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Università della Svizzera Italiana, Bellinzona, Switzerland; 3Hematology Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; 4SIB Swiss Institute of Bioinformatics,
Lausanne, Switzerland; 5Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; 6Department of Nuclear Medicine, Azienda Ospedaliera
Papa Giovanni XXIII, Bergamo, Italy; 7Division of Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland; 8Swiss Group for Clinical Cancer Research
(SAKK) Coordinating Center, Bern, Switzerland; 9Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland; 10Department of
Oncology and Hemato-Oncology, University of Milan, Milan, Italy; 11European Institute of Oncology, Milan, Italy; 12Cantonal Hospital Aarau, Aarau, Switzerland; and 13Department
of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland

Key Points

•Baseline functional PET
parameters can predict
outcomes of DLBCL
patients treated with
R-CHOP.

• Prognostic models
based on MTV and MH
may allow early identifi-
cation of poor-risk
patients.

Several functional parameters from baseline (18)F-fluorodeoxyglucose positron emission

tomography (PET)/computed tomography have been proposed as promising biomarkers of

treatment efficacy in diffuse large B-cell lymphoma (DLBCL). We tested their ability to predict

outcome in 2 cohorts of DLBCL patients receiving conventional immunochemotherapy

(rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and

prednisone [R-CHOP] regimen), either every 14 (R-CHOP14) or 21 days (R-CHOP21). Baseline

PET analysis was performed in 141 patients with DLBCL treated with R-CHOP14 in the

prospective SAKK38/07 study (NCT00544219) of the Swiss Group for Clinical Cancer Research

(testing set). Reproducibility was examined in a validation set of 113 patients treated with

R-CHOP21. In the SAKK38/07 cohort, progression-free survival (PFS) at 5 years was 83% for

patients with low metabolic tumor volume (MTV) and 59% for those with high MTV (hazard

ratio [HR], 3.4; 95% confidence interval [CI], 1.6-7.0; P 5 .0005), whereas overall survival (OS)

was 91% and 64%, respectively (HR, 4.4; 95%CI, 1.9-10; P5 .0001). MTVwas themost powerful

predictor of outcome also in the validation set. Elevated metabolic heterogeneity (MH)

significantly predicted poorer outcomes in the subgroups of patients with elevated MTV. A

model integrating MTV and MH identified high-risk patients with shorter PFS (testing set: HR,

5.6; 95% CI, 1.8-17; P , .0001; validation set: HR, 5.6; 95% CI, 1.7-18; P 5 .0002) and shorter

OS (testing set: HR, 9.5; 95% CI, 1.7-52; P , .0001; validation set: HR, 7.6; 95% CI, 2.0-28;

P5 .0003). This finding was confirmed by an unsupervised regression tree analysis indicating

that prognostic models based on MTV and MH may allow early identification of refractory

patients who might benefit from treatment intensification. This trial was registered at

www.clinicaltrials.gov as #NCT00544219.

Introduction

Diffuse large B-cell lymphoma (DLBCL) not otherwise specified is the most common histologic subtype
of lymphoma, accounting for 30% to 40% of the non-Hodgkin lymphomas in Western countries.1 It is
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a heterogeneous disease with distinct molecular features and clinical
behavior.2,3 According to their cell of origin (COO), genetically and
phenotypically distinct subgroups of DLBCL (activated B-cell–like,
germinal-center B-cell–like [GCB], and unclassified) can be discrim-
inated with different response to treatment and clinical outcomes.4-7

The addition of rituximab (anti-CD20 monoclonal antibody) to the
standard cyclophosphamide, doxorubicin, vincristine, and prednisone
(CHOP) chemotherapy regimen, given with rituximab either every 2
(R-CHOP14) or 3 (R-CHOP21) weeks, has improved the outcome in
patients with DLBCL.8,9 However, a relevant portion of patients (30%
to 40%) still experience treatment failure.10 Several systems for
predicting prognosis have been developed and the most widely
used is the International Prognostic Index (IPI).11 In recent years,
modifications of the IPI for DLBCL have shown an improved predictive
value,12,13 but novel biomarkers are still needed to better identify patients
who could benefit from more aggressive therapeutic approaches.

Nowadays, (18)F-fluorodeoxyglucose (18FDG) positron emission
tomography/computed tomography (PET/CT) represents the stan-
dard for staging and therapeutic response assessment in DLBCL.14

In fact, the 18FDG-PET/CT scan at the end-of-treatment is the best
predictor of DLBCL outcome and its visual evaluation is based on
a 5-point scale (Deauville score), where a score of #3 represents
the standard definition of complete remission.14,15

Repeated imaging studies after 1-to-3 R-CHOP cycles (interim
positron emission tomography [PET]/computed tomography [CT])
have been proposed to guide treatment decisions, and some
studies have suggested that a quantitative approach based on the
decrease of the maximum standardized uptake value (DSUVmax)
between baseline and interim PET/CT may be a more objective tool
compared with the visual assessment.16-19 However, the role of
interim PET/CT as a reliable early prognostic factor remains
controversial in DLBCL.20-25

Several quantitative parameters derived from baseline PET/CT,
including the SUVmax, the total lesion glycolysis (TLG), and the
metabolic tumor volume (MTV), seem promising biomarkers in various
lymphoma subtypes.26-30 In particular, some studies reported that an
elevated MTV value is a good predictor of poor outcome in patients
with DLBCL.31-35 Improved prognostic models might also be derived
from the combination of baseline MTV or TLG and early response on
interim PET/CT.34,36 In addition, metabolic heterogeneity (MH),
a functional PET parameter with known prognostic value in solid
tumors,37,38 may also have a role in lymphomas.39

Recent research provided preliminary but promising evidence that
the integration of quantitative PET parameters with some clinical,
biological, and molecular features may allow a more accurate
prognostication in DLBCL.29,40,41

The main aim of this study was to test the ability of baseline functional
PET parameters in predicting the efficacy of immunochemotherapy in
a cohort of DLBCL patients treatedwith R-CHOP14 in the prospective
clinical trial SAKK 38/07. A separate validation cohort of DLBCL
patients treated with the standard RCHOP21 was also analyzed.

Patients and methods

All procedures performed in this study were in accordance with the
ethical standards of the 1964 Declaration of Helsinki and its later
amendments. The study was approved by the Institutional Review
Board/Ethics Committee of the participating centers.

Testing set

Among the 156 patients with any stage of untreated DLBCL
prospectively enrolled in the SAKK 38/07 trial of the Swiss Group
for Clinical Cancer Research,24 141 with baseline 18FDG-PET/CT
scans suitable for imaging postprocessing and a complete clinical
follow-up were eligible for this study.

In all cases, the diagnosis of DLBCL was confirmed by central
pathology review and the presence of “double-hit” cases with BCL2
and C-MYC rearrangements was ruled out by in situ hybridization
analyses.

All patients received 6 cycles of R-CHOP (rituximab 375 mg/m2,
cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, vincristine
1.4 mg/m2 on day 1, and prednisone 100 mg/m2 for 5 days) every
14 days followed by 2 cycles of rituximab. If indicated by local
guidelines, consolidation radiotherapy was allowed and was
administered in 21 patients (15%).

PET/CT scans were to be performed in all patients at diagnosis,
after 2 cycles of R-CHOP14, and at the end of immunochemo-
therapy. Treatment details and PET scan protocol have been
previously published.24

Validation set

The validation cohort comprised 113 patients with any stage of
untreated DLBCL included in a retrospective survey of the PET use
in our institutions. Seventy-three patients were obtained from the
database of the Oncology Institute of Southern Switzerland,
Bellinzona, Switzerland, and 40 from that of the Hematology Unit
of the Ospedale Papa Giovanni XXIII, Bergamo, Italy. Age .18
years, 18FDG-PET/CT baseline scan, front-line treatment with 6
cycles of R-CHOP21, and a clinical follow-up of at least 18 months
were the criteria of selection. Fifteen patients (13%) received
consolidation radiotherapy.

The PET/CT scan was performed baseline, within 2 weeks before
the beginning of the treatment, and after the completion of
immunochemotherapy.

Baseline whole-body PET/CT was performed with a Biograph 6
HiRez scanner (Siemens, Erlangen, Germany). Acquisition started
606 5 minutes following the injection of 18FDG (3.5-4 MBq/kg) to
the subjects fasting at least 6 hours. PET images (CT corrected for
attenuation) were reconstructed with a standard iterative algorithm
(3D-OSEM).

Prognostic factors

The IPI,11 the revised‐IPI,13 and the National Comprehensive
Cancer Center Network enhanced-IPI (NCCN‐IPI)12 were calcu-
lated for each patient using the clinical information retrieved from
either the SAKK38/07 study database or the hospital records, as
appropriate. The COO was centrally determined by immunohisto-
chemistry using the Hans algorithm.42

PET/CT images analysis

For the present study, all the PET/CT scans were centrally
evaluated following a standard protocol with dedicated imaging
software (MM Oncology, Syngo.via, Siemens). The lymphoma
lesions were segmented using an algorithm with a fixed threshold at
2.5 SUV value43 for MTV estimation, then SUVmax and TLG were
calculated automatically. MH of the target lesion (ie, the lesion with
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the highest 18FDG uptake) was measured in each patient using the
area under curve of cumulative SUV-volume histogram (AUC-CSH)
method as previously published.39

Statistics

Quantitative variables were expressed by medians and interquartile
ranges (IQR). Medians were compared using the Mann-Whitney U
test. Differences between the frequencies of categorical data were
assessed with the x2 test. The PET-associated functional con-
tinuous parameters were analyzed as dichotomized variables,
using receiver-operating characteristic (ROC) analysis to identify
the optimal cutoff point to discriminate subgroups with different
progression-free survival (PFS) and overall survival (OS). Survival
functions were defined according to the revised National Cancer
Institute criteria44 and estimated by the Kaplan-Meier method, and
patient groups were compared by the log-rank test. Cox proportional
hazardmodels were used for multivariable analysis and the estimation
of hazard ratios (HRs). The predictive accuracy of the different
prognostic indices in the identification of patients at risk of shorter
survival was compared using the Harrell C concordance probability
estimate (CPE),45 which calculates the probability of agreement for
any pair of patients in which agreement means that the patient with
the shorter survival time also has the higher predicted risk. Because C
statistics range from 0.5 (random concordance) to 1 (perfect con-
cordance), higher values of C indicate better discrimination. Their
relative quality was further assessed using an in-sample fit approach
to model selection (Akaike information criterion [AIC]),46 which
estimates the likelihood of a prognostic model to predict future
outcomes. The best model is the one that, in comparison with all the
others, has the minimum AIC (ie, best fit). P , .05 was considered
statistically significant. Negative predictive value (NPV) and positive
predictive value (PPV) were calculated according to standard
definitions. Both testing and validation datasets were explored using
a recursive-partitioning classification tree method (implemented into
the ctree function of the R package party) to develop unbiased prog-
nostic models based on dichotomized variables.47 This procedure
enables the hierarchical classification of the prognostic covariates,
from the most important, which splits the primary node (entire
population), to those which extend to the terminal nodes (risk groups).

Statistical analyses were conducted by using the STATA statistical
software package, version 11 (StataCorp, College Station, TX) and
the R statistical software environment, version 3.1.1, as appropriate.

Results

Testing set (SAKK38/07)

Detailed clinical features and outcome of the patients enrolled in the
SAKK 38/07 study have been published previously.24 Table 1
summarizes the demographic and clinical characteristics of the 141
patients included in the present analysis and reports the estima-
tion of their functional PET parameters at baseline. At a median
follow-up of 64 months (IQR, 60-67 months), 30 progressions of
disease and 23 deaths were recorded. The estimated 5-year PFS
and OS rates were 76% (95% confidence interval [CI], 67-82) and
84% (95% CI, 77-90), respectively.

Univariable analysis

Among the clinical features evaluable at presentation, no impact on
outcome appeared related to sex, age (.60 years), serum lactate

Table 1. Comparison of baseline patient characteristics and

functional PET parameters in the testing (N 5 141) and validation

(N 5 113) cohorts

Clinical features

Testing set (SAKK 38/07),

n (%)

Validation set,

n (%) P*

Sex .833

Male 73 (52) 57 (51)

Female 68 (48) 56 (49)

Age

Median; IQR 59 y; 49-68 70 y; 57-76 <.0001

.60 y 68 (48) 80 (71) <.0001

Ann Arbor stage .275

1 15 (11) 15 (13)

2 46 (33) 34 (30)

3 33 (23) 17 (15)

4 47 (33) 47 (42)

Bulky disease

.7.5 cm 70 (50) 50 (44) .392

.10 cm 42(30) 29 (26) .375

Elevated LDH 68 (48) 56 (50) .726

ECOG PS .1 10 (7) 9 (8) .793

Extranodal sites .1 34 (24) 25 (22) .709

COO (Hans algorithm) N 5 113 N 5 99 <.001

GCB 29 (26) 58 (59)

Non-GCB 84 (74) 41 (41)

IPI group .085

Low risk 65 (46) 36 (32)

Intermediate-low risk 32 (23) 39 (34)

Intermediate-high risk 27 (19) 25 (22)

High risk 17 (12) 13 (12)

R-IPI group .111

Low risk 22 (16) 8 (7)

Intermediate risk 75 (53) 67 (59)

High risk 44 (31) 38 (34)

NCCN-IPI group .007

Low risk 22 (16) 7 (6)

Intermediate-low risk 67 (47) 42 (37)

Intermediate-high risk 39 (28) 51 (45)

High risk 13 (9) 13 (12)

PET parameters, median

(IQR)

SUVmax 19.9 (15.1-28.2) 21 (13.5228.1) .95

MTV 386 (143-1119) 342 (78- 822) .12

TLG 2618 (824-8906) 2325 (472-5390) .08

Metabolic heterogeneity
(AUC-CSH)

0.45 (0.40-0.50) 0.49 (0.46-0.53) <.001

Bold P values indicate statistically significant results (P , .05).
ECOG, Eastern Cooperative Oncology Group; PS, performance status.
*x2 test for comparison of frequencies and Mann-Whitney U test for comparison of

medians.
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dehydrogenase (LDH), stage, extranodal disease, and bulky disease
(.7.5 cm). An impaired performance status (Eastern Cooperative
Oncology Group score.1) was associated with a shorter OS (P5
.0342), but did not show a significant effect on PFS. The IPI, R-IPI,
and NCCN-IPI were also associated with OS (trend test P5 .0442,
.0279, and .0045, respectively) but had only a borderline impact on
PFS (trend test P, .0590, .0498, and .0516, respectively). Table 2

reports the optimal cutoff points of the dichotomized PET parameters
estimated by ROC analysis for PFS and OS. In the whole cohort,
elevated MTV and TLG were significantly associated with worse PFS
and OS, whereas SUVmax and MH had no effect on outcomes
(Table 3). However, when the analysis was limited to the 126 patients
with stages 2-4, MH became significantly associated with PFS
(P5 .03) and had a borderline effect also onOS (P5 .07). Moreover,

Table 2. Results of the ROC analysis used to identify optimal cutoff points for PFS and OS in the testing (N 5 141) and validation (N 5 113)

cohorts

Functional PET parameters

ROC analysis for PFS ROC analysis for OS

Cutoff point Sensitivity, % Specificity, % AUC P Cutoff point Sensitivity, % Specificity, % AUC P

Testing set SUVmax 20 60 55 0.556 .342 24.2 74 40 0.550 .433

MTV, mL 931 57 75 0.629 .029 1149 52 81 0.670 .011

TLG 3960 63 62 0.620 .034 6991 57 73 0.661 .012

MH (AUC-CSH) 0.43 53 66 0.545 .474 0.43 52 69 0.555 .431

Validation set SUVmax 31 27 86 0.507 .917 31 32 86 0.582 .267

MTV, mL 336 73 54 0.629 .029 336 79 54 0.637 .070

TLG 3186 55 66 0.574 .318 3574 63 70 0.634 .079

MH (AUC-CSH) 0.47 53 66 0.527 .730 0.46 42 85 0.648 .046

Bold P values indicate statistically significant results (P , .05).

Table 3. Univariable analysis of PFS and OS by dichotomized (below vs above the ROC cutoff point) functional PET parameters in the

validation and testing sets

Univariable analysis of PFS Univariable analysis of OS

5-y PFS (95% CI), % Log-rank P HR (95%CI) NPV PPV 5-y OS (95% CI), % Log-rank P HR (95%CI) NPV PPV

Testing set SUVmax .164 0.6 (0.3-1.2) 84 27 .196 0.5 (0.2-1.4) 89 19

Low 72 (58-81) 81 (71-88)

high 80 (67-88) 90 (78-96)

MTV (mL) .0005 3.4 (1.6-7.0) 86 40 .0001 4.4 (1.9-10) 90 35

Low 83 (72-90) 91 (83-95)

High 61 (44-74) 65 (46-78)

TLG .0078 2.6 (1.3-5.6) 86 31 .0021 3.4 (1.5-7.8) 90 29

Low 83 (72-90) 90 (81-95)

High 65 (50-77) 73 (57-84)

MH .0780 1.9 (0.9-3.9) 84 29 .1011 2.0 (0.9-4.4) 87 22

Low 80 (69-88) 88 (79-93)

High 69 (54-80) 79 (65-88)

Validation set SUVmax .0935 2.2 (0.9-5.6) 83 32 .0432 2.6 (0.99-6.9) 86 32

Low 77 (63-86) 79 (63-89)

High 67 (41-84) 63 (34-82)

MTV (mL) .021 2.9 (1.1-7.3) 89 28 .0090 3.9 (1.3-11.8) 93 26

Low 85 (67-93) 92 (80-97)

High 66 (48-79) 62 (41-77)

TLG .0632 2.2 (0.9-5.0) 86 27 .0107 3.1 (1.2-7.8) 89 27

Low 82 (67-90) 83 (65-92)

High 64 (41-80) 63 (39-79)

MH .1547 1.8 (0.8-4.2) 84 28 .0433 2.5 (0.99-6.0) 88 28

Low 80 (64-89) 85 (74-92)

High 67 (47-81) 56 (26-78)

Bold P values indicate statistically significant results (P , .05).
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elevated MH was associated with shorter PFS (P 5 .02) and OS
(P 5 .009) in the subset of patients with elevated MTV. Among the
dichotomized IPI factors, at univariable analysis, a significant
association was found between baseline MTV and serum LDH,
extranodal disease and stage, not with age or performance status.

PFS at 5 years was 83% (95%CI, 72-90) for patients with low MTV
vs 61% (95% CI, 44-74) for those with high MTV (log-rank test,
P5 .0005), whereasOSwas 91% (95%CI, 83-95) vs 65% (95%CI,
46-78) (log-rank test, P 5 .0001), respectively (Figure 1, top).
Outcome at 5 years was anticipated by dichotomized MTV with very
high NPV (86% and 90% for PFS and OS, respectively) but lower
PPV (40% for PFS and 35% for OS, respectively).

Integrated MTV-MH model

Because of the MH effect on the outcome of patients with high
MTV, we explored the prognostic impact of a model integrating MTV
and MH (Figure 2, top). The combination of these 2 parameters
improved the performance of MTV alone to predict treatment
outcome (log-rank test for trend, P , .001 for both PFS and OS).
Among the patients with high MTV, those with high MH showed
a significantly higher risk of progression (HR, 5.6; 95% CI, 1.8-17)
and death (HR, 9.5; 95% CI, 1.7-52). The PPV of this prognostic
model for the definition of the poorer risk patients was 57% for PFS
and 62% for OS, respectively. Notably, an unsupervised approach
with a classification tree method based on binary recursive

partitioning (which included all the functional PET parameters and
the dichotomized variables that contribute to the international
prognostic indices) also found MTV and HM to be the most
important factors, leading to a superimposable predictive model for
both OS and PFS (Figure 3, top).

Multivariable analysis

At multivariable analysis (stepwise Cox regression including the
functional PET parameters, which were significant at univariable
analysis) only MTV retained statistical significance for both OS (HR,
4.4; 95% CI, 1.9-10; P , .01) and PFS (HR, 3.4; 95% CI, 1.6-7.0;
P 5 .01). The prognostic impact of MTV on OS and PFS did not
change after controlling for the performance status and for the IPI,
R-IPI, and NCCN-IPI.

The model integrating MTV and MH was also the only parameter
retaining a significant prognostic effect on OS (HR, 3.1; 95% CI,
1.9-5.0; P, .001) and PFS (HR, 2.4; 95% CI, 1.6-3.6; P, 001) in
a stepwise Cox regression including the IPIs.

Validation set

The validation set included patients with significantly older age and
showed a lower proportion of patients with good risk according to
the NCCN-IPI, but the distribution of risk groups according to either
IPI or R-IPI was not statistically different (Table 1). The median
follow-up (36 months; IQR, 28-50) was shorter in comparison with
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Figure 1. OS and PFS according to the MTV in the testing and in the validation cohorts.
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the SAKK 38/07 cohort (P , .001). Twenty-two patients had
disease progressions and 19 died. The estimated 5-year PFS and
OS rates were 75% (95% CI, 63-83) and 76% (95% CI, 63-85),
respectively. All the dichotomized functional PET parameters at
baseline had a significant impact on OS at univariable analysis.
However, only MTV showed a statistically significant association
with PFS (Table 3; Figure 1, bottom). Analogous to the testing
set, low values of MTV accurately identified the subset of patients
with good treatment outcome (NPV, 89% and 93% for PFS and
OS, respectively). However, high MTV values were less efficient
in the discrimination of the poor prognosis patients (PPV, 28%
and 26% for PFS and OS, respectively). Also, in keeping with the
testing set, an impaired performance status predicted OS (P 5
.0023), but not PFS. IPI and NCCN-IPI were also associated with
OS (trend test P 5 .0465 and 0.0261, respectively) but had no
effect on PFS; R-IPI did not affect the OS nor PFS. At
multivariable analysis (stepwise Cox regression controlling for
the performance status and the IPIs) an elevated MTV value
remained independently associated with a shorter PFS (HR, 2.9;
95% CI, 1.1-7.3; P 5 .028) and OS (HR, 3.6; 95% CI, 1.2-11;
P 5 .023).

Elevated MH was associated with shorter OS (P 5 .043) in the
entire cohort and with both PFS (P 5 .006) and OS (P 5 .016) in
the subset of patients with elevated MTV. The model integrating
MTV and MH showed a PPV of 46% for PFS and 45% for OS and
confirmed in the validation set its ability to improve upon MTV alone
the identification of the poor-risk patients with shorter PFS (HR, 5.6;

95% CI, 1.7-18) and OS (HR, 7.6; 95% CI, 2.0-28) (Figure 2,
bottom). At multivariable analysis, the prognostic efficacy of this
model for PFS (HR, 2.5; 95% CI, 1.5-4.3; P 5 .001) and OS (HR,
2.8; 95% CI, 1.6-5.1; P5 .001) was maintained after controlling for
the IPIs. Analogous to the testing set, the regression tree analysis
generated again a predictive model based on MTV and MH, for
either OS or PFS (Figure 3, bottom).

Comparison of PET-derived models and

prognostic indices

The discriminatory power and predictive accuracy of this PET-
derived model appeared superior, in both the testing and the
validation cohorts, to the ones of the international clinical indices
(Table 4) when assessed by using either the AIC46 or a CPE
estimator (Harrell C statistic).45

Discussion

Despite the potential power limitation because of the overall
good outcome of patients in our cohorts, resulting in a relatively
low number of events, this study further substantiates the high
predictive value of baseline MTV in DLBCL31-35 and provides
a first evidence that MH combined with other functional
volumetric PET parameters may allow to foresee treatment
outcomes in DLBCL. The main strengths of this study are the
uniform treatment, the centralized analysis of PET scans, and,
above all, the reproducibility assessment in an independent
validation set of patients of the observations made in the cohort
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Figure 2. OS and PFS according to the model built integrating the MTV and MH either in the testing or in the validation cohort.
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of patients enrolled in the SAKK38/07 study. Differences (eg, in age,
COO, and MH distribution) between the testing and validation sets
support the potential general validity of the proposed model, too.

Because taking into account the interaction of individual factors in
determining an outcome endpoint (such as PFS or OS) can be
difficult, their selection in a prognostic model is typically complex.
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Figure 3. The classification trees showing the prognostic signature consisting of 2 variables, MTV and MH, whose dichotomization was significantly

correlated with survival. MTV alone, when its value is low, identifies the prognostic category node 2 with best survival probability. To separate the prognostic categories

node 4, with intermediate survival rates, from node 5, with poorer survival, the value of MTV must be high (node 3), and that of MH must be low or high, respectively. The

Kaplan-Meier curves show statistically different overall and progression-free survival, either in both the testing and the validation patient sets. For each inner node, the

Bonferroni-adjusted P values are given, which take into account the multiple testing and may differ from the P values of the log-rank test in the univariable analysis (Table 3).
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We built the model that combines MTV and MH on the basis of the
impact of MH in the subsets of patients with high MTV or nonlocalized
disease. This model is also in keeping with a recent meeting
abstract48 and with the observations we previously made in a primary
mediastinal lymphoma study, where the subset of patients with
elevated MH and TLG values had a particularly dismal prognosis.39

The validity of the model was then confirmed by an unsupervised
approach using a methodology (regression tree analysis based on
unbiased binary recursive partitioning) that is widely used in data
mining.47 This alternative statistical approach maximizes sensitivity
by identifying patients truly at risk, minimizes misclassification of
low-risk patients, and can stratify patients into different levels of
risk.47 The regression tree analysis in our datasets ended up with
the same 2 PET-derived factors (MTV and MH), producing a simple
decision tree that appears accurate and easy to apply.

The present study provides the first demonstration that MH can play
a critical role in DLBCL, where (especially in the presence of large
MTVs) it appears to be associated with treatment resistance and
treatment failure. In both the testing and the validation cohorts, MH
effectively discriminated, among patients with increased MTV, those
with truly poorer prognosis.

MH describes a complex phenomenon (depending on cell
metabolism, proliferation, blood flow, and hypoxia) that reflects the
clinical and molecular heterogeneity of the disease.39 It appears
plausible that MH introduced into our prognostic model additional
biological information that contributed to further characterize the
prognostic risk defined by the simple metrics of the tumor burden
provided by the MTV estimation.

Main limitations of the study, which may make the use of MTV and
MH in routine clinical practice still premature, are the absence of
standardized methodology and the lack of agreement on the optimal
estimation of volume-based PET parameters. Different procedures
and a wide range of threshold levels have been proposed to
calculate MTV.35,43,49 Moreover, the prognostic effect of MTV has
been estimated using cut-points that are heavily cohort-dependent,
being generated by ROC analysis of small series. In this study, we
chose to use a segmentation method with a fixed-threshold at SUV
5 2.543 that, compared with the widely used percentage threshold
at 41% of SUVmax, maintains a similar accuracy and offers better
tumor coverage,41 particularly in lesions with heterogeneous FDG
uptake distribution.49

Although the lack of standardization endangers the reproducibility
of the results obtained in retrospective studies, there is increasing
evidence of the prognostic value of quantitative parameters
obtained from 18FDG‐PET/CT in patients with different non‐
Hodgkin lymphoma subtypes.17,26,28,50,51 We sought to use the
quantitative parameters from PET scans to discriminate patient with
different outcomes. The PET-based prognostic models appeared
superior to the clinical and pathological prognostic indices that are
widely and routinely used. Prior reports have already indicated that
volumetric PET parameters may be better outcome predictors than
the IPI.31,52 Only 1 study, which analyzed a limited number of
quantitative whole-body 18FDG-PET/CT and failed to show any
independent prognostic utility of PET parameters, suggested that
the NCCN-IPI may be superior53; however, the latter study adopted
a dichotomized NCCN index which is not currently used.

Work is in progress to solve the previously mentioned methodo-
logical problems54-56 and the integration of the functional PET
parameters with clinical indices and molecular features is expected
to become an important tool for a more precise identification of the
very-high-risk group of patients and for the subsequent develop-
ment of patient‐tailored treatment approaches.29,56,57 In this
perspective, our results indicate that models based on the
combination of functional parameters from baseline 18FDG-PET/
CT may represent a simple and powerful tool to help early
identification of patients with very high risk for initial treatment
failure, who can be selected for more intensive treatment (eg, stem
cell transplant or CAR-T cell strategies). If confirmed in other
cohorts, these results could influence the design of future clinical
trials and may offer an opportunity to reduce the number of patients
dying from refractory DLBCL.
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