
Marin L. Schweizer8, Anna E. Barón9, P. Michael Ho2,4,10, Kalpana Gupta5,6,11 &  
Westyn Branch-Elliman5,6,12*

Procedure-related cardiac electronic implantable device (CIED) infections have high morbidity and 
mortality, highlighting the urgent need for infection prevention efforts to include electrophysiology 
procedures. We developed and validated a semi-automated algorithm based on structured electronic 
health records data to reliably identify CIED infections. A sample of CIED procedures entered into 
the Veterans’ Health Administration Clinical Assessment Reporting and Tracking program from FY 
2008–2015 was reviewed for the presence of CIED infection. This sample was then randomly divided into 
training (2/3) validation sets (1/3). The training set was used to develop a detection algorithm containing 
structured variables mapped from the clinical pathways of CIED infection. Performance of this algorithm 
was evaluated using the validation set. 2,107 unique CIED procedures from a cohort of 5,753 underwent 
manual review; 97 CIED infections (4.6%) were identified. Variables strongly associated with true 
infections included presence of a microbiology order, billing codes for surgical site infections and post-
procedural antibiotic prescriptions. The combined algorithm to detect infection demonstrated high 
c-statistic (0.95; 95% confidence interval: 0.92–0.98), sensitivity (87.9%) and specificity (90.3%) in the 
validation data. Structured variables derived from clinical pathways can guide development of a semi-
automated detection tool to surveil for CIED infection.

Cardiovascular electronic implantable devices (CIEDs), such as pacemakers and implantable automated defi-
brillators, are increasing as the population ages1,2. Procedure-related CIED infections are associated with high 
morbidity, mortality, and medical costs. Mortality rates for deep infections involving leads implanted into the 
heart approach 20% and infections are estimated to cost greater than $50,0003–5. CIED infections are increasingly 
a concern for cardiologists, infection control departments, and patient safety programs due to a trend toward an 
increasing rate of procedure-related infections1. The increased rate of CIED infections is compounded by the 
overall increasing rates of CIED placements6. Given this trend, developing and implementing effective infection 
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prevention programs in the electrophysiology suite is crucial for minimizing morbidity and mortality among 
CIED implantation recipients.

Surveillance with audit and feedback is a cornerstone of, and critical first step in, infection prevention 
(Fig. 1)7. Surveillance programs measure infections when they occur. This information can then be used to iden-
tify operational and patient-centered targets for prevention initiatives after infections and clusters are found. 
Surveillance programs can improve outcomes in several ways. They can be used to measure the effectiveness 
of novel infection prevention measures in real-time8 and can also provide feedback to providers to encourage 
uptake of evidence-based prevention practices9. Surveillance systems can also improve care through the observer, 
or Hawthorne, effect10. The Surgical Care Improvement Project (SCIP) infection metric bundle is an exam-
ple of a surveillance and reporting system that lead to major improvements in surgical care and a reduction 
in post-operative infections11. However, due to the nature of the electrophysiology laboratory as a procedural 
area that straddles inpatient and outpatient settings, it is not encompassed by surgical site infection (SSI) quality 
improvement initiatives12.

Given limited resources, and the increasing dissemination of electronic health records (EHRs), a promising 
strategy for expanding surveillance to uncovered procedural areas is the development of surveillance tools that 
leverage clinical data warehouses to measure and track infections. These tools could be used as stand-alone sys-
tems or could be used in a semi-automated method to augment and triage the manual review process toward 
cases at highest probability of having an adverse event7,13. Thus, we sought to develop and validate a surveillance 
tool for CIED infection surveillance using structured data elements from the Veterans Health Administration 
(VA)’s Corporate Data Warehouse (CDW) in order to triage cases for manual review.

Methods
Study overview.  This study used structured data elements along the diagnostic and treatment pathway of 
CIED infection management from the VA EHR captured in the CDW to develop an algorithm to detect infec-
tions. We used a limited definition of structured data focusing on diagnostic testing orders, laboratory results, 
pharmacy and billing data that is structured and standardized across all EHRs in order to ensure broad potential 
applicability of the detection algorithm. A sample of cardiac procedures collected as part of the VA Clinical 
Assessment Reporting and Tracking (CART) quality program underwent manual review for the presence of 
infection; these cases were used in the development and validation of the semi-automated tool.

Ethical considerations.  Given the retrospective nature of the study, waiver of consent was obtained. The 
Veterans Health Administration Boston Healthcare System Institutional Review Board and the University of 
Colorado Denver Anschutz Medical Campus Multiple Institution Review Board (covering the University 
of Colorado Denver and its affiliates: Children’s Hospital Colorado, Denver Health and Hospital Authority, 
University of Colorado Hospital, and the VA Eastern Colorado Health Care System) approved this study and 
waived the need for informed consent as part of study approval prior to data collection and analysis. The study 
was also approved by the VA CART-Electrophysiology (EP) program. All methods were carried out in accordance 
with relevant guidelines and regulations.

Cohort development.  Our cohort was a subset of CIED procedures captured by the CART program. CART 
is a national quality initiative integrated into the VA electronic medical record, which collects data about clin-
ical outcomes, co-morbidities, and procedural details, but does not include measurement of infections. CART 
reporting is mandatory for all cardiac catheterization procedures and optional for EP procedures, including 
device implantations and revisions. Approximately 20% of EP device procedures performed across the national 
VA healthcare system are captured by CART-EP. Multiple clinical and procedural variables are captured and 
combined with other data from the VA CDW to create a single national data repository14,15.

CIED procedures, including implantations and revisions of permanent pacemakers, implantable cardioverter 
defibrillators, biventricular pacemaker-implantable cardioverter-defibrillators, and biventricular pacemakers, 
entered into the CART-EP program during the period from 10/2007–9/2015 were considered for inclusion 

Figure 1.  Automated electronic surveillance for CIED infections as a part of infection prevention and control 
efforts.
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(N = 5753). Given the volume of CIED procedures performed and relatively low prevalence of CIED infections, 
an enhanced sampling approach was undertaken; details of the sampling process are described in prior published 
work and included in Supplementary Methods S114,15.

After development of the cohort, a sample of cases underwent manual review by a trained clinician (AA, 
PM, WBE) to identify CIED infections that occurred within 90 days of the index procedure, applying standard 
cardiac device infection definitions based on clinical symptoms, microbiology results, and/or clinician diagno-
sis, based on recommendations from the Centers for Disease Control National Healthcare Safety Network and 
multi-society guidelines16–18. Further details on cohort development and the manual review process, including 
how infections were measured and defined as well as the other variables collected, are available in Supplementary 
Methods S1 and S2 and related references14,15,17.

Diagnostic and treatment pathways and selection of potential identifying variables.  Diagnostic 
variables.  CIED infections can be diagnosed and treated in several ways (Fig. 2); these interventions generate 
orders and results that can potentially be leveraged for retrospective infection detection17. Many infections are 
first identified due to fever, which is recorded in vital signs data as a continuous numeric variable. Microbiologic 
testing generates an order, which is a structured data element in the EHR, and a result, which is unstructured and 
not standardized. Microbiologic cultures can be obtained from the site of the device (e.g., wound cultures) or can 
be blood cultures, used to diagnose systemic infection, such as endocarditis. Thus, there are four potential flags 
associated with microbiologic testing to diagnose CIED infections: 1) a blood culture order, 2) a wound culture 
order, 3) wound culture result and 4) a blood culture positive result. Microbiology testing is important because 
it is an essential part of infection diagnosis and an essential aspect of most infection surveillance definitions. If 
cultures are positive, they can also provide information about the organism causing the infection and guide anti-
biotic treatment. Diagnosis of CIED infections may also involve imaging procedures, such as echocardiography, 
often transesophageal echocardiography, due to how endocarditis is defined. Mechanisms of echocardiography 
ordering and reporting of results are highly variable and not standardized across the VA EHR.

Treatment variables.  Treatment of CIED infections generally involves incision and drainage of fluid collections, 
which may generate a structured procedure code, antimicrobials, which generate an antimicrobial order, and, 
in many cases, removal of the CIED with later replacement, thus generating a subsequent current procedural 
terminology (CPT) code. Another aspect of treatment is often clinical consultation, often with either infectious 
diseases or cardiology. Consultation is also recorded in various places throughout the EHR (clinical notes, orders, 
consult section) and is thus not a standardized data element.

Development of the surveillance algorithm.  Based on diagnostic and treatment pathways, we identified 
potentially relevant variables to develop the infection detection algorithm using structured data elements stored 
in CDW. Administrative billing codes, which are highly structured, were also considered for potential inclusion. 
Specifically, we used the Inpatient and Outpatient tables to obtain CPT and International Classification of Disease 
(ICD) 9 and 10 codes (Supplementary Methods S2), pharmacy tables for drug order data, Microbiology tables 
for laboratory orders, and vitals tables. These variables were classified as diagnostic of infection, treatment of 
infection, or billing for infection-related healthcare utilization. Unstructured variables, such as microbiology 
results, echocardiography completion, and consultation orders, where not considered for inclusion in the final 
identification model due to programming complexity and high facility-level variation in the text data; thus, inclu-
sion of these types of variables was felt to limit generalizability. However, these manually extracted variables were 
evaluated as part of a sensitivity analysis to determine if their inclusion would improve algorithm performance if 
available and searchable in some EHRs. In the sensitivity analysis, microbiology results were further sub-classified 

Figure 2.  Clinical process of CIED infection cases.
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into positive cultures with a likely infecting organism (probable pathogen) and positive cultures likely represent-
ing contamination.

Statistical analysis.  Demographic and clinical characteristics of CIED patients by infection status were 
compared. Chi-squared tests were used to compare categorical variables and Mann–Whitney Wilcoxon tests were 
used for continuous variables.

In order to build and test the infection surveillance algorithm, we randomly split the data into a training set, 
including approximately two-thirds of the observations, and a validation set of the remaining one-third19. Only 
the electronically-available structured variables (e.g. microbiology orders, rather than results) were considered for 
inclusion in the final tool, to ensure scalability and portability across EHRs. Based on the univariate association 
with infection status and clinical reasoning, the following were evaluated for inclusion in the flagging model: 
presence of a microbiology order, repeat procedure status, fever, blood, wound, antibiotic post-procedure, and a 
limited list of antibiotics commonly used to treat CIED infections post-procedure (Supplementary Note S3) SSI 
code (998.x), other CPT or ICD infection code (categorized as general infection code, material infection code 
or procedural infection code), and elective status for the procedure, which is routinely entered into the CART 
database at the time of the procedure.

Binary logistic regression was used to model the probability of an infection in the training data and chose the best 
combination of identifiers using the R function bestglm20, based on the Akaike information criterion (AIC), which 
is an estimate of relative quality of statistical models for a given set of data. We then used the GLM function with 
the caret package21 (with 3-fold cross-validation with 5 repeats, twoClassSummary and smote sampling in order to 
account for the rare outcome) in order to apply the model to the training data and validate on the test data. We used 
Youden’s method to choose the probability threshold to define positive infection status and to estimate the model 
performance measures22. To ensure model quality and robustness, we assessed calibration of the model using the 
givitiR package; a model is well calibrated if the predicted probabilities generated by the model accurately match the 
observed proportions of the response23. The goodness of fit of a logistic regression model can also be expressed by 
pseudo R-squared statistics, and we calculated Nagelkerke’s pseudo R2 of the logistic regressions of the training and 
test data using the selected predictors. This statistic is based on the log likelihood for the full model compared to the 
log likelihood for the baseline intercept-only model and rescaled to cover the full range of possible R2 values from 0 
to 124,25. We also explored a second modelling approach using elastic net regression and accounting for hospital-level 
correlation using the glmnet method in the caret package with a grid search to evaluate the best choice of alpha and 
lambda. All analyses were completed using SAS software version 9.4 (SAS Institute, Cary, NC) and R v3.5.026.

Results
The VA CART-EP database captured 5,753 CIED procedures from FY 2008–2015, representing 39 VA medical 
centers. 2,107 procedures among 2,068 CIED patients were manually reviewed (Table 1). The majority of patients 
were male (N = 2024/2068, 97.9%) and Caucasian (N = 1784/2068, 86.3%). Patients included in the cohort had a 
high rate of medical comorbidities; among the most prevalent were tobacco use (N = 1041, 50.3%) and diabetes 
(N = 977, 47.2%). Among manually reviewed cases, 97 CIED infections in 95 patients were identified within the 
90-day surveillance window. Full baseline demographic details are shown in Table 1 and additional information 
is available in Table 1 of a related reference15.

Variable Total (N = 2068)
No CIED infection* 
(N = 1973)

CIED Infection* 
(N = 95) P-value

Training Set 1,362 (65.9%) 1,299 (65.8%) 63 (66.3%) 0.92

Validation Set 706 (34.1%) 674 (34.2%) 32 (33.7%)

Demographics

Age (Median (IQR)) 71.7 (64.4–81.0) 71.9 (64.5–81.1) 68.6 (62.2–79.3) 0.06

Male Sex 2,024 (97.9%) 1,931 (97.9%) 93 (97.9%) >0.99

Race

   White 1,784 (86.3%) 1,698 (86.1%) 86 (90.5%) 0.29

   Black 248 (12.0%) 239 (12.1%) 9 (9.5%)

   Other 36 (1.7%) 36 (1.8%) 0 (0.0%)

Hispanic 148 (7.2%) 140 (7.1%) 8 (8.4%) 0.62

Comorbidities

Diabetes 977 (47.2%) 931 (47.2%) 46 (48.4%) 0.81

Tobacco Use 1,041 (50.3%) 989 (50.1%) 52 (54.7%) 0.38

Chronic Obstructive 
Pulmonary Disease 631 (30.5%) 595 (30.2%) 36 (37.9%) 0.11

Cerebrovascular Disease 482 (23.3%) 452 (22.9%) 30 (31.6%) 0.051

Peripheral Arterial Disease 473 (22.9%) 438 (22.2%) 35 (36.8%) 0.0009

Chronic Kidney Disease 675 (32.6%) 645 (32.7%) 30 (31.6%) 0.82

Dialysis 66 (3.2%) 62 (3.1%) 4 (4.2%) 0.54

Table 1.  Patient Characteristics for Index Device Procedure by Infection Status. Abbreviations: CIED = Cardiac 
Implantable Electronic Device. *Determined through manual review.
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Variable Total (N = 2107)
No CIED infection* 
(N = 2010)

CIED Infection* 
(N = 97) P-value

Training Set 1,387 (65.8%) 1,323 (65.8%) 64 (66.0%) 0.97
Validation Set 720 (34.2%) 687 (34.2%) 33 (34.0%)
Type of device
Biventricular Pacemaker 36 (1.7%) 34 (1.7%) 2 (2.1%) 0.68
Biventricular Pacemaker-ICD 282 (13.4%) 267 (13.3%) 15 (15.5%) 0.54
Permanent Pacemaker 1,204 (57.1%) 1,159 (57.7%) 45 (46.4%) 0.028
ICD 600 (28.5%) 565 (28.1%) 35 (36.1%) 0.089
Procedural variables
Elective procedure 1,589 (75.4%) 1,526 (75.9%) 63 (64.9%) 0.014
Index was revision procedure* 787 (37.4%) 734 (36.5%) 53 (54.6%) 0.0003
Repeat CIED procedure 91 (4.3%) 85 (4.2%) 6 (6.2%) 0.35
Diagnostic variables
Microbiology order 542 (25.7%) 453 (22.5%) 89 (91.8%) <0.0001
ID consult recorded* 122 (5.8%) 78 (3.9%) 44 (45.4%) <0.0001
Fever 23 (1.1%) 19 (0.9%) 4 (4.1%) 0.019
Culture positive* 99 (4.7%) 49 (2.4%) 50 (51.5%) <0.0001
Wound culture order 199 (9.4%) 144 (7.2%) 55 (56.7%) <0.0001
Wound culture positive* 55 (2.6%) 14 (0.7%) 41 (42.3%) <0.0001
Blood culture order 503 (23.9%) 425 (21.1%) 78 (80.4%) <0.0001
Blood culture positive* 58 (2.8%) 40 (2.0%) 18 (18.6%) <0.0001
Probable pathogen* 74 (3.5%) 24 (1.2%) 50 (51.5%) <0.0001
Type of probable pathogen*
CONS 14 (0.7%) 3 (0.1%) 11 (11.3%) <0.0001
Enterococcus 3 (0.1%) 2 (0.1%) 1 (1.0%)
Gram-negative Bacillus 10 (0.5%) 5 (0.2%) 5 (5.2%)
MRSA 10 (0.5%) 1 (0.0%) 9 (9.3%)
MSSA 12 (0.6%) 2 (0.1%) 10 (10.3%)

Pseudomonas aeruginosa 5 (0.2%) 1 (0.0%) 4 (4.1%)

Polymicrobial 12 (0.6%) 5 (0.2%) 7 (7.2%)

Streptococcal sp. 6 (0.3%) 4 (0.2%) 2 (2.1%)
Candida sp. 2 (0.1%) 1 (0.0%) 1 (1.0%)
Therapeutic Variablesa

Any antibiotic post-procedure (>72 h)b 978 (46.4%) 884 (44.0%) 94 (96.9%) <0.0001
Antibiotic from limited list post-procedure (>72 h) 880 (41.8%) 786 (39.1%) 94 (96.9%) <0.0001
Type of antibiotic post-procedure (>72 h)c

Amoxicillin 209 (9.9%) 187 (9.3%) 22 (22.7%) <0.0001
Atovaquone 1 (0.0%) 0 (0.0%) 1 (1.0%) 0.046
Cefazolin 64 (3.0%) 54 (2.7%) 10 (10.3%) <0.0001
Cefepime 59 (2.8%) 50 (2.5%) 9 (9.3%) <0.0001
Ceftriaxone 108 (5.1%) 93 (4.6%) 15 (15.5%) <0.0001
Cephalexin 184 (8.7%) 148 (7.4%) 36 (37.1%) <0.0001
Ciprofloxacin 220 (10.4%) 197 (9.8%) 23 (23.7%) <0.0001
Clindamycin 68 (3.2%) 61 (3.0%) 7 (7.2%) 0.023
Doxycycline 123 (5.8%) 109 (5.4%) 14 (14.4%) 0.0002
Linezolid 13 (0.6%) 10 (0.5%) 3 (3.1%) 0.019
Minocycline 19 (0.9%) 14 (0.7%) 5 (5.2%) <0.0001
Nafcillin 7 (0.3%) 4 (0.2%) 3 (3.1%) 0.0029
Rifampin 8 (0.4%) 3 (0.1%) 5 (5.2%) <0.0001
Trimethoprim-Sulfamethoxazole 107 (5.1%) 85 (4.2%) 22 (22.7%) <0.0001
Vancomycin 274 (13.0%) 215 (10.7%) 59 (60.8%) <0.0001
Billing Code Variables
Surgical Site Infection code 184 (8.7%) 111 (5.5%) 73 (75.3%) <0.0001
General infection code 143 (6.8%) 109 (5.4%) 34 (35.1%) <0.0001
Material infection code 2 (0.1%) 2 (0.1%) 0 (0.0%) >0.99
CPT infection code 1,726 (81.9%) 1,648 (82.0%) 78 (80.4%) 0.69

Table 2.  Procedural Characteristics for Device Procedures by Infection Status. Abbreviations: 
ICD = Implantable Cardioverter-Defibrillator, ID = Infectious Disease, CPT = current procedural terminology, 
CONS = Coagulase-negative Staphylococcus, MRSA = Methicillin-resistant Staphylococcus aureus, 
MSSA = Methicillin susceptible Staphylococcus aureus. *Identified from manual review. aAntibiotic use only 
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Univariate analysis identified several variables that were significantly associated with true CIED infection 
(Table 2). Diagnostic variables included presence of a wound or blood culture order (89/97 infections vs 453/2010 
uninfected controls, p < 0.0001). Wound culture orders (55/97 vs 144/2010, p < 0.0001) and blood culture orders 
(78/97 vs 425/2010, p < 0.0001) were also independently associated with true infections. Therapeutic flags 
associated with true infection included a drug order for the limited list of antibiotics after a 72-hour window 
post-procedure (94/97 vs 884/2010, p < 0.0001). Billing code identifiers for SSI (73/97 vs 111/2010, p < 0.0001; 
list of codes in Supplementary Methods S2 as well as general infection codes (34/97 vs 109/2010, p < 0.0001) were 
significant identifiers; material infection and CPT infections were not. A summary of antibiotic treatment regi-
mens against identified culprit pathogens of CIED infection cases is shown in Supplementary Table S4.

Sensitivity analysis of unstructured data elements.  In the CART-EP manual review data, the presence 
of any positive microbiologic result (50/97 vs 49/2010, p < 0.0001), as well as growth from a wound culture (41/97 
vs 14/2010, p < 0.0001) or growth in a blood culture (18/97 vs 40/2010), p < 0.0001) were also potential identifiers. 
Identification of a probable infecting organism (e.g. Staphylococcus spp) was also found to be a potential identifier 
(50/97 vs 24/2010, p < 0.0001). Infectious diseases consultations were also positively associated with true CIED infec-
tions (44/97 vs 78/2010, p < 0.0001). However, these unstructured and variable data elements were all excluded from 
consideration in the final detection algorithm due to their limited potential to be included in an operational tool.

The refined set of surveillance variables derived from the training set included in the surveillance algorithm 
is presented in Table 3 and Fig. 3. Among these, variables with the highest odds for identifying CIED infec-
tions included the presence of antibiotic order from the more limited set placed during the period>72 hours 
post-procedure (OR 17.76, 95% CI 4.11–76.79, p < 0.001), fever (OR 16.94, 95% CI 1.28–224.41, p = 0.032) bill-
ing code for SSI (OR 10.56, 95% CI 4.97–22.43, p < 0.001) and the presence of any microbiology order (OR 8.85, 
95% CI 3.93–19.89, p < 0.001).

When combined in a surveillance tool, the algorithm demonstrated high sensitivity and specificity in both 
the training set (84.38% and 93.58%, respectively) and the validation set (87.88% and 90.25%, respectively). The 
c-statistic for the algorithm in the training sample was 0.95 (95% CI, 0.92–0.98, Table 4). The negative predictive 
value (NPV) was 99.20% and 99.36% for training and validation sets and the positive predictive value (PPV) was 
38.85% (training) and 30.21% (validation, Table 4). Compared to the rates of infection in the CART-EP data, the 
algorithm overestimated true infections (10.0% estimated and 4.6% observed for the training set; 13.3% estimated 
and 4.6% observed for the validation set). The pseudo R2 values for the training and validation models were 57.9% 
and 58.4%, respectively (Supplementary Fig. S5). We investigated using elastic net regression, including the same 
set of possible identifiers and accounting for correlation of observations within a hospital, but this type of model 
did not significantly improve either calibration or estimation.

Discussion
Electronic, automated and semi-automated surveillance are important emerging tools in the epidemiologist’s arse-
nal as clinical data warehouses are increasingly available for improving bedside clinical care27. From a large sam-
pling of VA CIED procedures, we found that a combination of clinically-oriented variables from CIED infection 
diagnostic and treatment pathways and administrative billing codes demonstrated clinically useful sensitivity and 
specificity for flagging true cases of CIED infection (Fig. 4). Algorithms based on structured data elements to ret-
rospectively identify cases with a true infection can be used to expand infection surveillance to clinical care areas 
with limited infection prevention and surveillance coverage. Although the PPV was limited (~30%), the NPV was 
very high at 99%, demonstrating that the tool captured true infections well. This semi-automated flagging system 
could form the foundation of a surveillance program for measuring post-procedural CIED infections as part of 
a semi-automated process to expedite a manual review of cases most likely to have an infection; because only 
structured data elements are used, this tool has the potential to be easily implemented across many EHR systems.

Electronically augmented surveillance has great promise for expanding prevention to uncovered clinical areas, 
including procedural areas, such as the EP laboratory, and outpatient care. However, the best methodology to 
develop and implement these tools is an active area of research. Here, we used a methodology of first developing 
a list of potential identifiers based on clinical diagnostic and therapeutic pathways, and then mapped these poten-
tial identifiers to structured data elements in the EHR. A similar method of developing detection tools based on 
standard clinical processes could be used to expand detection to other areas with limited surveillance. In addition, 
EHR systems and clinical practice patterns may vary by institution, thus, a selection of the various elements iden-
tified could be customized to institutional-specific algorithms28. Future iterations could include advanced data 
extraction strategies, such as natural language processing and machine learning techniques, to further improve 
operating characteristics of the algorithm.

Prior work on CIED infection detection is limited. One prior single center study evaluated the utility of bill-
ing codes to measure rates of CIED infections; our data from a large, multicenter national sample suggests that 
this strategy may have high specificity but low sensitivity. In our study, 27.6% of true-positive cases in our anal-
ysis would not have been flagged using a system reliant on billing codes alone29. Our finding about the limited 

after a 72-hour window period following the index CIED procedure was applied given the frequent use of 
prophylactic antibiotics peri-procedure. bLimited List of antibiotics in Supplementary Note S3. cThere was 
no significant difference in frequency of the following antimicrobial prescriptions between the two groups: 
Ampicillin, Ampicillin/sulbactam, Azithromycin, Cefpodoxime, Cefprozil, Cefuroxime, Clarithromycin, 
Dapsone, Demeclocycline, Dicloxacillin, Erythromycin, Gentamicin, Levofloxacin, Metronidazole, 
Moxifloxacin, Penicillin, Rifaximin, Tetracycline.
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indicative utility of billing codes alone is similar to work in cardiac surgery, which similarly found that coding 
data had limited value for measuring post-surgical infections (PPV < 26%)30–32. The challenge of the limited sen-
sitivity of coding data is compounded by recent data which suggests that ICD-10 codes may even lower predictive 
probabilities than ICD-9 codes33.

We expanded upon prior research into semi-automated electronic surveillance tools by including structured 
variables available in commonly used EHRs that could be leveraged for CIED identification. In combining these 
variables, we developed and validated an electronic surveillance tool with excellent specificity and sensitivity, 
high NPV, and reasonable PPV, increasing the rate of case identification from 4–5% to 30–40%. The high NPV 
of the tool highlights the importance of the absence of clinical identifiers in ruling out cases that do not have an 
infection; this NPV can be leveraged to greatly streamline a manual review process.

Prior work demonstrates that a major barrier to implementing surveillance in outpatient and procedural areas 
is limited time and resources34,35; a semi-automated system that is easy to program and dramatically reduces chart 
review has the potential to bypass some of these implementation challenges to facilitate expansion of surveil-
lance. The substantial improvement in PPV markedly enhances the yield of a manual review process and reduces 

Identifiers OR 95% CI P-value

CIED infection antibiotic post-procedure 17.76 4.11–76.79 <0.0001

Fever 16.94 1.28–224.41 0.032

Surgical Site Infection Code 10.56 4.97–22.43 <0.0001

Microbiology order 8.85 3.93–19.89 <0.0001

Wound culture order 2.95 1.31–6.64 0.0092

Other ICD or CPT infection code 2.20 0.59–8.26 0.241721

Table 3.  Regression analysis of identifiers included in detection algorithm.

Figure 3.  Process of using electronic identifiers to develop a detection algorithm.

Characteristic Training Set Validation Set

AUC (95% CI) 0.96 
(0.94–0.98) 0.95 (0.92–0.98)

Sensitivity 84.38 87.88

Specificity 93.58 90.25

Positive-predictive Value 38.85 30.21

Negative-predictive Value 99.20 99.36

Table 4.  Algorithm Performance Characteristics for Training and Validation Sets.
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the time and resources necessary for infection detection. In addition, although the tool identified flagged some 
negative cases, it was calibrated to optimize case ascertainment and to triage and minimize the burden of man-
ual review, not to replace it entirely. A combined automated and manual approach to infection detection forms 
a powerful tool for generating accurate data not only on infection rates but also on quality and process metrics. 
Identifying patient safety metrics that can be acted upon to promote improvements in infection prevention strat-
egies is an important aspect of the response for averting additional procedure-related infections. Critical changes 
to patient safety and process could not be identified or implemented without the information generated during a 
detailed manual review and root cause analysis.

When considering implementation and adaption to other settings of care, it is useful to consider how each 
type of structured data element impacted the probability an adverse event occurred. For example, use of antimi-
crobial prescriptions post-procedure was highly sensitive but not specific. This lack of specificity is driven by the 
breadth of CIED infection pathogens and the diverse set of antimicrobials that can be selected to treat them15. 
Using a limited set of antibiotics—for example, training the algorithm to detect only antimicrobials directed 
toward common bacterial pathogens— might improve specificity but at the cost of potentially not detecting CIED 
infections caused by unusual, and potentially more severe, pathogens. Another approach to enhance the PPV of 
the tool might be to use combinations of identifiers such as drug-bug matches (i.e. specific antibiotic prescriptions 
that correspond to particular microbiology results) as a discrete variable. However, this would layer in additional 
complexity to programming and simultaneously reduce sensitivity. In our sample, approximately half of infec-
tions did not have positive blood or wound microbiology, thus, the process of requiring a microbiology result, 
let alone layering results with interaction terms, would miss more than half of the cases. In addition, our focus 
was on the use of structured data flags due to excellent NPV of these variables, and to ensure generalizability to a 
wide variety of EHRs. However, the use of typically unstructured data—such as information contained in clinical 
notes—may be an approach to improve PPV in future iterations.

The limitations of this study were largely due the dataset used to create and validate the algorithm and diffi-
culty in operationalizing clinical variables into electronic identifiers. We relied on CART-EP data to develop and 
validate the algorithm, and the selection process for these CIED procedures may limit the generalizability of our 
findings to other VA CIED procedures and procedures performed outside of the closed VA healthcare system. 
Our reliance on data available in VA records could mean that CIED infection occurring outside the VA system 
may not have been captured. However, we manually reviewed all scanned in outside hospital records and these 
were included as cases in the study; if they did not have clinical variables input into the VA EHR, these would have 
been included as “false negatives” in the development and assessment of the tool and reflected in the operating 
characteristics of the model. Further, prior studies demonstrate that the majority of patients return to the closed 
VA healthcare system for subsequent procedural care.

Regarding operational challenges, we found that wound culture results had excellent promise for infection 
detection, however, due the nature of the variable as free-text and not standardized, it is not easily measured using 
an automated system across multiple sites with highly variable documentation practices.

Finally, healthcare systems and practices are not static, but rather constantly evolving. Thus, automated infec-
tion surveillance algorithms that leverage clinical pathways, including this CIED infection flagging tool, will 

Figure 4.  Use of electronic identifier flags in detecting CIED infection cases. Made using https://www.meta-
chart.com/venn#. *3 CIED infection cases either did not have an antibiotic prescription or had antibiotics 
started within 72 hours of index procedure, among these three, 2 had microbiology order and positive culture 
and 1 had microbiology order, positive culture and billing code for SSI. **Positive growth on blood or wound 
culture.
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require ongoing adaption and updates as novel therapeutics are introduced and diagnostic strategies evolve. Thus, 
detection algorithms must move toward a learning health system model, with constant modifications and adap-
tations to maintain their estimative utility36.

Conclusions
Existing surveillance structures for CIED infections are absent in many institutions, partially due to limited 
resources for detection and monitoring35. This study demonstrates that electronic surveillance tools based on 
structured data elements can be developed with high sensitivity and specificity and have the potential to expand 
measurement with audit and feedback to clinical areas that have not been served by traditional surveillance 
programs. Future improvements could include strategies to enhance detection of variables primarily captured in 
clinical notes.
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