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SYMPOSIUM ARTICLE

The Benefits of Transmission Dynamics Models in
Understanding Emerging Infectious Diseases

Aaron M. Wendelboe, PhD, Carl Grafe, PhD and Hélène Carabin, DVM, PhD

Abstract: Factors associated with the emergence and transmission of
infectious diseases often do not follow the assumptions of traditional
statistical models such as linearity and independence of outcomes.
Transmission dynamics models are well suited to address infectious
disease scenarios that do not conform to these assumptions. For
example, these models easily account for changes in the incidence rates
of infection as the proportions of susceptible and infectious persons
change in the population. Fundamental concepts relating to these
methods, such as the basic reproductive number, the effective repro-
ductive number and the susceptible-infected-recovered compartmental
models, are reviewed. In addition, comparisons and contrasts are made
between the following concepts: microparasites and macroparasites,
deterministic and stochastic models, difference and differential equa-
tions and homogeneous and heterogeneous mixing patterns. Finally,
examples of how transmission dynamics models are being applied to
factors associated with emerging infectious diseases, such as zoonotic
origins, microbial adaption and change, human susceptibility and
climate change, are reviewed.

Key Indexing Terms: Emerging infectious disease; Disease transmis-
sion; Basic reproduction number; Theoretical models; Review. [Am J
Med Sci 2010;340(3):181–186.]

There is an extensive literature on factors contributing to the
emergence and reemergence of infectious diseases. One of

the seminal works in this field is the report of Institute of
Medicine of the United States National Academies on emerg-
ing infectious diseases.1 A central piece of this work is their
convergence model that describes factors that contribute to the
emergence of infectious diseases. These include microbial
adaption and change, human susceptibility to infection, climate
and weather, changing ecosystems, economic development and
land use, human demographics and behavior, technology and
industry, international travel and commerce, breakdown of
public health measures, poverty and social inequality, war and
famine, lack of political will and intent to harm. Each of these
factors requires complex data collection to be addressed in an
epidemiologic study aimed at understanding the emergence of
a given infection.

One set of methods that epidemiologists use to better
understand emerging infections is mathematical transmission
dynamics models. These models describe the transmission of
an infectious agent between hosts (humans, animals and/or
vectors) in a population. One historical example of their use-
fulness in furthering our understanding of infections is Sir
Ronald Ross’ (1857–1932) hypothesis and mathematical model
that a community could eliminate malaria by sufficiently re-
ducing the size of the mosquito population.2 Transmission

dynamics models such as Sir Ross’ are known to be highly
nonlinear3 and cannot be captured with traditional statistical
models, requiring instead a range of calculus-based methods.
However, the fundamental concept of keeping a model as
simple as possible, while accounting for only the most impor-
tant factors, is similar to what is done in traditional statistical
models.3 For example, consider the series of images in Fig-
ure 1. All the panels are sketches of a bull. The simplest sketch
lacks detail and could possibly be confused with other animals,
such as a cow or a buffalo. As additional detail is added to the
sketches, it becomes readily apparent that the sketch is truly a
bull. However, to describe how an infectious agent is transmit-
ted between hosts in a large population, a model as rough as the
simplest sketch may be sufficient. Despite the science and
mathematics involved in developing infectious disease trans-
mission dynamics models, there is also a certain amount of art
entailed; and perhaps surprisingly, usually less is more. Chief
among many reasons to keep the model simple is to make it
easily comprehensible to a wide audience, including both
scientists and policy makers.4,5

Thus, infectious disease clinicians/epidemiologists are
placed in a paradox. The transmission of emerging infections is
often complex, involving several hosts and important small
population clusters, yet, the most desirable models to describe
the transmission are simple. In addition, most clinicians and
public health professionals are not exposed to approaches in
which theory (in contrast to data) is the base of developing a
model. The theory-based model is used to simulate scenarios of
transmission and control, which may be later verified by field
data. This approach may provoke a sense of unease and
skepticism among the uninitiated researcher or clinician. The
purpose of this article is to provide a brief overview of some of
the common methods used in transmission dynamics models
and illustrate their uses in the context of emerging infectious
diseases. Ultimately, our goal is to demonstrate that transmis-
sion dynamics models can be helpful in better understanding
how emerging and reemerging infections are being transmitted
and how best to control them.

TRANSMISSION DYNAMICS MODELS AND
METHODS

There are a few critical differences between traditional
statistical methods (eg, regression) used by most public health
professionals and transmission dynamics models. All these
differences are related to the different set of assumptions
needed for infections that are transmissible from person to
person and those that are not.

Differences Between Transmissible and
Nontransmissible Diseases
Absence of Independence Between Individuals

Transmissible diseases, such as emerging infections, are
different from nontransmissible diseases because the occur-
rence of 1 case of disease will impact the occurrence of disease
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in the people with whom this case has been in contact. For
example, it is easy to conceive that, if a case of severe acute
respiratory syndrome (SARS) is introduced into a house-
hold, the household members of that case are more likely to
become infected than people who are not in direct contact
with that case. In statistics, this phenomenon is called
clustering or nonindependence of outcomes and requires the
use of specific methods. This would not be true for diseases
such as cancer or heart disease in which there is no trans-
mission of an infectious agent. Thus, transmission dynamics
models are designed to describe and explain how transmis-
sion occurs between contacts.

Nonconstant Incidence Rates
An incidence rate is defined as the number of new

cases of a disease occurring divided by the number of people
susceptible for that disease during a specific period of time.
In nontransmissible disease epidemiology, the number of
susceptibles in a population is often fairly constant because
the outcome is rare (eg, some cancers and heart disease). In
addition, the incidence rate is independent from the number
of people affected by the disease in the population. With
infectious diseases, the number of individuals infected at any
point in time influences the chance that a susceptible indi-
vidual will contact an infected person. Therefore, the inci-

dence rate of infection is not constant through time and can
vary from day to day.

Concept of Threshold of Susceptible
Most infectious agents of humans require human or

other animal cells to replicate. Therefore, most infectious
agents require a minimum number of hosts to invade to survive.
Thus, the most efficient prevention programs will typically rely
on vaccines to reduce the number of susceptible hosts and
prevent the agent from surviving. When the proportion of the
population who is susceptible is reduced below the “threshold
of susceptible,” herd immunity is reached, and the agent will
become extinct. No such concept exists for nontransmissible
diseases.

Fundamental Concepts in Transmission Dynamics
Models

Although there is ample literature discussing the con-
cepts of transmission dynamics models,3,6,7 we will provide a
brief review of some of the fundamentals in the context of
microparasitic infections using a deterministic model. First is
the basic reproductive number (R0). The basic reproductive
number is the average number of secondary cases of an infec-
tion that will occur once an infectious individual is introduced
into a population that is completely susceptible to infection.7

FIGURE 1. A series of sketches of a bull by Pablo Picasso. Reprinted with permission from Pablo Picasso/Artists Rights Society (ARS),
New York. © 2010 Estate of Pablo Picasso/Artists Rights Society (ARS), New York.
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There are multiple mathematical definitions for R0, depending
on the context and model; some definitions use algebraic
principles and some use calculus.8 One straightforward, alge-
braic formula is as follows7:

R0 � number of contacts per unit time � transmission

probability per contact � duration of infectiousness � c�p�d

The application of R0 in a given epidemic is short lived,
because, after the first infectious individual has transmitted
infection to the susceptible contacts, the population is no longer
completely susceptible. Thus, to understand the number of
subsequent infections from the second generation of infective
individuals, another, yet highly related term is needed, called
the effective reproductive number (R). Similar to R0, R is
influenced by the number of contacts per unit time, the trans-
mission probability per contact and duration of infectiousness;
however, as the number of susceptibles in the population
decreases, so will the number of individuals who can be
infected by each case. Thus, R is always a proportion of R0 and
will continuously change as the proportion of susceptibles
changes in the population.

These concepts are combined using a framework for
transmission dynamics models in a susceptible-infected-recov-
ered compartmental model (Figure 2),9 in which S(t) represents
the number of susceptible individuals in the population at time
t, I(t) represents the number of infectious individuals in the
population and R(t) represents the number of people who are
recovered from (or immune to) infection. The simplest ap-
proach is to begin with a closed population of size N, where
there are no births or deaths affecting the size of the population
(including deaths from infection). These models are helpful in
counting the flow of individuals through the compartments over
the course of time of an epidemic. That is, at time t, the rate at
which susceptibles move from S to I is equal to c�p�(I/N),
and the rate at which people move from I to R is equal to 1/d,
where d represents the average duration of infectiousness. The
following set of algebraic equations is used to solve for the
number of individuals in each of the compartments at time t.

S(t � 1) � S(t) � cp(I/N) � S(t)

I(t � 1) � I(t) � cp(I/N) � S(t) � (1/d) � I(t)

R(t � 1) � R(t) � (1/d) � I(t)

By using these equations, it is easy to approximate the
number of susceptible, infectious and recovered individuals in
the population at each point of time. This information is
particularly useful in estimating how long it will take for the
epidemic to run out of susceptibles. When applying this infor-
mation to more realistic scenarios, such as accounting for an
open population in which births in the population are replen-
ishing the pool of susceptibles, we can estimate when a vac-

cine, for example, should be implemented to prevent transmis-
sion to the new pool of susceptibles.

TYPES OF TRANSMISSION DYNAMICS MODELS
The field of transmission dynamics modeling is complex

and growing increasingly sophisticated. Although the follow-
ing description and categorization of these models is perhaps
overly simplistic, we believe it is instructive for the purposes of
a brief introduction. Types of transmission dynamics models
often come in pairs, for example, macroparasite versus micro-
parasite, deterministic versus stochastic models, models using
difference equations versus differential equations and homoge-
neous versus heterogeneous mixing assumptions.

Macroparasites Versus Microparasites
In transmission dynamics models, the major difference

between microparasites and macroparasites is in the outcome
being modeled. In general, for microparasites (ie, bacteria,
viruses, fungi, protozoa and prions), the outcome is the number
of infected hosts, whereas for macroparasites (ie, helminths
and ectoparasites), the outcome is the number of viable
female offspring produced. This is important because the
intensity of infection (ie, number of parasites infecting the
host) impacts the infectiousness of the host. Some additional
differences between macroparasites and microparasites are
the following: the generation time for macroparasites is
longer than for microparasites; hosts rarely develop full
immunity to reinfection with macroparasites; and the death
rates of macroparasites have greater variability than those
observed in microparasites. These factors can be accommo-
dated using increasingly complex compartmental models.10

Even though a large number of macroparasites are consid-
ered as reemerging, the majority of emerging infectious
diseases in the United States are microparasites (Table 1);
thus, most of the examples will be those of microparasites.

Deterministic Versus Stochastic Models
The fundamental difference between deterministic mod-

els, where fixed mathematical operations are allowed to “de-
termine” the course of the model (ie, you get the same results
every time) and stochastic models, where probabilities deter-
mine the likelihood of obtaining a certain outcome (but the
outcome itself is determined randomly), is deciding whether to
allow chance an opportunity to play a role in the model. In
deterministic models, the size of each compartment is influ-
enced by fixed rates of emigration (going out) and immigration
(coming in), which can result in fractions of people being
assigned to a given compartment. In contrast, stochastic models
incorporate the role of chance in determining whether an event
occurs (eg, that transmission occurs given an exposure) and,
thus, either an event occurs or it does not. Fractions of people
are not allowed to enter compartments, and thus stochastic
models attempt to better model reality in transmission of

S I Rc*p*(I/N) 1/d

FIGURE 2. A simple susceptible-infected-recovered compartmental model. S is the number of susceptibles, I is the number of infec-
tious individuals, R is the number of recovered (or immune) individuals, c is the number of contacts per unit time, p is the transmis-
sion probability per contact, N is the size of the total population and d is the duration of infectiousness.7
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infectious disease scenarios. However, because stochastic mod-
els are usually run through thousands of iterations to identify
the average probability of observing the modeled event, the
results from deterministic and stochastic models are often
similar when applied to large populations.7 However, by run-
ning a stochastic model through many iterations, a distribution
of outcomes is obtained, which is more informative than the
average result obtained from a deterministic model.4,11 Sto-
chastic models have at least 2 advantages over deterministic
models. First, they are better at modeling the probability of an
epidemic running a course through extinction.7 Second, they do
not require the assumption of a large sample size (which may
be unrealistic in some settings) that deterministic models need.6

There are 2 primary obstacles to developing stochastic
models. One is a lack of computing power necessary to run
increasingly complex models through the necessary number of
iterations, and the other is the increased intellectual difficulty
demanded in incorporating the stochastic components. Com-
puting power is rapidly becoming more available to the average
infectious disease clinician/epidemiologist.5 The decision to
overcome the second obstacle is a personal decision. Thus, our
recommendation to the novice modeler is to start with deter-
ministic models and work into stochastic models as compe-
tence and interest dictates.

One of the most important ways of balancing between an
overly simplistic model and overly complex model is to start
simple and state as many of the assumptions as possible, both
implicit and explicit. Then, find ways to relax those assump-
tions imposed by the model/method.4

Difference Versus Differential Equations
As discussed above, in the use of compartmental models,

the population moves between compartments at specified rates
and predefined time steps. The choice of using difference or
differential equations is thus influenced by whether the time
steps are defined discretely or continuously. That is, difference
equations can be used to model discrete changes in time,
whereas differential equations use calculus-based principles to
model continuous changes in time.11 The chained binomial
probability (eg, the Reed-Frost model) is a well-known exam-
ple of the use of discrete time events modeled using the
compartmental model structure.12 Because infection transmis-
sion occurs on a continuous time-scale, differential models are
often preferred. However, the straightforward nature of differ-

ence equations can provide useful approximations without
intimidating less proficient mathematicians.

Homogeneous Versus Heterogeneous Mixing
Fundamental to the transmission of infections is the way

in which susceptible and infectious persons interact, because
how that interaction occurs is going to largely determine
whether or not transmission can occur. The types of interac-
tions necessary for transmission of measles (transmitted via the
airborne route) are vastly different from those necessary to
transmit genital herpes. In addition, there are complex patterns
that dictate how people within populations interact with each
other. For example, while typical school-aged children spend
the majority of their time mixing with other children of their
same age, the parent of that child likely mixes with a much
broader age range of individuals in the same community
because of activities related to work, hobbies, etc. Despite the
obvious complex pattern of mixing among individuals, basic
transmission dynamics models assume that individuals within a
population mix homogeneously.7 That is, the probability of a
given individual coming into sufficient contact to transmit
infection is equal in every other individual in that population,
regardless of age, gender or social status.

Despite the unrealistic nature of this homogeneous mix-
ing assumption, some early models of infections transmitted via
the airborne and droplet modes were helpful in predicting
transmission and identifying effective methods to control
spread. Furthermore, relatively simple adaptations were made
to models of sexually transmitted infections (ie, differentiating
between males and females) that were able to move this class
of models forward. A major advance in transmission dynamics
models has been the development of methods to account for
heterogeneous mixing patterns. These methods typically rely
on matrices in which the columns and rows represent the
characteristics of the subpopulations and individual cells are
estimates of probabilities of contact or contact rates between
each subpopulation as shown in Table 2.12,13

Another method to account for heterogeneous mixing
patterns is the use of social networks,13 for example, areas
where public transportation is common in contrast to areas
where most individuals use their own transportation. This
summarizes some of the basic concepts in the structure of
transmission dynamics models. The dichotomy of methods and
assumptions illustrates the choice that the modeler must make
in determining the complexity of the model and hopefully
facilitates the reading of this type of research. We also provided
guidance regarding factors to consider when choosing which
type of model or assumption to pursue.

TABLE 1. Selected pathogens that have emerged
since 1980

Year Identified Pathogen

1981 Human immunodeficiency virus
1982 Escherichia coli O157:H7
1986 Ehrlichia chaffeensis
1992 Bartonella henselae
1993 Sin Nombre virus
1996 Prions (variant Creutzfeldt-Jakob disease)
1996 Avian influenza virus
1998 Nipah virus
1999 Ehrlichia ewingii
2001 Human metapneumovirus
2002 SARS coronavirus
2005 Human bocavirus
2009 2009 swine-origin H1N1 influenza virus

TABLE 2. An example of a matrix in which the columns
and rows represent the characteristics of the
subpopulations (age group) and individual cells are
estimates of probabilities of contact or contact rates
between each subpopulation sufficient for transmission to
occur (�)

0–4 yr 5–18 yr 19–64 yr 65� yr

0–4 yr �1 �2 �3 �4

5–18 yr �5 �6 �7

19–64 yr �8 �9

65� yr �10
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APPLYING TRANSMISSION DYNAMICS MODELS
TO EMERGING INFECTIOUS DISEASES
Recently, there has been an important increase in tech-

nology that can be incorporated into developing transmission
dynamics models. In addition, there has been a tremendous
amount of information devoted to understanding factors asso-
ciated with the emergence (and reemergence) of infectious
diseases. Thus, this next section will succinctly assess the latest
technology and risk factors that need to be considered in the
development of transmission dynamics models.

There are a number of challenges in developing trans-
mission dynamics models. The first is that the majority of
emerging infectious diseases are vector borne and/or zoonotic.
Thus, in addition to modeling human-to-human transmission
(which can be as difficult as the matrices used to describe the
mixing patterns of the population), it may be necessary to
model both the population dynamics of the vectors and the
interaction between the vector and the human host. As tech-
nology advances, more factors can be incorporated into trans-
mission dynamics models. For example, considerable advances
have been made in molecular techniques that help us better
understand microbial adaption and change and human suscep-
tibility to infection, and the use of remote sensing technology
has advanced climate change science.

Zoonoses
Zoonoses are infectious diseases of humans that have an

animal reservoir. Zoonoses not only account for approximately
75% of all emerging infections14 but also have been responsible
for some of the most devastating pandemics in world history
[ie, plague, Spanish influenza and human immunodeficiency
virus (HIV)/AIDS].15 Most of the zoonotic pathogens that have
been modeled are viruses (with influenza and SARS accounting
for almost half of all zoonotic models).15 Modeling infection
transmission accounting for spread from the animal reservoir is
often an important step in understanding the relevant dynamics.
However, the impact of including animal reservoirs in the
model is as varied as each zoonotic infection. For example,
while HIV can be considered a zoonotic infection in the
strictest sense of the word, ongoing spread from the animal
reservoir plays an insignificant (if any) role in the overall
spread of HIV, which is principally spread person to person. In
contrast, tick-borne infections, such as Lyme disease, are not
known to be transmitted person to person, and therefore mod-
eling infection transmission from the reservoir is critical. In
between these 2 ends of the transmission spectrum are infec-
tions such as Escherichia coli O157:H7, which is primarily
spread by escaping the animal host (by contaminated food
products) but can also be spread person to person via the
fecal-oral route.

Microbial Adaption and Change
Among the pathogenic agents that have recently

emerged, several have been RNA viruses (eg, HIV, Sin Nom-
bre virus, Nipah virus, SARS coronavirus, human metapneu-
movirus and avian influenza). RNA viruses are among the most
adaptable pathogens, because the structure of their genome is
prone to mutations during replication. Models have shown the
dynamic nature of these RNA pathogens as they expertly
coevolve with their hosts.16 Our ability to account for microbial
adaption and change in transmission models has advanced
given the increased availability of viral genome sequences and
the growth in computing power.17 Reasons for modeling mi-
crobial adaption include estimating probabilities of emergence
from the reservoir, resistance to antimicrobials, geographic

diversity across different populations and rate of global
spread.17

Human Susceptibility to Infection
One of the fundamental principles of sustaining a patho-

gen in a population is the replenishment of susceptibles.12 One
of the demographic characteristics of the modern era is the
population explosion that has occurred.1 Hence, with the world
being more populous than ever, the potential for having a large
pool of susceptibles is high. Another important factor in facil-
itating infection transmission is creating opportunities for in-
fectious and susceptible individuals to interact with each other.
International travel is a primary method of introducing infec-
tious individuals into highly susceptible populations,18 as has
been modeled with SARS,19,20 influenza21 and intentional re-
lease of smallpox.22

Climate Change
Changes in weather and climate have been identified as

important factors in the emergence of infectious diseases.23

Advancements in technology, such as satellites for remote
sensing, have been used to explore associations between cli-
mate change and emerging infections. One specific example is
that of Sin Nombre virus, the cause of hantavirus pulmonary
syndrome, in the 4-corners region of the United States in
199324 and, more recently, in Europe and parts of Africa.25 To
date, the models used for this purpose in humans have used
traditional methods such as logistic regression,26 but transmis-
sion dynamics models have been used in emerging infections
among other animal species, such as nematode infection of
muskoxen in the Arctic.27

CONCLUSIONS
In the past 30 years, since the onset of the HIV epidemic,

many other pathogens have emerged as new threats to human
populations. During this same period of time, advancement in
transmission dynamics models has improved our ability to
predict the impact of these emerging infections on our health.
Specifically, advancements have increased our ability to under-
stand microbial adaption and change, the aspect of zoonoses
escaping their reservoir, climate change and changes in human
behavior that facilitate mixing between infectious and suscep-
tible individuals. As these advancements have been made, so
have the sophistication and complexity of the models advanced
to account for these factors. These models will likely play an
increasingly important role in understanding the dynamics of
emerging infectious diseases, and thus the importance for
infectious disease clinicians and epidemiologists to understand
these methods cannot be overstated.
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