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The function of bacterial HtrA 
is evolutionally conserved in 
mammalian HtrA2/Omi
Hea-Jong Chung1,3,4, Mohammad Abu Hena Mostofa Jamal1,2,4 & Seong-Tshool Hong1*

Although the malfunction of HtrA2/Omi leads to Parkinson’s disease (PD), the underlying mechanism 
has remained unknown. Here, we showed that HtrA2/Omi specifically removed oligomeric α-Syn 
but not monomeric α-Syn to protect oligomeric α-Syn-induced neurodegeneration. Experiments 
using mnd2 mice indicated that HtrA2/Omi degraded oligomeric α-Syn specifically without affecting 
monomers. Transgenic Drosophila melanogaster experiments of the co-expression α-Syn and HtrA2/
Omi and expression of genes individually also confirmed that pan-neuronal expression of HtrA2/Omi 
completely rescued Parkinsonism in the α-Syn-induced PD Drosophila model by specifically removing 
oligomeric α-Syn. HtrA2/Omi maintained the health and integrity of the brain and extended the life 
span of transgenic flies. Because HtrA2/Omi specifically degraded oligomeric α-Syn, co-expression of 
HtrA2/Omi and α-Syn in Drosophila eye maintained a healthy retina, while the expression of α-Syn 
induced retinal degeneration. This work showed that the bacterial function of HtrA to degrade toxic 
misfolded proteins is evolutionarily conserved in mammalian brains as HtrA2/Omi.

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, characterized by the progres-
sive loss of dopaminergic neurons in the substantia nigra of the central nervous system1. The degeneration of 
the dopaminergic neurons of the substantia nigra results in clinical manifestations such as motor impairments, 
which involve resting tremor, bradykinesia, postural instability, gait difficulty and rigidity2. Although the degen-
eration of dopaminergic neurons directly leads to the clinical manifestations of PD, the pathogenic mechanism 
underlying the degeneration of dopaminergic neurons at the molecular level is still unclear. The most manifested 
pathophysiological feature of dopaminergic neurons of PD is an abnormal accumulation of oligomeric α-Syn in 
the form of Lewy bodies and Lewy neurites inside neurons, which represent the major hallmarks of PD3. α-Syn is 
a 140-a.a. presynaptic protein that plays an important role in maintaining a supply of synaptic vesicles in presyn-
aptic terminals4. α-Syn performs its normal biological function in neurons if present as a monomer. However, the 
monomeric form of α-Syn is naturally prone to adopt a β-sheet conformation to form oligomeric aggregates5. The 
oligomeric α-Syn has very strong neurotoxicity such that the aggregation plays a causative role in dopaminergic 
neuronal degeneration6.

Since the accumulation of misfolded α-Syn is a key to the pathology of PD, the question of how misfolded 
α-Syn is degraded by neurons has been actively investigated. Investigations over the last decades have elucidated 
that the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) work in conjunction 
to degrade α-Syn7,8. However, neither UPS nor ALP are specific pathways for α-Syn degradation but rather are for 
general intracellular protein turn-over pathways9,10. More importantly, none of the pathways have shown selec-
tivity toward oligomeric α-Syn, and thus almost all the wasted proteins in cells, including monomeric α-Syn, are 
degraded by the pathways. Therefore, the mechanisms for oligomeric α-Syn degradation pathway to relieve the 
toxicity of oligomeric α-Syn in neurons remain completely unknown.

One of the dilemmas in neurons concerns the lack of toxicity of native monomeric α-Syn; rather, it is essen-
tial for proper neuronal functions, while oligomeric α-Syn is very neurotoxic11. Because of monomeric α-Syn 
plays indispensable roles in neurons, the α-Syn knock-out mouse showed impaired spatial learning and working 
memory12. Considering that monomeric α-Syn has a naturally strong tendency to self-aggregate into neurotoxic 
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oligomers13,14, it would be reasonable to speculate that neurons have an unknown pathway that specifically recog-
nizes oligomeric α-Syn only to degrade oligomeric α-Syn without affecting the monomeric form.

HtrA2/Omi is a homolog of the bacterial heat shock protein HtrA (also known as DegP), which protects 
bacteria at elevated temperatures by specifically recognizing denatured proteins to degrade those proteins15–17. 
HtrA2/Omi is evolutionarily well-conserved with respect to amino acid sequence and its three-dimensional 
structure17, suggesting that the mammalian version of HtrA/DegP could also play proteolytic roles to specifi-
cally recognize and degrade denatured proteins in mammals. In fact, the HtrA2/Omi knockout mouse and the 
loss-of-function HtrA2/Omi mutant have both demonstrated that HtrA2/Omi functions as a neuroprotective 
protein to prevent PD5,18,19, Accordingly, mutations in HrA2/Omi have been repeatedly found in patients suffer-
ing from PD20,21. However, the molecular mechanism underlying the neuroprotective role of HtrA2/Omi in PD 
has remained unknown until now, although it is certain that HtrA2/Omi plays an essential role in preventing PD.

Because the main function of HtrA/DegP in bacteria is to recognize misfolded or aggregated proteins to 
specifically degrade those proteins, we speculated that HtrA2/Omi could play an important role in removing mis-
folded or aggregated proteins in mammals as it does in bacteria. Because all the in vivo and clinical data consist-
ently indicate that HtrA2/Omi is linked to PD progression and oligomeric α-Syn is the main misfolded protein 
aggregate in neurons, we investigated the potential molecular mechanism of HtrA2/Omi in terms of whether it 
specifically inhibits the formation of misfolded α-Syn or degrades oligomeric α-Syn to prevent PD. All of our in 
vitro and in vivo experiments using transgenic Drosophila and mice showed that HtrA2/Omi specifically recog-
nizes and degrades oligomeric α-Syn but not monomeric α-Syn, indicating that HtrA2/Omi prevents oligomeric 
α-Syn-induced neurotoxicity to protect neurons from neurodegeneration by removing specifically misfolded or 
aggregated proteins, i.e., oligomeric α-Syn, just like it does in bacteria.

Results
HtrA2/Omi specifically recognized and degraded oligomeric α-Syn.  To confirm our speculation 
concerning whether the function of HtrA2/Omi in mammals is evolutionary conserved to protect neurons from 
oligomeric α-Syn-induced toxicity, we examined how human recombinant HtrA2/Omi (hOmi) produced in 
E. coli BL21 (DE3) pLysS-pET28a+ reacted with oligomerized α-Syn. As shown in Fig. 1a, hOmi specifically 
removed oligomeric α-Syn at 37~41 °C without affecting monomeric α-Syn. These data raised both possibili-
ties that HtrA2/Omi removed oligomeric α-Syn by degradation or a chaperone action on oligomeric α-Syn to 
re-establish its monomeric form. To investigate these two possibilities of hOmi on oligomeric α-Syn, we specifi-
cally isolated oligomeric α-Syn from oligomerized α-Syn (Supplementary Fig. 1a) using a size exclusion column. 
hOmi treatment of the purified oligomeric α-Syn resulted in complete degradation, while hOmi treatment had 
no effect on monomeric α-Syn (Fig. 1b). We further confirmed the oligomer-specific degradation of α-Syn by 
hOmi using the oligomer-specific fluorescent dye thioflavin-T (ThT). Supplementary Fig. 2 shows that hOmi 
not only degraded oligomeric α-Syn specifically but also in a manner that was dose-dependent on its substrate, 
oligomeric α-Syn, indicating that hOmi precisely recognizes only oligomeric α-Syn. These results clearly indi-
cated that hOmi specifically recognized and degraded oligomeric α-Syn without affecting monomeric α-Syn, a 
native form of α-Syn. In addition, because of the specific removal of oligomeric α-Syn by hOmi, co-treatment of 
oligomerized α-Syn consisting of a mixture of oligomeric and monomeric α-Syn resulted in a significant increase 
in cell viability in response to hOmi in a dose-dependent manner (Supplementary Fig. 3).

HtrA2/Omi is an evolutionarily well-conserved serine protease, and its protease activity is inhibited by 
UCF-1017. As expected, UCF-101 completely inhibited the oligomeric α-Syn-specific protease activity of hOmi 
(Fig. 1a,b). These results indicated that the nucleophilic attack reaction by serine in the active site of hOmi was 
responsible for the oligomer-specific degradation of α-Syn. After identifying the enzymatic characteristics, we 
further analyzed the enzymatic kinetics of oligomeric α-Syn hydrolysis by hOmi after labeling α-Syn with ThT. 
The Lineweaver-Burk plot on the reactions yielded a Km value of 2.569 µM and Vmax value of 2.223 nmol/min/
mg protein for oligomeric α-Syn degradation. This experiment revealed the enzymatic activity of hOmi against 
oligomeric α-Syn (Fig. 1c).

Loss of HtrA2/Omi led to an accumulation of oligomeric α-Syn in mouse brain.  The in vitro 
experiments examining the effects of HtrA2/Omi on oligomeric α-Syn raised questions regarding the in vivo role 
of HtrA2/Omi. Before investigating the in vivo functions of HtrA2/Omi, we tested whether hOmi could function 
as a general protease like other serine proteases, such as trypsin, or as a specific protease for particular substrates. 
Coincubation of hOmi with brain extracts from mnd2, HtrA2/Omi-null mutant, mice and wild type did not 
reveal any noticeable proteolytic degradation unlike proteinase K (Fig. 2a), which indicated that hOmi functioned 
as a very specific protease. Western blotting of the gel with a α-Syn-specific monoclonal antibody showed that 
the mnd2/mnd2 mouse accumulated a large quantity of oligomeric α-Syn, unlike the wild type littermate control 
(Fig. 2b). The accumulation of a large quantity of oligomeric α-Syn in mnd2 mice cast light on the pathogenic 
mechanism by which the mutation of HtrA2/Omi causes PD. Since oligomeric α-Syn directly causes PD11,14,22, 
it is reasonable that the accumulation of a large quantity of oligomeric α-Syn in mnd2 mice induces PD. hOmi 
treatment of the total protein extract from mnd2 mice resulted in complete degradation of the accumulated α-Syn 
oligomers without affecting the monomers (Fig. 2b). This result suggests that the loss of HtrA2/Omi, as in mnd2/
mnd2 mice, causes PD by the loss of its ability to degrade oligomeric α-Syn.

If the proteolytic activity of HtrA2/Omi is required to prevent oligomeric α-Syn-induced neurotoxicity, the 
intracellular localization of HtrA2/Omi and α-Syn should be equivalent. The immunohistochemical confocal 
microscopy experiments examining the substantia nigra and striatum of 4-week-old mnd2/mnd2 mice and their 
age-matched wild-type littermates confirmed the co-localization of HtrA2/Omi and α-Syn in mouse brain tissue 
(Fig. 2c), indicating that the intracellular localization of HtrA2/Omi and α-Syn is equivalent. The immunocy-
tochemical study showed that α-Syn and HtrA2/Omi were located in mitochondria (Fig. 2d) and ER (Fig. 2e). 
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Overall, the mnd2 mouse experiments suggested that the failure of HtrA2/Omi to remove neurotoxic oligo-
meric α-Syn in the ER and mitochondria led to ER stress and mitochondrial dysfunction in neurons through 
the accumulation of a large quantity of oligomeric α-Syn, the hallmark of PD pathogenesis. Although ER stress 
and mitochondrial dysfunction in neurons are the most evident pathological phenomena observed in PD23,24, the 
mechanisms underlying ER stress and mitochondrial dysfunction in PD neurons have not been elucidated. This 
work clearly showed the pathological mechanism of ER stress and mitochondrial dysfunction in PD.

Pan-neuronal expression of hOmi rescued Parkinsonism in a PD Drosophila model.  After 
observing the specific degradation of oligomeric α-Syn by hOmi in mnd2 mice, we created a transgenic hOmi 
Drosophila with w1118 Drosophila melanogaster by inserting the full-length hOmi gene under the control of the 
UAS promoter (UAS-hOmi), where the heat shock 70 promoter was used to drive the expression of transposase 
(Fig. 3). The transgenic hOmi Drosophila line was heterozygous for the dominantly marked balancer chromo-
some carrying a dominant mutation, CyO, which causes curly wings for easy detection. From the results of the 
genotyping and protein expression levels of transgenic hOmi Drosophila flies, Tg4 (x/y; hOmi/Cyo; +/+), in 
which UAS-hOmi was integrated into chromosome 2, was identified as the best hOmi transgenic line for subse-
quent experiments (Supplementary Fig. 4).

The hOmi Drosophila Tg4 was bred with a Drosophila model of PD (α-Syn Drosophila) carrying the homozy-
gous human α-Syn gene (UAS-α-Syn) on chromosome 3 (Supplementary Fig. 5). Female α-Syn Drosophila were 
mated with male hOmi Drosophila, and + /hOmi; α-Syn/+ flies were selected based on the dominant phenotypes 
of the CyO mutation. The F1 generation, +/hOmi; α-Syn/+ flies, were crossed to generate various genotypes. 
The final homozygous x/y; hOmi/hOmi; α-Syn/α-Syn flies were selected after genotyping the progenies from 
the F2 generation. The male hOmi/hOmi; α-Syn/α-Syn flies were crossed with virgin female elav-GAL4 flies for 
pan-neuronal co-expression of hOmi and α-Syn (hOmi/α-Syn Drosophila, x/y; +/hOmi; +/α-Syn).

Figure 1.  In vitro experiment showing that hOmi recognized and degraded specifically oligomeric α-Syn. 
(a) Removal of α-Syn oligomers (10 µg/mL) by hOmi (10 µg/mL) during the oligomerization of α-Syn at 
different temperatures. Treatment of UCF-101 (1 mM), a hOmi inhibitor, completely inhibited the oligomeric 
α-Syn-specific removal activity of hOmi. (b) Complete degradation of oligomeric α-Syn (10 µg/mL) without 
affecting monomeric α-Syn (10 µg/mL) by hOmi (10 µg/mL) at different temperatures but not in the presence 
of UCF-101 (1 mM). Treatment of UCF-101 (1 mM), a hOmi inhibitor, completely inhibited the oligomeric 
α-Syn-specific degradation activity of hOmi. (c) The Michaelis-Menten saturation curve (upper panel) and 
Lineweaver–Burk plot (lower panel) of hOmi for oligomeric α-syn. The enzyme kinetic study was conducted 
after labeling oligomerized α-Syn with the oligomer-specific fluorescent dye ThT.
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Figure 2.  HtrA2/Omi specifically recognized and degraded oligomeric α-Syn in mouse brain. (a) hOmi  
(10 μg/mL) treatment on the total protein extracts of nigrostriatal tissues of wild-type, mnd2/+ and mnd2/
mnd2 mice did not show any noticeable degradation by SDS-PAGE comparing the digestion with proteinase 
K (10 μg/mL). (b) Western blotting analysis on the total protein extracts with mouse anti-human α-Syn 
(4D6) revealed a significant accumulation of oligomeric α-Syn in the nigrostriatal tissues of mnd2/mnd2 
mice and complete degradation of α-Syn oligomers after hOmi treatment, without affecting monomer. (c) 
Immunohistochemical confocal microscopy on the nigrostriatal tissue of wild-type, mnd2/+ and mnd2/mnd2 
mice revealed the co-localization of α-Syn (green) and HtrA2/Omi (red), with significantly higher levels of 
α-Syn accumulation in mnd2/mnd2 mice. Representative images are shown along with the image analysis 
graph. (d) Immunostaining microscopy on the neurons in the substantia nigra and striatum showed co-
localization of α-Syn (green), HtrA2/Omi (green) and mitochondria (red with Mito Tracker). Scale bar, 10 µM. 
(e) Immunostaining microscopy on neurons in the substantia nigra and striatum showed co-localization of 
α-Syn (green), HtrA2/Omi (green) and endoplasmic reticulum (red with ER marker PDI). Scale bar, 10 µM.
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Since the Parkinsonism phenotype of α-Syn Drosophila is characterized by locomotor defects accompanied 
by reduced survivability25,26, locomotor defects and survivability were tested in the hOmi, α-Syn and hOm-
i/α-Syn Drosophila lines to assess the effect of hOmi on α-Syn-induced Parkinsonism (Fig. 4). As shown in 
Fig. 4a, loss of climbing ability of α-Syn Drosophila was completely rescued by co-expression with hOmi. The 
performance index of locomotion was significantly lower in α-Syn Drosophila than hOmi/α-Syn Drosophila or 
hOmi Drosophila of the same age. As previously reported, the survival rate of α-Syn Drosophila was significantly 
reduced as a phenotype of Drosophila Parkinsonism. However, the survival rate of hOmi/α-Syn Drosophila was 
increased as much as wild type, indicating that HtrA2/Omi completely rescued the Drosophila Parkinsonism 
induced by α-Syn (Fig. 4b). Kaplan–Meier Survival analyses also showed that HtrA2/Omi completely rescued 
the Drosophila Parkinsonism (Supplementary Fig. 6). Overall, pan-neuronal co-expression of hOmi with α-Syn 
completely rescued the Parkinsonism phenotypes of α-Syn Drosophila. Additionally, it is interesting to note that 
pan-neuronal sole expression of hOmi (hOmi Drosophila) resulted in better performance in the locomotor reac-
tion and increased survival rate compared with the wild type control.

Human HtrA2/Omi rescued the α-Syn-induced neurotoxicity in a PD Drosophila model by 
oligomeric α-Syn-specific degradation.  To investigate how HtrA2/Omi rescues α-Syn-induced neu-
rotoxicity in Drosophila, histological examinations were performed using the hOmi/α-Syn Drosophila line 
along with wild-type, hOmi and α-Syn Drosophila lines. Immunohistochemical confocal microscopy using an 
oligomer-specific monoclonal antibody, anti-α-Syn (ASy05), on brain sections showed that co-expression of 
hOmi and α-Syn completely eliminated the oligomeric α-Syn (Fig. 3a,b), which is consistent with the in vitro 
and mouse experiments (Figs. 1 and 2). Quantification of the green fluorescent intensity in the flies definitively 

Figure 3.  HtrA2/Omi rescued Parkinsonism and prevented the accumulation of oligomeric α-Syn in a PD 
Drosophila model. (a, b) Immunohistochemical confocal microscopic results on the brains of transgenic 
flies expressing hOmi (indicated in red with anti-hOmi), α-Syn (indicated in green with anti-α-Syn) or 
hOmi/α-Syn at 40-day-old male a and female flies b. The α-Syn was stained with an oligomeric α-Syn-specific 
monoclonal antibody, anti-α-Syn (ASy05). Scale bar, 100 µM. (c) The relative intensity of oligomeric α-Syn 
immunofluorescence in the images in a, b. (d) Western blot analysis of α-Syn and hOmi expression in the 
transgenic Drosophila brains. The Western blots on the brain homogenates from control flies and transgenic 
flies expressing hOmi, α-Syn or hOmi/α-Syn at 40-day-old male (left panel) and female flies (right panel) 
were probed with anti-α-Syn (4D6) or anti-HtrA2/Omi (AA134–458). Values are the mean ± SEM from three 
independent experiments. ***p < 0.001.
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revealed a large quantity of oligomeric α-Syn accumulation only in α-Syn Drosophila (Fig. 3c). However, there 
were no detectable α-Syn oligomers in hOmi/α-Syn Drosophila. We further confirmed the specific degradation 
of α-Syn oligomers by hOmi with total protein extracts of hOmi/α-Syn fly brains (Fig. 3d). Anti-α-Syn antibody 
detected both oligomeric and monomeric α-Syn in α-Syn Drosophila. However, only monomeric α-Syn was 
detected by western blotting of hOmi/α-Syn Drosophila. This in vivo result clearly confirmed that HtrA2/Omi 
specifically recognized and degraded oligomeric α-Syn without affecting monomeric α-Syn. Considering that 
oligomeric α-Syn has strong neurotoxicity to function as an etiological agent for PD while monomeric α-Syn 
lacks neurotoxicity, rather playing an essential role in maintaining a supply of synaptic vesicles in presynaptic 
terminals27,28, this result shed light on how hOmi provides a neuroprotective function in PD.

We further investigated Drosophila brains after immunostaining with anti-α-Syn and anti-HtrA2/Omi anti-
bodies. An age-dependent accumulation of α-Syn clearly caused the accumulation of Lewy bodies in α-Syn 
Drosophila, whereas co-expression of hOmi with α-Syn in hOmi/α-Syn Drosophila completely prevented the 
accumulation of Lewy bodies, and the overall integrity of the brain tissue was the same as the normal control 
(Fig. 5a,b). The integrity of the brain tissue was observed in both young and aged hOmi/α-Syn Drosophila as in 
the case of control flies and hOmi Drosophila, but not in aged α-Syn Drosophila due to neurodegeneration. The 
brains of 40-day-old α-Syn Drosophila showed a clear neuronal loss with astrocytosis and the appearance of Lewy 
bodies both in male (Fig. 5a) and female flies (Fig. 5b). In accordance with the previous results concerning the 
function of hOmi in oligomeric α-Syn-specific degradation, this result again confirmed that hOmi rescued the 
α-Syn-induced neurotoxicity in α-Syn Drosophila.

Human HtrA2/Omi counteracted the α-Syn-induced developmental defect in Drosophila eye.  
It has been previously observed that the expression of α-Syn in the developing eye causes retinal degeneration 
in Drosophila29. Since α-Syn-induced retinal degeneration well-represented α-Syn-induced neurotoxicity, we 

Figure 4.  HtrA2/Omi rescued Parkinsonism in a PD Drosophila Model. (a) The locomotion assay results of 
hOmi, α-Syn, or hOmi/α-Syn flies measured by climbing ability against negative geotaxis at young (10 days) 
and old (40 days) ages (n = 15). (b) The survival rates of hOmi, α-Syn, or hOmi/α-Syn flies at young (10 days) 
and old (40 days) ages (n = 100). Values are the mean ± SEM from three independent experiments. NS, not 
significant, **p < 0.01, ***p < 0.001.
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Figure 5.  HtrA2/Omi prevented the formation of Lewy bodies and maintained brain integrity in a PD 
Drosophila model. (a) Immunohistochemical staining images on the midbrains of the transgenic flies expressing 
hOmi, α-Syn or hOmi/α-Syn with either anti-α-Syn or anti-hOmi antibody showed Lewy bodies (indicated as 
arrows) at 10 and 40-day-old male flies (n = 30). (b) Immunohistochemical staining images on the midbrains 
of the transgenic flies expressing hOmi, α-Syn or hOmi/α-Syn with either anti-α-Syn or anti-hOmi antibody 
showed Lewy bodies (indicated as arrows) at 10 and 40-day-old female flies (n = 30). The hOmi was stained 
with anti-hOmi (AA0134–458) followed by horse anti-mouse IgG (H + L) secondary antibody. The α-Syn was 
stained with an oligomeric α-Syn-specific monoclonal antibody, anti-α-Syn (ASy05), followed by horse anti-
mouse IgG (H + L) secondary antibody. Scale bar, 50 µM.
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crossed the GMR-GAL4 driver line with the α-Syn, hOmi and hOmi/α-Syn Drosophila lines to drive the expres-
sion of transgenes in the ommatidial unit and selected the transgene-expressed flies based on the dominant phe-
notype of the CyO mutation of GMR-GAL4. The eye-specific expression of α-Syn clearly resulted in degeneration 
of retina (Fig. 6). As the α-Syn Drosophila aged from 10 to 40 days, substantial vacuolar changes became evident, 
which indicated that α-Syn acted as an etiological agent for retinal degeneration. In contrast, co-expression of 
hOmi with α-Syn in hOmi/α-Syn Drosophila did not show any retinal degeneration in either male (Fig. 6a) or 
female flies (Fig. 6b).

Additionally, the expression of α-Syn led to developmental defects of the eyes, showing a loss of general 
retinal tissue integrity and roughness of the eye (Fig. 6). Serious eye defects were observed in both male and 
female α-Syn Drosophila, and the eye defects became more serious as the flies aged (bottom panel of Fig. 6c,d). 
In contrast, hOmi/α-Syn Drosophila did not show any eye defects, and the eye phenotype was equivalent to the 
normal control (GMR-GAL4) and hOmi Drosophila (Fig. 6c,d). Scanning electron microscopy also revealed seri-
ous defects of the α-Syn Drosophila eye and the normal undamaged eye of hOmi/α-Syn Drosophila (Fig. 6e,f). 
Ommatidial disarray was significantly increased in α-Syn Drosophila compared with hOmi/α-Syn Drosophila, 
hOmi Drosophila or the normal control (GMR-GAL4), and the difference became more evident as the flies 
increased in age (bottom panel of Fig. 6c,d). Furthermore, the bristle of the eye of α-Syn Drosophila was predom-
inant and became seriously lost as the flies aged. However, this phenomenon was not observed in hOmi/α-Syn 
Drosophila, hOmi Drosophila or the normal control (GMR-GAL4) (Fig. 6g,h). This result clearly demonstrated 
the neuroprotective role of hOmi in α-Syn-induced neurodegeneration.

Discussion
HtrA2/Omi is a mitochondrial protein with high homology to a bacterial heat shock protein15,16. Therefore, it was 
speculated that HtrA2/Omi would function similarly to the bacterial protein to protect cells from stress-induced 
toxicity caused by misfolded proteins. Despite its protective role in bacteria, in vitro studies have shown that 
HtrA2/Omi acts as a pro-apoptotic protein30. HtrA2/Omi is released into the cytosol from mitochondria during 
apoptosis and degrades inhibitor of apoptosis proteins (IAPs) such as XIAP and CIAP1/230–32. The degradation of 
these IAPs by HtrA2/Omi activates both caspase-dependent and -independent apoptotic pathways31,32.

Considering the pro-apoptotic characteristics of HtrA2/Omi, it would be natural to think that HtrA2/Omi 
could participate in a disease-escalating process rather than a disease-protecting process. However, in vivo ani-
mal experiments from both mice and insects have shown that HtrA2/Omi does not play a pro-apoptotic role, 
in contrast to the in vitro findings17,33. Rather, HtrA2/Omi is not only dispensable for apoptosis but also allows 
brains to be maintained a healthy state. This work showed the same basic trend as the previous results of in vivo 
HtrA2/Omi expression experiments. As shown in Figs. 4~5, expression of HtrA2/Omi in the Drosophila brain not 
only maintained the health and integrity of the brain but also increased life span. Thus, hOmi Drosophila showed 
demonstrated that the functions of HtrA2/Omi are essential for maintaining the health of the brain. Although 
apoptosis is the end of life to cells, some apoptosis is required to maintain the healthy state of multicellular organ-
isms. In this context, the paradoxical results obtained for HtrA2/Omi in vitro and in vivo provide an abstruse 
example of the life process of multicellular organisms.

In accordance with pan-neuronal expression experiments of HtrA2/Omi in vivo, both of the HtrA2/Omi 
knock-out mouse and the natural HtrA2/Omi loss-of-function mutant mouse demonstrated that HtrA2/Omi 
functions as a neuroprotective protein to prevent PD18,34. The presence of mutations/polymorphisms in HtrA2/
Omi in sporadic PD patients further solidified the link of HtrA2/Omi to PD19. Due to the functional loss of 
HtrA2/Omi in vivo and clinical observations showing an association of HtrA2/Omi with PD, HtrA2/Omi was 
named PARK13 to represent a PD gene19.

Because mammalian HtrA2/Omi binds to PINK1 and the phosphorylation of HtrA2/Omi is dependent 
on PINK135, it has been suggested that HtrA2/Omi functions downstream of the PINK1/Parkin pathway. 
However, extensive loss-of-function-based genetic interaction studies using Drosophila have failed to show 
an association of HtrA2/Omi either upstream or downstream of PINK126,36. Gene interaction studies using 
mice have also shown that overexpression of Parkin does not rescue neurodegeneration in the HtrA2/Omi 
mutant37. These studies clearly indicate that HtrA2/Omi does not function in the PINK1/Parkin pathway. 
Although HtrA2/Omi certainly plays a neuroprotective role to prevent PD, the functional mechanism of 
HtrA2/Omi has remained mysterious until now. The gene interaction studies in this work clearly showed 
that HtrA2/Omi specifically degraded only the neurotoxic form of α-Syn, oligomeric α-Syn, without affect-
ing non-toxic normal α-Syn (monomeric α-Syn). Complete rescue of oligomeric α-Syn-induced toxicity in 
vivo sheds light on the etiology of PD. Since PINK1 certainly phosphorylates HtrA2/Omi, there is a possi-
bility that PINK1 may be involved in the regulation of HtrA2/Omi, although HtrA2/Omi does not function 
in the PINK1/Parkin pathway.

Thus far, thirteen genes that cause PD have been identified. The etiopathogenic mechanism of PD involving 
these genes can be grouped into two pathways: disruption of PINK1-associated phosphorylation in mitochondria 
and neurotoxic protein aggregation associated with α-Syn. Because both in vitro and genetic studies have sug-
gested that HtrA2/Omi functions downstream of PINK1, our results could provide a key piece of the PD puzzle 
that links these two pathways at the molecular level.

The results of this study provide new findings about the neuroprotective role of HtrA2/Omi based on its ability 
to detoxify neurotoxic oligomeric α-Syn in PD. α-Syn is degraded by autophagy and the proteasome38; however, 
these degradation pathways also degrade non-amyloidogenic monomeric α-Syn, indicating that they are not 
related to the etiopathogenesis of PD. The oligomeric form of α-Syn is known to be resistant to all proteases, 
including proteinase K39, and the clearance mechanism for amyloidogenic α-Syn has remained unknown. Our 
results show that oligomeric α-Syn is specifically degraded in neurons by HtrA2/Omi to prevent PD. HtrA2/Omi 
not only plays a critical role in the prevention of PD, but our results are also in good agreement with the previous 
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observation that HtrA2/Omi functions as a chaperone to detoxify oligomeric Aβ into monomeric Aβ17. Thus, 
HtrA2/Omi might be a key protein that relieves the stress caused by various amyloidogenic neuronal proteins 
such as oligomeric α-Syn and oligomeric Aβ.

Figure 6.  HtrA2/Omi counteracted the α-Syn-induced developmental defects in Drosophila eyes. (a, b) The 
H&E staining images of retinal sections of the transgenic flies expressing hOmi, α-Syn, or hOmi/α-Syn, at 10 
and 40-day-old male a and female flies b (n = 30). Scale bar, 50 µM. (c, d) The light microscopic images of the 
eyes of the transgenic flies expressing hOmi, α-Syn, or hOmi/α-Syn at 10 and 40-day-old male c and female 
flies d (n = 30). Scale bar, 100 µM. (e, f) The scanning electron microscopic images of the eyes of the transgenic 
flies expressing hOmi, α-Syn, or hOmi/α-Syn at 10 and 40-day-old male e and female flies f (n = 30). Scale bar, 
50 µM. The 4 × magnifications are presented in the square box. (g, h) Roughness counting of eye phenotypes 
based on normal phenotypes, loss of bristles and ommatidial disarray of the transgenic flies expressing hOmi, 
α-Syn, or hOmi/α-Syn at 10 and 40-day-old male g and female flies h (n = 30). Values are the mean ± SEM 
from three independent experiments. NS, not significant, *p < 0.05, ***p < 0.001.
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Amyloidogenic proteins in mammalian brains such as Aβ, α-Syn and Prion share common biophysical and 
biochemical properties each other40. These proteins are prone to adopt misfolded and aggregated conformation 
as oligomeric forms to cause neurodegenerations: Aβ in the case of Alzheimer’s disease, α-Syn in the case of 
Parkinson’s disease and prion in the case of Creutzfeldt-Jakob disease40. In this regard, it would be very interest-
ing to investigate the role of HtrA2/Omi on aggregated or oligomerized Aβ, α-Syn and Prion. In addition, these 
proteins are known to be present as different forms of oligomers with different levels of cytotoxicity. However, 
the etiological form of oligomers for neurodegeneration has not identified yet despite extensive efforts. Based on 
the neuroprotective function of HtrA2/Omi by degrading oligomeric α-Syn in vivo and the stained characteristic 
of in vitro oligomeric α-Syn with ThT, it seems to be that HtrA2/Omi degrades the toxic oligomeric form of oli-
gomers etiologically responsible for PD.

It is well-known that the functions of most proteins are evolutionarily conserved. Bacteria have HtrA that spe-
cifically degrades misfolded proteins through its protease activity41. The bacterial homolog of HtrA, HtrA2/Omi, 
functions as a protease to specifically degrade a type of misfolded protein, i.e., oligomeric α-Syn. Considering that 
the original function of HtrA was to degrade misfolded protein through its protease activity, it is very interesting 
to note that the function of the mammalian version of HtrA, HtrA2/Omi, is evolutionarily conserved to degrade 
misfolded protein, i.e. oligomeric α-Syn. Because oligomeric α-Syn is a typical example of misfolded proteins, the 
original function of HtrA seems to be perfectly conserved in mammalian brains.

Methods and Materials
Reagents and antibodies.  The reagents used in all experiments and antibodies used for western blot or 
immunohistochemical analysis are listed in the Supplementary Table 1.

Recombinant hOmi protein expression and purification.  The plasmid construct encoding hOmi 
(134–458) was generated using the pET28a+ vector (Novagen Merck Millipore). E. coli BL21 (DE3) pLysS 
(Stratagene California) was transfected with the recombinant vector construct by electroporation. A single col-
ony of E. coli BL21 (DE3) pLysS-pET28a+-HtrA2/Omi was grown at 37 °C/250 rpm in 1 L LB medium containing 
50 µg/mL kanamycin until the OD reached ~ 0.8. One millimole of IPTG was added to the culture, followed by 
further culture for 5 h at 20 °C/250 rpm to induce protein expression. After induction of heterologous protein, the 
bacterial cells were centrifuged at 6,000 × g for 15 min and stored at either −20 °C or at −80 °C until further use. 
The harvested bacterial pellet from the 1-L culture was washed once with PBS and resuspended in 20 mL of native 
cell lysis buffer A (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2.5 mM EDTA, 0.5% Triton X-100, 4 mM MgCl2, 
50 µg/mL DNase I, 0.5 mg/mL lysozyme and protease inhibitor cocktail (Roche Applied Science). After incuba-
tion at room temperature for 30 min, the lysate was subjected to sonication 10 times for 10 sec with a burst speed 
of 6 at high intensity with a 1 min cooling period on ice using the ultrasonic homogenizer (Bandelin Sonopuls HD 
2070). Following sonication, 20 mL of denaturing buffer B (50 mM Tris-HCl, pH 8.0, 10 M urea, 500 mM NaCl 
and 20 mM imidazole) was added to the above bacterial cell lysate, followed by sonication 10 times for 10 sec 
with a burst speed of 6 at high intensity with a 1 min cooling period on ice. Thereafter, the bacterial cell lysate 
was centrifuged at 20,000 × g for 1 h at 4 °C, and the supernatant was allowed to solubilize at room temperature 
overnight with constant stirring on a magnetic stirrer. The solubilized protein solution was centrifuged at 20,000 
× g for 1 h to remove the insoluble materials, followed by an incubation at 4 °C for 1 h with gentle agitation to bind 
to a 5-mL Ni-NTA agarose affinity column (Invitrogen) pre-equilibrated with 30 mL of protein denaturing buffer 
C (50 mM Tris-HCl, pH 8.0, 5 M urea, 300 mM NaCl) containing 10 mM imidazole. After binding, the column 
was washed sequentially with 30 mL and 75 mL of buffer C containing 10 mM and 50 mM imidazole, respectively. 
The denatured protein was then eluted with three column volumes of buffer C containing 500 mM imidazole. The 
Ni-NTA fractions were re-purified on a PD-10 column (Amersham Pharmacia Biotech) equilibrated with buffer 
C, followed by elution with the same buffer according to the manufacturer’s instructions. After determining the 
protein concentration using the Bradford assay kit (Thermo Fisher Scientific), the protein was reduced by DTT to 
a final concentration of 10 mM at 37 °C for 1 h. Thereafter, the protein was refolded in optimized protein refolding 
buffer D (50 mM Tri-HCl, pH 8.5, 500 mM NaCl, 5 mM EDTA, 5 mM GSH, 0.5 mM GSSG, 500 mM arginine and 
15% glycerol) using a rapid-dilution method by maintaining the final protein concentration at 40–50 µg/mL with 
constant stirring overnight at 4 °C. Soluble refolded protein was concentrated at 4 °C on an Amicon stirred cell 
ultrafiltration unit using an YM-10 membrane (Millipore Sigma Aldrich). Further purification of the refolded 
protein was performed on a PD-10 column equilibrated with buffer E (20 mM HEPES, pH 7.5, 100 mM NaCl). 
The protein was eluted using the same buffer, and the purified protein concentration was stored at −80 °C in 20% 
glycerol.

In vitro enzymatic assay of HrA2/Omi.  Commercially purchased human recombinant α-Syn protein 
(r-Peptide) was used in this work. For the preparation of oligomeric α-Syn, human recombinant monomeric 
α-Syn was diluted in NaP buffer, pH 7.4, to a final concentration of 10 µg/mL and incubated at 37 °C. Ten micro-
liters of recombinant hOmi (10 µg/mL in 50 mM sodium phosphate buffer, pH 7.4) produced in E. coli BL21 
(DE3) pLysS-pET28a+ was incubated for 30 min at room temperature prior to addition of the same volume of 
human recombinant α-Syn protein (10 µg/mL). The reaction mixture was incubated at 37 °C, 39 °C and 41 °C 
each. UCF-101 (Merck Millipore), a HtrA2/Omi specific inhibitor, was added to the reaction mixtures if neces-
sary. To study oligomer-specific activity of HtrA2/Omi, oligomeric and monomeric α-Syn were purified from in 
vitro oligomerized α-Syn using a PD-10 column using Sephadex® G-25M resin (Sigma Aldrich) according to the 
manufacturer’s suggestions. Briefly, the dry powder of Sephadex was swollen in water overnight prior to use at 
4 °C. An 1 mL micropipette tip was used for bedding, and the opening of the pipette was plugged with glass wool 
(Sigma Aldrich). The column was gently poured down the side of the pipette tip. The protein was eluted with 
sodium phosphate buffer. The purity of the purified monomeric and oligomeric α-Syn was checked by western 
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blotting using a mouse anti-α-Syn antibody (1:200, Abcam). Thereafter, following the same procedure, an equal 
volume of purified α-Syn oligomer or monomer, 10 µg/mL, was incubated with the recombinant hOmi. The reac-
tion mixtures were analyzed by western blotting using a mouse anti-α-Syn antibody.

SDS-PAGE and western blotting.  The protein samples were mixed with NuPAGE 4 × LDS sample buffer 
(Invitrogen), heated at 95 °C for 5 min and run on a 4–12% Bis-Tris gradient gel (Invitrogen). The proteins were 
visualized by staining with Coomassie blue. For western blotting, the SDA-PAGE gels were transferred to PVDF 
membranes (Thermo Fisher Scientific). After blotting, the PVDF membranes were blocked with 5% non-fat dry 
milk (Bio-Rad Laboratories) in TBST (TBS with 0.05% Tween and 0.1% Triton X-100) for 2 h at room temper-
ature. The membranes were washed with TBST and incubated overnight at 4 °C after adding mouse anti-α-Syn 
(1:2000, Abcam) or mouse anti-HtrA2/Omi antibody (1:2000, Antibodies-online GmbH). The membranes 
hybridized to the primary antibody were washed with TBST, followed by incubation for 2 h at room temperature 
after addition of a horseradish peroxidase-conjugated goat anti-mouse IgG (H + L) antibody (1:3000, Promega 
Corporation). After washing with TBST, the chemiluminescent substrate, Immun-StarTM Western CTM Kit 
(Bio-Rad Laboratories, California, USA), was added to the membranes, and images were captured with an XRS 
camera equipped with a Bio-Rad Quantity One imaging system. The stock solutions of primary (anti-α-Syn 
and anti-HtrA2/Omi) and secondary antibodies (goat anti-mouse) were diluted with antibody dilution buffer 
(TBST-Triton X-100 with 0.5% BSA).

Enzymatic kinetics of HtrA2/Omi using ThT.  To study the enzymatic kinetics of hOmi, 5 µM of oligo-
meric α-Syn was incubated with different concentration of hOmi (0 nM, 10 nM, 50 nM, and 100 nM) in 150 µL 
of 10 µM ThT (Sigma Aldrich) solution at room temperature using sealed 96-well plates. The ThT fluorescence 
intensity of each sample was measured at 485∼540 nm every 5 min using an iMarkTM microplate reader (Bio-Rad 
Laboratories). The ThT fluorescence was also measured to obtain the Lineweaver-Burk plot. The plot of the reac-
tions was used to calculate Km and Vmax values for hOmi.

Mouse model.  This mouse study was carried out in strict accordance with the recommendations of the 
Guide for the Ethics Committee of Chonbuk National University Laboratory Animal Center. The protocol was 
approved by the Ethics Committee of Chonbuk National University Laboratory Animal Center (Permit Number: 
CBU 2012–0040) with the ‘Guide for the Care and Use of Laboratory Animals’, published by the National 
Research Council and endorsed by the ARRIVE Guidelines. All efforts were made to minimize suffering. The 
C57BL/6J-mnd2 mice (RRID: IMSR_JAX:004608) carrying a mutation at S276C in HtrA2/Omi, a Parkinson 
model mouse, were obtained from the Jackson Laboratory (Bar Harbor). Homozygous (mnd2/mnd2), heterozy-
gous (mnd2/+) and wild-type mice were obtained by crossing mnd2 heterozygous (mnd2/+) mice. The geno-
types of the mice were identified by PCR. All mice were maintained under a 12 h light/12 h dark cycle at 24 °C 
with 55% humidity with food and water ad libitum.

Isolation of primary neurons from the substantia nigra and striatum.  The substantia nigra and 
striatum were obtained surgically from four-week-old wild-type C57BL/6 mice to investigate the localization of 
α-Syn and HtrA2/Omi. The substantia nigra and striatum were minced into small pieces in dissection medium 
(DMEM/F-12, 32 mM glucose, 1% penicillin/streptomycin, and 0.5 mM L-glutamine), followed by the addition 
of 2 mL of HBSS and centrifugation at 300 × g for 5 min. The pellet was treated with 2 mg/mL papain in HBSS 
and 200 µg/mL DNase I solution for 30 min in a 30 °C water bath with a platform rotating at 150 rpm. The tissue 
was gently triturated by the addition of dissection medium to the single cell suspension and passed through a cell 
strainer (BD Falcon). The neuronal pellets were washed twice with ice-cold dissection medium by centrifugation 
at 300 × g for 7 min and resuspended in pre-warmed Neurobasal/B27 growth medium supplemented with 1% 
penicillin/streptomycin, 0.5 mM L-glutamine, 10 ng/mL FGF2 (Sigma Aldrich), and 12.5 mM NaCl. The cells 
were seeded at a density of 120 cells/mm2 on poly-D-lysine and laminin-coated multiwell chambered cover slips 
(Grace Bio-Labs) and incubated in a humidified incubator at 37 °C in an atmosphere of 5% CO2 and 95% air for 
1 h for neuronal attachment. After 1 h, the spent medium was aspirated, followed by the addition of fresh growth 
medium for further incubation. Half of the spent medium was replaced every 3 days with the same volume of 
fresh pre-warmed growth medium containing 20 ng/mL FGF2.

Cell viability assay.  The cell viability was evaluated using the Cell Counting Kit-8 (Sigma Aldrich). Primary 
mouse neurons were harvested, and 2 × 105 neurons were plated in 24-well polystyrene plates. The plates were 
incubated at 37 °C for 24 h for neuronal attachment. After 24 h, primary mouse neurons were treated with α-Syn 
and hOmi. The plates were then incubated at 37 °C for 48 h. After incubation, 10 μL of the reaction solution was 
added to each well and incubated for 4 h at 37 °C according to the manufacturer’s instructions. The absorbance of 
each well was then measured at 450 nm using a microplate reader (Bio-Rad Laboratories). All experiments were 
repeated at least three times.

Preparation of protein extracts from the substantia nigra and striatum.  Four-week-old mnd2/
mnd2, mnd2/+ and age-matched control mice were sacrificed to isolate the substantia nigra and striatum sur-
gically. Total proteins were extracted from the substantia nigra and striatum of each mouse using a total protein 
extraction kit (Merck Millipore) according to the manufacturer’s protocol. Total protein extracts of equal amounts 
from each sample were subjected to western blot analysis with a mouse anti-α-Syn antibody (1:200, Abcam).

α-Syn Drosophila melanogaster and driver lines for transgene expression.  The α-Syn trans-
genic fly, UAS-α-Syn (FBst0008146), was purchased from the Bloomington Drosophila stock center, and 
the transgenic hOmi Drosophila was created in this work. The driver line elav-GAL4 (FBst0000458) of 
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Drosophila melanogaster was used for pan-neuronal expression of transgenes, and the driver line GMR-GAL4 
(FBst0009146) of Drosophila melanogaster was used to express transgenes in the eye. Flies were reared on stand-
ard cornmeal-sucrose-yeast-agar-molasses medium at 25 °C under a 12 h light/12 h dark cycle with 60% humidity. 
All fly work, unless otherwise stated, was performed at 25 °C to enhance GAL4 activity. We used the elav-GAL4 
or GMR-GAL4 driver line as wild-type flies. Transgenic lines were crossed with the elav-GAL4 driver for protein 
expression in the brain or with the GMR-GAL4 driver for protein expression in the eye.

Generation of Drosophila melanogaster expressing hOmi pan-neuronally.  The cDNA of human 
HtrA2/Omi (hOmi) was amplified by PCR from the cDNA clones (Invitrogen Thermo Fisher). The amplified 
PCR product was digested by flanking restriction enzyme sites and subcloned into the same restriction sites in 
the GAL4-responsive pUAST expression vector. The vector construct was co-injected into w1118 Drosophila mel-
anogaster embryos with a plasmid bearing P element transposase under the control of the heat shock 70 (hs-π) 
promoter to drive the expression of transposase following standard microinjection methods (BestGene Inc.). 
Balanced activator lines were generated using standard genetic techniques at BestGene Inc. The generation of 
transgenic flies was confirmed by PCR using primers to detect the hOmi gene and western blot analysis using an 
anti-HtrA2/Omi antibody. The transgenic hOmi Drosophila line was heterozygous for the dominantly marked 
balancer chromosome carrying a dominant mutation, CyO, which causes curly wings.

PCR.  The genotypes of the Drosophila lines were detected by PCR using EF Taq Polymerase (Solgent) follow-
ing the manufacturer’s suggestion, in which 5 µL EF Taq buffer, 1 µL dNTPs, 0.5 µL forward primer (10 pmol/µL), 
and 0.5 µL reverse primer (10 pmol/µL) together with 50 ng genomic DNA in ddH2O water to 50 µL made up the 
PCR mix. Drosophila genomic DNA was isolated using DNAzol (Invitrogen). After the initial denaturation at 
95 °C for 5 min, PCR was carried out by denaturation at 95 °C for 30 sec, annealing at 57 °C for genotyping α-Syn, 
65 °C for genotyping hOmi for 45 sec and extension at 72 °C for 1 min. After completion of 34 cycles, a final exten-
sion of 10 min was applied. The PCR products were confirmed by agarose gel electrophoresis using loading star 
(Dyne Bio) and a 100-bp DNA ladder (Dyne Bio). α-Syn F primer: 5′-TGT AGG CTC CAA AAC CAA GG-3′; R 
primer: 5′-GCT CCC TCC ACT GTC TTC TG-3′ and hOmi F primer: 5′- GTC GCC GGA TCC ATG CGC TAC 
ATT-3′R primer: 5′-GAG CTC TCG AGT CAT TCT GTG ACC-3′.

Generation of Drosophila melanogaster co-expressing hOmi and α-Syn pan-neuronally.  Female 
Drosophila model of PD (α-Syn Drosophila, FBst0008146) was mated with male hOmi Drosophila which main-
tains hOmi with CyO dominant mutation in balancer chromosome. In the F1 generation, the flies were sorted 
based on the dominant phenotypes of the CyO mutation and selected + /hOmi; α-Syn/+ flies. The F1 generation, 
+/hOmi; α-Syn/+ flies were crossed with each other to generate various genotypes. By genotyping the progenies 
born from a male fly and a female fly of the F2 generation, homozygous x/y; hOmi/hOmi; α-Syn/α-Syn Drosophila 
melanogaster were identified. The identified homozygous x/y; hOmi/hOmi; α-Syn/α-Syn Drosophila melanogaster 
were maintained by crossing them with each other. The homozygous hOmi/hOmi; α-Syn/α-Syn male Drosophila 
melanogaster was crossed with 3∼4 female elav-GAL4 virgin Drosophila melanogaster to produce Drosophila mel-
anogaster with pan-neuronal co-expression of hOmi and α-Syn. After 48 h of breeding, the flies were transferred 
to a fresh tube. The presence of the hOmi and α-Syn genes was observed in the progeny.

Pan-neuronal and eye-specific expression of transgenes in Drosophila.  Pan-neuronal expression 
of transgenes was achieved by crossing virgin female flies (driver line) carrying elav-GAL4 on their X chromo-
some with male transgenic flies. Eye-specific expression of transgenes was achieved by crossing virgin female flies 
(driver line) carrying GMR-GAL4 on their X chromosome with male transgenic flies. These flies were maintained 
at 25 °C and, immediately after eclosion, sorted for western blotting, IHC, and survival and locomotion assays.

Locomotion assay.  Fifteen flies of each group were anesthetized with CO2 and placed in a 15-mL conical 
tube (SPL life sciences) capped with cotton. Anesthetized flies were allowed to recover for 30 min at room tem-
perature before the climbing assay. Flies were tapped to the bottom of the tube and allowed to climb with video 
recording for 30 sec. The experiments were repeated 3 times. After 10~15 sec, the numbers of flies remaining 
below the 2 mL mark (nbottom) and flies the 10 mL mark (ntop) were recorded. The performance index (PI) was cal-
culated for each group using the following formula: PI = 0.5 ×(ntotal + ntop − nbottom)/ntotal, where ntotal is the total 
number of flies, ntop is the total number of flies at the top, and nbottom is the total number of flies at the bottom. If 
all flies climb to the top of the tube, the score is 1, and if no flies climb the score is 042.

Survival assay.  Newly eclosed flies of each group were allowed to mature for 48 h, and then the 
male and female flies were separated into different jars. Exactly 100 adult female and 100 adult male 
flies were maintained for the aging experiments. The flies of each group were maintained on standard 
cornmeal-sucrose-yeast-agar-molasses medium at 25 °C in a 60% humidified incubator (Han Baek Scientific Co.) 
with a 12-h light/dark cycle. During maintenance, the flies were transferred to fresh medium every day to avoid 
non age related death and their survival was recorded. This process was continued until all the flies had died. 
Analysis of the survival data was performed using the Kaplan-Meier method42.

Histological examinations of the brains of mice and Drosophila.  Brains of four-week-old mnd2/
mnd2 mice and age-matched control mice were removed and fixed by transcardial perfusion with ice-cold 
PBS followed by 4% paraformaldehyde in PBS. Subsequently, those were post-fixed in the same fixative for 4 h 
at 4 °C and incubated overnight at 4 °C in 30% sucrose in PBS. For the Drosophila experiment, fly heads were 
fixed in 10% neutral-buffered formalin. The fixed mouse brains and fly heads were embedded in paraffin and 
sliced into 4-μM-thick sections on a freezing microtome machine. The sections were deparaffinized with xylene, 
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rehydrated with a descending series of diluted ethanol and water, and permeabilized with 1% Triton X-100 in TBS 
for 30 min at RT. Antigens in the sections were retrieved with 10 mM sodium citrate buffer (pH 6.0) for 20 min 
at 85 °C and subsequently blocked with 10% normal goat serum (Sigma Aldrich) in TBS containing 1% BSA 
and 0.025% Triton X-100 at RT for 10 h. To observe the co-localization of α-Syn and hOmi in mouse brain, the 
sections were double-stained at 4 °C with a mouse anti-α-Syn antibody (1:200, Abcam) and a rabbit anti-HtrA2/
Omi antibody (1:200, Abcam). For the Drosophila brain, however, the sections were double-stained at 4 °C with 
mouse anti-α-Syn antibody (ASy05) (1:400, Agricera antibodies) and a rabbit anti-HtrA2/Omi antibody (1:400, 
Abcam,). The sections were sequentially washed 3 times for 10 min with TBST (TBS and 0.20% Tween-20), 2 
times for 5 min with TBS-Triton X-100 (TBS and 0.025% Triton X-100) and one time for 10 min with TBST. To 
suppress endogenous peroxidase activity, the sections were incubated with 3% hydrogen peroxide (H2O2) in 
40% methanol in TBS for 20 min. After washing, all the primary antibodies were detected by incubation with 
their corresponding secondary antibodies, Alexa Fluor 488-conjugated goat anti-mouse IgG (H + L) (1:400, 
Invitrogen) and Alexa Fluor 568-conjugated goat anti-rabbit IgG (H + L) (1:400, Invitrogen), at RT for 2 h in a 
dark humidified environment. The stock solutions of primary and secondary antibodies were diluted in antibody 
dilution buffer (2% goat serum, 1% BSA and 0.025% Triton X-100 in TBS). After washing 5 times for 10 min 
with TBST, the slides were sealed with aqueous mounting medium, and confocal images were obtained with a 
Carl Zeiss LSM510 Meta microscope. For immunoperoxidase staining, permeabilized slice sections, prepared as 
described above, were incubated in 10 mM sodium citrate buffer with boiling for 5 min. Endogenous peroxidase 
was blocked using an endogenous peroxidase blocking buffer (3% H2O2 and 40% methanol in TBS), followed 
by 10% horse serum (Sigma Aldrich) and 1% BSA with 0.025% Triton X-100. After washing, the sections were 
incubated with avidin and biotin (Vector Laboratories Inc.), followed by primary antibody at 4 °C for 16 h and 
secondary antibody for 2 h at room temperatures. The antibody-treated slides were incubated with ABC reagents 
(Vector Laboratories Inc.) for 30 min at room temperature. Finally, they were stained with DAB substrate (Vector 
Laboratories Inc.). The tissue integrity of the Drosophila tissues was visualized after hematoxylin and eosin stain-
ing (H&E staining) which was performed according to a previously described method43.

The Immunocytochemical confocal microscopic assay of mouse neurons.  To observe the locali-
zation of α-Syn and HtrA2/Omi in mitochondria, primary neurons were isolated from the substantia nigra and 
striatum and cultured to 60% confluency using a standard primary cell culture method44. After staining with Mito 
Tracker Red CMXRos (Invitrogen) according to the manufacturer’s instructions, the neurons were fixed with 4% 
paraformaldehyde in PBS for 20 min and permeabilized with 0.5% Triton X-100 in TBS for 30 min at room tem-
perature. The neurons were then blocked for immunohistochemical analysis. After washing with TBST, the neu-
rons were treated overnight at 4 °C with a rabbit anti-α-Syn antibody (1:100, Abcam) or a rabbit anti-HtrA2/Omi 
antibody (1:100, Abcam). After washing, the neurons were treated with FITC-conjugated goat anti-rabbit IgG 
(H + L) antibody (1:400, Abcam) for 2 h at room temperature. To detect the localization of α-Syn and HtrA2/Omi 
in ER, neurons fixed with 4% paraformaldehyde in PBS were permeabilized and blocked as described above. After 
washing with TBST, the neurons were double-stained overnight at 4 °C with a rabbit anti-α-Syn antibody (1:100, 
Abcam) or a rabbit anti-HtrA2/Omi antibody (1:100, Abcam) together with the ER marker mouse anti-PDI 
antibody (1:100, Abcam). After washing, the anti-α-Syn and anti-HtrA2/Omi antibodies were detected with sec-
ondary FITC-conjugated goat anti-rabbit IgG (H + L) antibody (1:400, Abcam), and the anti-PDI antibody was 
detected with Texas Red-conjugated goat anti-mouse IgG (H + L) antibody (1:400, Abcam). The stock solutions of 
primary and secondary antibodies were diluted in antibody dilution buffer (2% goat serum, 1% BSA and 0.025% 
Triton X-100 in TBS). Confocal images were obtained with a Carl Zeiss LSM510 Meta microscope.

Preparation of Drosophila and mouse brain homogenates.  Fly heads were homogenized using an 
ultrasonicator at 4 °C for 6 min at 40 kHz in 3 µL of total protein extraction kit TM buffer containing 0.1% SDS 
(Millipore). The homogenized lysates were centrifuged at 17,000 × g for 1 min at RT to remove the debris. The 
supernatant was collected and centrifuged again under the same conditions to collect the fresh supernatant. 
Four-week-old mnd2/mnd2 mice, mnd2/+ mice and aged match controls were sacrificed, and the brain tissues 
were chopped into small pieces, followed by the addition of 1 mL of total protein extraction kit TM buffer contain-
ing 0.1% SDS (Millipore) to 0.2 g of brain samples. Samples were homogenized, and total proteins were isolated 
as described above.

Scanning electron microscopy study.  Freshly sacrificed flies were dehydrated by serial transferring into 
increasing ethanol concentrations of 30, 40, 50, 60, 70, 80, 90 and 100% for 10 min each at room temperature. The 
dehydrated flies were air dried prior to being preserved at −80 °C. The dehydrated flies were mounted on a slide 
with one eye upward on black tape using colloidal graphite in an isopropanol base. The flies were fixed in osmium 
tetroxide and air dried prior to observation. All flies were placed on a rotating platform to permit orientation 
under a vacuum and imaged at 180 × magnification using a JSM-6400 scanning electron microscope (JEOL Ltd.).

Statistics analysis.  All statistical analyses are reported as the mean ± SEM, and the significance was calcu-
lated using one-way ANOVA followed by Bonferroni/Tukey multiple tests for individual means using IBM SPSS 
statistics 21 software. P values less than 0.05 were considered statistically significant. The intensity of oligomeric 
α-Syn was analyzed using Image-J software. When representative images are shown, at least three repeats were 
performed.

Data availability
The Data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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