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Understanding the systems-level actions of transcriptional responses to hormones provides insight 

into how the genome is reprogrammed in response to environmental stimuli. Here, we investigate 

the signaling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically 

important processes in plants and is orchestrated by the transcription factor (TF) MYC2 and its 

closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to 

JA that spans from the activity of master and secondary-regulatory TFs, through gene expression 

outputs and alternative splicing to protein abundance changes, protein phosphorylation and 

chromatin remodeling. We integrated time series transcriptome analysis with (phospho)proteomic 

data to reconstruct gene regulatory network models. These enable us to predict previously 

unknown points of crosstalk from JA to other signaling pathways and to identify new components 

of the JA regulatory mechanism, which we validated through targeted mutant analysis. These 

results provide a comprehensive understanding of how a plant hormone remodels cellular 

functions and plant behavior, the general principles of which provide a framework for analysis of 

cross-regulation between other hormone and stress signaling pathways.

Introduction

Plant hormones are structurally unrelated small signaling molecules that play pivotal roles in 

a wide range of fundamental processes of plants spanning growth, development and 

responses to environmental stimuli 1. Hormone perception by plants stimulates a cascade of 

transcriptional reprogramming that ultimately modifies cellular function and plant behavior 
2–5. This is initiated by one or a family of high-affinity receptors, followed by signal 

transduction through protein-protein interactions, post-translational modification events and 

regulation of TF activity that ultimately drives changes in gene expression 2,3,6.

One of the key plant hormones is jasmonic acid (JA), which regulates crucial processes 

including fertility, seedling emergence, the response to wounding and the growth-defense 

balance 7. Jasmonates are perceived as jasmonoyl-isoleucine (JA-Ile) by the co-receptor 

COI1 (CORONATINE INSENSITIVE1)/JAZ (Jasmonate ZIM domain) complex 8–11. COI1 

is an F-box protein and part of a Skp-Cullin-F-box-E3 ubiquitin ligase complex (SCFCOI1) 
12 that targets JAZ proteins for proteasomal degradation upon JA perception. JAZs are 

transcriptional repressor proteins that inhibit the activity of key TFs of the JA pathway such 

as the basic helix-loop-helix (bHLH) TF MYC2 and its closest homologues MYC3, MYC4 

and MYC5 13–15 in the absence of JA. The SCFCOI1-JAZ complex tightly controls the level 

of free non-repressed MYCs in a JA-dependent manner thereby determining the 

transcriptional output of the entire JA response 8,9,16. The key regulatory step in the JA 

pathway is the hormone-triggered formation of a complex between the E3 ligase SCFCOI1 

and JAZ repressors that are bound to the master TF MYC2. This results in degradation of 

JAZ repressors and permits the activity of a master regulatory TF MYC2, accompanied by 

MYC3, MYC4, MYC5 and numerous other TFs, all of which have distinct but overlapping 

roles in driving JA-responsive gene expression 13–20. The result is a cascade of JA-induced 

genome reprogramming to modulate plant behavior such as plant immune responses 4,19,21 . 

However, our knowledge of the JA-responsive genome regulatory program and, more 

broadly, in the plants general response to environmental stimuli is limited currently by 

assessment of only one or a small number of components.
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Here we aim to decipher the MYC2/MYC3-driven regulatory network using a multi-omics 

analysis that includes the direct targets of key TFs, chromatin modifications, global protein 

abundance and protein phosphorylation. Our analysis was conducted with etiolated seedlings 

in which the JA regulatory network is poorly characterized although MYC2 is active 21,22,23. 

We discovered that MYC2/MYC3 directly target hundreds of TFs, resulting in a large gene 

regulatory network that not only amplifies the transcriptional JA response, but also facilitates 

extensive crosstalk with other signaling pathways. Furthermore, we found that MYC2 has a 

profound impact on the JA-dependent epigenome, proteome and phosphoproteome. We also 

generated a network model that predicted new components of the JA signaling pathway that 

we validated by targeted genetic analyses, demonstrating the power of our integrated multi-

omic approach to yield fundamental biological insight into plant hormone responses.

Results

MYC2 and MYC3 target a large proportion of JA-responsive genes

To decipher the JA-governed regulatory network with its high degree of dynamic 

interconnectivity with other signaling pathways, we applied a multi-omic network approach 

that is comprised of five newly generated high-quality large-scale datasets (Fig. 1a, b, 

Extended Data Fig. 1a–i, 2a–d and Supplementary Table 1, 2). MYC2 is the master 

regulatory TF of JA responses and plants with a null mutation causing a clear decrease in JA 

sensitivity15. Thus, we included the myc2 (jin1–8 SALK_061267) mutant into our analyses 

(Fig. 1b) 15. MYC2 is responsible for strong JA-responsive gene activation and acts 

additively with MYC3 and MYC4 13,15–20. myc3 and myc4 single mutants behave like 

wildtype with regards to JA-induced root growth inhibition. However, in combination with 

the myc2 mutant, myc2 myc3 double mutants exhibit an increased JA hyposensitivity, 

almost as pronounced as in myc2 myc3 myc4 triple mutants 13. We consequently selected 

MYC3 for an in-depth analysis. In order to better understand how the master TFs MYC2 and 

MYC3 control the JA-induced transcriptional cascade, we determined their genome-wide 

binding sites using chromatin immunoprecipitation sequencing (ChIP-seq). Four biological 

replicates of JA-treated (2 hours) three-day-old etiolated Arabidopsis seedlings that express 

a native promoter-driven and epitope (YPet)-tagged version of MYC2 and three biological 

replicates of MYC3 (Col-0 MYC2::MYC2-Ypet, Col-0 MYC3::MYC3-Ypet) were used 24. 

The rationale behind dissecting jasmonate signaling in etiolated seedlings is that although 

MYC2 is highly expressed in etiolated seedlings and regulates important processes such as 

photomorphogenesis and apical hook formation 21,22,23, a comprehensive characterization of 

this special developmental stage is still missing.

We identified 6,736 MYC2 and 3,982 MYC3 high confidence binding sites (p ≤ 1*10−25 and 

conserved in at least two independent biological replicates), equating to 6,178 MYC2 and 

4,092 MYC3 target genes (within 500 nt of binding site center or nearest neighboring gene; 

Fig. 1c, d and Supplementary Table 1). Of the target genes identified, 3,847 were shared, 

meaning that almost all MYC3 target genes are also bound by MYC2 (Fig. 1c, d). Their 

target genes were enriched for JA-related gene ontology terms and for terms related to other 

hormones (Extended Data Fig. 3a). Target genes shared between MYC2 and MYC3 were 

significantly enriched (p < 0.05) for more JA-related gene ontology terms than target genes 
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unique to either TF (Extended Data Fig. 3b). Proteins encoded by shared MYC2/MYC3 

target genes were enriched for DNA-binding and transcriptional regulatory domains, but in 

contrast, proteins encoded by MYC2-only target genes were enriched for kinase domains 

(Supplementary Table 3). No significant protein domain or gene ontology term enrichment 

was detected amongst the small number of MYC3-only targets (Supplementary Table 3). 

Collectively, these data indicate that MYC2 and MYC3 have the potential to regulate 23.2% 

of genes in the Arabidopsis genome (27,655 coding genes). However, binding events are not 

necessarily regulatory 2,3,25. We determined that 2,522 genes are differently expressed (false 

discovery rate, FDR < 0.05) after two hours of JA treatment using RNA-seq. A third (843 

genes) of JA-modulated genes were directly bound by MYC2 or MYC3 (Fig. 1d and 

Supplementary Table 4). This is consistent with the important role of MYC2/3 in JA-

responsive gene expression 13,15–17,19,20. The majority of JA-responsive direct MYC2/3 

target genes are transcriptionally upregulated after JA application indicating that MYC2 and 

MYC3 predominantly act as transcriptional activators (Extended Data Fig. 3c).

The G-Box (CA[C/T]GT[G/T]) was the most common DNA sequence motif found at MYC2 

or MYC3 binding sites, which is concordant with the observation that they shared a large 

proportion of their binding sites (Fig. 1e, f). This motif was also of similar sequence to a 

motif bound by MYC2 determined in vitro 26. The majority of MYC2 and MYC3 binding 

sites contained the G-Box motif (MYC2: 4,240 of 6,736; MYC3: 3,072 of 3,982; Fig. 1e, f 

and Supplementary Table 5). However, the absence of the motif from a substantial number 

of MYC2 and MYC3 binding sites suggests the TFs may bind indirectly to some sites 

through partner protein(s). We identified putative partner TFs by determining DNA motifs 

enriched in MYC2 binding sites that did not contain a G-box motif. The most strongly 

enriched motifs were CACG[A/C]G (286 sites, E = 2*10−52), which may correspond to the 

TFs CAMTA1 (AT4G15090) or FAR1 (AT5G09410), and AT[A/T][A/T] [A/T]ATA (714 

sites, E = 8.9*10−35), which may correspond to ARID family TFs (AT2G17410, 

AT1G04880) (Extended Data Fig. 3d, e). Molecular investigation of these TFs would be 

required to determine whether they do bind co-operatively with MYC2 to DNA.

Master TFs directly target the majority of signaling components in their respective pathway, 

a phenomenon which has already been observed for the ethylene, abscisic acid and cytokinin 

signaling pathways 2,3,27. This pattern also holds true for the JA signaling pathway. Our 

MYC2/MYC3 ChIP-seq analyses determined that approximately two thirds of genes 

encoding for known JA pathway components (112 of 168 genes for MYC2 and 96 of 168 

genes for MYC3) are bound by MYC2 and MYC3 (Extended Data Fig. 4a, b and 

Supplementary Table 6). Interestingly, the majority of all known JA genes that were 

differentially expressed following JA treatment were bound by MYC2 or MYC3 whereas 

fewer non-differentially expressed known JA genes were directly targeted (Extended Data 

Fig. 4b and Supplementary Table 6). MYCs initiate various feed forward loops that allow a 

rapid activation of the transcriptional JA response 19,28. Our ChIP-seq approach revealed that 

beyond the autoregulation of MYC2 and MYC3, these TFs also regulate JA biosynthesis 

either directly by targeting the JA biosynthesis genes LOX2–4, LOX6 and AOS or indirectly 

through binding to the AP2-ERF TF gene ORA47 or (Supplementary Table 1, 6). In 

addition, MYCs simultaneously target various negative regulators enabling MYCs to 

efficiently dampen the JA response pattern (Extended Data Fig. 4c). Key negative regulators 
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of JA signaling are the JAZ repressors, a gene family of 13 members in Arabidopsis 29, 

which can interact with the adaptor protein NINJA to confer TOPLESS-mediated gene 

repression 30. Strikingly, all JAZs and also NINJA are directly bound by MYC2 and MYC3 

(Extended Data Fig. 4c), with the probable effect of dampening the JA response thereby 

preventing excessive activation of JA signaling.

MYC2 and MYC3 activate the JA response through a large TF network

To study the MYC2 and MYC3-governed transcriptional regulatory network in more detail, 

we investigated the relationship between MYC2/MYC3-bound TF-encoding genes and their 

transcriptional responsiveness to JA treatment. We conducted a JA time course experiment 

(time points 0, 0.25, 0.5, 1, 2, 4, 8, 12, 24 h post JA treatment) identifying a total of 7,377 

differentially expressed genes at one or more time points within 24 h of JA treatment 

(Supplementary Table 4). Differentially expressed genes were categorized into clusters with 

similar expression trends over time to facilitate visualization of complex expression 

dynamics and enriched functional annotations (Extended Data Fig. 5a and Supplementary 

Table 7). The largest upregulated cluster was the “JA cluster” which was enriched for gene 

ontology (GO) terms associated with JA responses (Fig. 2a). In contrast, the “Cell wall 

cluster” was the largest cluster of downregulated genes and enriched for GO terms 

associated with cell wall organization, development and differentiation (Fig. 2b). These two 

main clusters illustrate the defense-growth trade-off when defense pathways are activated 31.

Based on our MYC2/MYC3 ChIP-seq data that is derived from a two hour-long JA 

treatment, up to 63% (0.5 h JA treatment) of differentially expressed genes at any given time 

point have the potential to be directly bound by MYC2 and/or MYC3 (Fig. 2c), highlighting 

the important role of MYCs in transcriptionally regulating JA responses. Our analysis also 

determined that 522 of 1,717 known or predicted TFs were differentially expressed within 

24 h of JA treatment (Extended Data Fig. 5b). Half of these (268), representing 36 of 58 TF 

families, were also direct MYC2 or MYC3 targets (Fig. 2d and Extended Data Fig. 5b) 

indicating that MYC2 and MYC3 cooperatively control a massive TF network. The three 

most numerous families (ERFs, bHLHs and MYBs) in the Arabidopsis genome had the most 

JA-responsive MYC2 or MYC3 targeted members which is concordant with their previously 

annotated roles in JA responses (Fig. 2d) 32. Plant hormone crosstalk is critical for an 

appropriate cellular response to environmental stimuli and numerous reports describe that 

MYC2 connects the JA pathway to other major plant hormone pathways 23,33. To investigate 

this crosstalk function of MYC2 and MYC3 in more detail, we utilized our ChIP-seq data to 

determine the number of plant hormone TFs that are bound by MYC2 and MYC3. We found 

that 37 to 59% of annotated hormone pathway genes are bound by MYC2 and MYC3 and 

that their expression changes in response to 24 hours of JA treatment (Extended Data Fig. 

5c). In addition, we discovered 122 annotated hormone TFs, with representatives from all 

hormone pathways, that are bound by MYC2 and MYC3 and 118 of these are differentially 

expressed (Extended Data Fig. 5d and Supplementary Table 1).

We next set out to better understand the target genes of the network of TFs downstream of 

MYC2 and MYC3. To do so we conducted ChIP-seq or DNA affinity purification 

sequencing (DAP-seq) on a subset of TFs that were direct MYC2/3 targets and rapidly 
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upregulated (within 0.5 h) by JA treatment (DREB2B, ATAF2, HY5, RVE2, ZAT18; Fig. 2e) 

or were members of the upregulated “JA cluster” (TCP23; Fig. 2a). We also included TFs 

with known roles in JA signaling (ERF1, ORA59, ANAC055, WRKY51, ZAT10) 34–38. 

These TFs formed a highly connected network, with all TFs except DREB2B targeting at 

least two TFs in the network and being themselves targeted by two TFs (Fig. 2e and 

Supplementary Table 8). Auto-regulation was common, with seven TFs targeting their own 

loci (Fig. 2e). The target genes of ZAT10, ANAC055 and ATAF2 were most similar to those 

of MYC2/3 (Fig. 2f). Consistent with this, their target genes shared several significantly 

enriched gene ontology terms (adjusted p < 0.05), suggesting related functions in jasmonate 

signaling (Extended Data Fig. 6a). ORA59 and ERF1, along with DREB2B, formed a 

distinct group that targeted a related set of genes (Extended Data Fig. 6a). Notably, ERF1 

and ORA59 also shared significant enrichment of a separate set of gene ontology terms with 

one-another, but that were not enriched amongst MYC2/3 targets (Extended Data Fig. 6a). 

This is consistent with the joint role of ERF1 and ORA59 in controlling a pathogen defense 

arm of JA signaling 34,35. No gene ontology terms were enriched amongst the targets of 

DREB2B. WRKY51 and RVE2 had relatively few enriched gene ontology terms but shared 

most of these with one-another (Extended Data Fig. 6a). Most of the terms related to anti-

insect defense and were a subset of the enriched MYC2/3-ZAT10-ANAC055-ATAF2 gene 

ontology terms (Extended Data Fig. 6a). ZAT10 and ANAC055 are known regulators of 

anti-insect defense and our results suggest WRKY51 and RVE2 may also be involved in this 

component of jasmonate responses 39. Interestingly, ZAT10 belongs to a group of genes that 

is inducible by the JA precursor 12-oxo-phytodienoic acid (OPDA) and not by JA 40. We 

found that approximately one third of OPDA-specific response genes (45 genes) are targeted 

by MYC2 (Supplementary Table 3). Taken together, our analyses determine that MYC2 and 

MYC3 shape the dynamic JA response through the activation of a large TF network that 

includes various potentially coupled feedforward and feedback loops and that allows 

extensive cross-communication with other signaling pathways.

We examined the effect of removing MYC2 activity on JA-responsive transcriptional 

regulation by generating transcriptomes from a myc2 null mutant (jin1–8) in an early JA 

response time series (0, 0.5, 1 and 4 h). The response of myc2 mutants to JA differed from 

that of WT plants. There were 2,905 unique genes differentially expressed between the 

myc2 and WT across the time-series (pairwise comparisons between genotypes at each time 

point; Supplementary Table 9). JA-responsive gene expression did occur in myc2 plants, 

consistent with the partially redundant function of MYC2, MYC3 and MYC4 13. However, 

JA-responsive genes were upregulated more highly in WT than myc2 (Supplementary Table 

9). The JAZ/TIFY genes illustrate this, with 9 of the 12 genes being upregulated more highly 

in WT than myc2, as well as reaching peak expression at earlier time points in WT (0.5 or 1 

h; (Extended Data Fig. 7a). Overall, a majority of the MYC2 target genes differentially 

expressed between myc2 and WT were more highly expressed in WT, indicating loss of 

MYC2 function reduces the JA responsiveness of these genes (Extended Data Fig. 7b). A 

total of 130 TFs targeted by MYC2 were differentially expressed in myc2 mutants compared 

with WT seedlings, including the TFs ATAF2, ERF1, ANAC055 and ZAT10 whose targets 

we had determined by DAP-Seq or ChIP-Seq (Supplementary Table 10). The myc2 mutation 

also affected expression of secondary, indirect MYC2 target genes (ie. genes targeted by 
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MYC2-regulated TFs, but not by MYC2 itself). Between 23.6 and 26.3% of genes targeted 

by each of ATAF2, ERF1, ANAC055 and ZAT10, and not by MYC2, were differentially 

expressed in myc2 plants compared with WT (Extended Data Fig. 7c and Supplementary 

Table 11). Taken together, these data demonstrate that MYC2 regulates gene expression 

through a large network of downstream TFs during response to JA stimulus.

MYC2 controls JA-induced epigenomic reprogramming

Reprogramming of the epigenome is an integral part of development and environmental 

stimulus-induced gene expression 41. For example, activation of the transcriptional JA 

response requires the formation of MYC2/MED25-mediated chromatin looping 42. To 

investigate the extent of JA-induced changes in chromatin architecture and the regulatory 

importance of MYC2 in this response, we conducted ChIP-seq assays to profile the genome 

wide occupancy of the histone modification H3K4me3 and the histone variant H2A.Z in 

untreated/JA-treated (4 h) WT and myc2 seedlings. Trimethylation of H3K4me3 marks 

active and poised genes and the histone variant H2A.Z confers gene responsiveness to 

environmental stimuli 43,44. mRNA expression was monitored in parallel using RNA-seq. JA 

treatment led to a reprogrammed chromatin landscape with several thousand differentially 

enriched H3K4me3 and H2A.Z domains (Extended Data Fig. 8a–c and Supplementary Table 

12). We identified 826 differentially expressed genes (675 induced, 151 repressed; WT 

control v. JA-treated) in that experiment. In line with the predominantly activating function 

of MYC2 (Extended Data Figure 3c), the JA-induced genes had a stronger promoter 

enrichment of MYC2 than the JA-repressed genes (Fig. 3a). The JA-induced genes had an 

increase of H3K4me3, whereas JA-repressed genes had no dynamic change in the level of 

H3K4me3 (Fig. 3b, d). Strikingly, myc2 mutants only display a compromised increase of 

H3K4me3 after JA treatment suggesting that the JA-induced trimethylation of H3K4me3 

depends on functional MYC2 (Fig. 3b–d and Extended Data Fig. 8a). The impact of the 

myc2 mutation on JA-induced H3K4me3 changes can also be observed at JA-induced genes 

that are not directly targeted by MYC2 (Extended Data Fig. 8e, f), which is potentially 

caused by the decreased expression of MYC2-targeted TFs. The scenario of a direct MYC2 

regulation is illustrated by two JA-induced genes, JAZ2 and GRX480, which are directly 

targeted by MYC2. Their expression depends on MYC2 and their JA-induced increase of 

gene body-localized H3K4me3 partially depends on MYC2 (Fig. 3d and Extended Data Fig. 

8d). However, whether the MYC2-dependent changes in H3K4me3 levels precede 

transcription or rather reflect increased transcriptional activity cannot be addressed by these 

experiments. In contrast, JA-induced changes in H2A.Z occupancy are only slightly affected 

in myc2 mutants (Extended Data Fig. 8a, g, h) suggesting that JA-induced H2A.Z dynamics 

are either independent of MYC2, precede MYC2 binding or other MYCs such as MYC3, 

MYC4 and MYC5 are functionally redundant in regulating H2A.Z dynamics.

JA extensively remodels the (phospho)proteome

We next explored how JA remodels the proteome and phosphoproteome of etiolated 

seedlings. Hormone signal transduction typically modifies phosphorylation of downstream 

proteins, changing their activity independent of transcript abundance 6. Transcript 

abundances are also frequently weakly correlated with protein abundances 45,46. 

Consequently, proteomic and phosphoproteomic analyses yield additional insight into gene 
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regulatory networks. We determined that the loss of MYC2 caused substantial changes to the 

JA-responsive proteome and phosphoproteome; 1,432 proteins and 939 phosphopeptides 

(corresponding to 567 genes) were significantly differentially abundant in WT seedlings 

relative to myc2 seedlings after 2 h JA treatment (q < 0.1; Fig. 4a and Supplementary Table 

13, 14). WT seedlings responded to JA (161 proteins, 443 phosphopeptides, WT JA v. WT 

air) and the response was smaller without functional MYC2 (79 proteins, 93 

phosphopeptides, myc2 JA v. myc2 air) (Fig. 4a). These extensive changes in 

phosphopeptide abundance are consistent with the observation that 118 genes encoding 

protein kinases were differentially expressed between WT and myc2 seedlings in our 

transcriptome experiments (Supplementary Table 9).

Some direct overlap existed between proteins or phosphopeptides and transcripts responsive 

to JA treatment (Fig. 4b). Both transcripts and proteins encoded by 28 genes were 

differentially expressed in JA-treated WT seedlings relative to air controls (Fig. 4b). A 

further 33 differentially expressed proteins in JA-treated WT seedlings had no corresponding 

differentially expressed transcript but were encoded by genes that are targeted by MYC2 and 

MYC3 (Fig. 4b). Differentially abundant phosphopeptides were detected that corresponded 

with 15 differentially expressed transcripts (Fig. 4b). Transcript and protein abundances 

were weakly positively correlated (Pearson correlation 0.40341) in JA-treated WT seedlings 

(Fig. 4c), in agreement with prior studies 45,46. The protein of only one known JA pathway 

component was differentially abundant in JA-treated WT seedlings relative to controls, and 

none were differentially phosphorylated. The fact that only a single JA-regulated protein and 

no phosphoproteins are annotated as JA pathway components may indicate that existing 

annotations are overly-dependent on transcriptome data and that consideration of 

(phospho)proteome data deepens our understanding of JA responses.

Alternative splicing can occur rapidly in response to environmental stimuli, contributing to 

transcriptome reprogramming and potentially fine-tuning physiological responses 47. It is 

central to JA-mediated regulation of transcription, with an alternative isoform of the 

repressor JAZ10 creating a negative feedback loop that desensitizes cells to a JA stimulus 
48,49. However, the extent of alternative splicing in JA signaling beyond the JAZ repressors 

is poorly characterized. We observed that phosphorylation of proteins involved in RNA 

recognition and nucleotide binding was disrupted in JA-treated myc2 mutants compared 

with WT seedlings. The spliceosome was the only pathway significantly enriched amongst 

these differentially phosphorylated proteins (p < 0.05, 18 genes matched) suggesting that 

MYC2 may influence JA-responsive alternative splicing. Furthermore, 18 genes with 

splicing-related annotations were differentially expressed between myc2 and WT seedlings 

in our transcriptome experiments (Supplementary Table 9). None of the differentially 

phosphorylated spliceosome components was differentially expressed.

We examined isoform switching events across our JA transcriptome time-series, where the 

most abundant of two isoforms from a single gene changes, to determine the extent of JA-

responsive alternative splicing (Fig. 4d, e, Supplementary Table 15). There were 151 switch 

events, corresponding to 137 isoform pairs from 120 genes, within 24 h of JA treatment. 

These were identified from 30,547 total individual transcripts detected (average TPM > 1; 

Supplementary Table 16). Two of the genes exhibiting isoform switches had prior JA 
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annotations (RVE8/AT3G09600, SEN1/AT4G35770, Supplementary Table 15) and others 

were annotated to a variety of processes (including auxin, ABA, light signaling, disease 

response, amongst many others), but there was no significant enrichment of any gene 

ontology terms or pathways. This indicates that MYC2 influences alternative splicing that 

diversifies the transcriptome in response to a JA stimulus.

Multi-omic modelling of the JA response regulatory program

We wanted next to characterize the broader JA response genome regulatory program so that 

we could increase our understanding of the roles of known JA TFs within this and identify 

new potential regulatory interactions. To do so we generated a gene regulatory network 

model encompassing the (phospho)proteomic and time-series transcriptomic data (Extended 

Data Fig. 9a and Supplementary Table 17). Inclusion of the (phospho)proteomic data 

expanded the network by an additional 957 nodes (genes) compared with a transcript only 

network (3,409 v. 4,366 nodes, 28% larger) (Supplementary Table 17). The 

(phospho)proteomic and transcript data shared 217 nodes within the network, a relatively 

small proportion, indicating these datasets complement one-another when attempting to 

characterize the JA-response genome regulatory program.

Many known JA signaling components were present in the 100 most important predicted 

components of the network (MYC2, ERF1, JAZ1, JAZ2, JAZ5, JAZ10, ATAF2 and others; 

within top 100 of 4366 components by normalized motif score; Supplementary Table 17). 

MYC2 was predicted to regulate a subnetwork of 26 components, 23 of which were 

validated as directly bound by MYC2 in ChIP-seq assays (88.5%, Extended Data Fig. 10a 

and Supplementary Table 1, 17). We further validated the network by comparing the ChIP/

DAP-seq data previously collected for the remaining 12 JA TFs to their targets in the gene 

regulatory network (Fig. 2e, f, Extended Data Fig. 10b and Supplementary Table 18). The 

gene regulatory network identified all of these TFs as components of the JA response, except 

MYC3 (Supplementary Table 17). It is likely that MYC3 was not part of the network due to 

it being only modestly differentially expressed following JA treatment and not being 

detected in the (phospho)proteome analyses (Supplementary Tables 4, 13, 14). The wider 

validation of targets was less strong than for MYC2, ranging from 0% to 33.3%. This could 

reflect the possibility that interactions predicted by the gene regulatory network may not 

identify all intermediate components. Lastly, we examined known genetic interactions. The 

MYC2 subnetwork included activation of JAZ10 within 0.5 h of a JA stimulus, with JAZ10 

reciprocally repressing MYC2 (Extended Data Fig. 10a, b). This is consistent with the 

known role of JAZ10 in establishing negative feedback that attenuates JA signaling 49. 

MYC2 was also predicted to activate AIB (ABA-INDUCIBLE BHLH-TYPE 

TRANSCRIPTION FACTOR, JAM1/bHLH017/AT2G46510) (Extended Data Fig. 10a, b), 

establishing a negative feedback loop in which AIB negatively regulates MYC2. This is in 

line with prior studies, which established AIB is dependent upon and antagonistic to MYC2, 

thereby repressing JA signaling 50,51. Confirmation by both genetic data from the literature 

and our DAP/ChIP-seq experiments indicates that our gene regulatory network modelling 

approach is a useful tool to identify new regulatory interactions within JA signaling and to 

better understand known regulatory interactions.
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Crosstalk between hormone response pathways permits fine-tuning of plant growth and 

development in response to diverse environmental signals 1. We examined the potential 

points at which MYC2 may interface directly with other hormone signaling pathways, since 

MYC2 is the master regulator of JA responses and one of the first TFs activated by JA. The 

MYC2 subnetwork identified a potential route for JA signaling to cross-regulate auxin 

hormone signaling. MYC2 activated ARF18 and ARF18 reciprocally activated MYC2 

(Extended Data Fig. 10a and Supplementary Table 17). It also indicated that MYC2 may 

promote ethylene signaling by activating MAP kinase kinase 9 (MKK9) (Extended Data Fig. 

10a). Prior genetic studies determined that MKK9 induces ethylene production, but had not 

examined a possible link with JA signaling 52. Positive crosstalk is known to exist between 

JA and auxin signaling though the mechanism is not clearly determined 53. RGL3, a 

regulator of gibberellic acid (GA) signaling previously associated with JA-GA crosstalk, was 

also present within the MYC2 subnetwork (Extended Data Fig. 10a), predicted to inhibit 

MYC2 but not to be reciprocally regulated by MYC2 54. These three interactions are 

potential points at which crosstalk can occur rapidly during a JA response with auxin, 

gibberellin and ethylene.

We next examined the broader gene regulatory network to identify additional predicted 

points of crosstalk between JA and other signaling pathways. The model predicted that STZ/

ZAT10 is a key early hub through which JA signaling is prioritized over several other 

hormone and stress response pathways (Fig. 5a and Supplementary Table 17). STZ/ZAT10 is 

known to be a transcriptional repressor from genetic studies 55 and, consistent with this, our 

model predicted that it inhibited the majority of genes it regulates (25 of 34 genes). 

WRKY40, WRKY70, DDF and ERF6 were all predicted to be inhibited by STZ/ZAT10 

within 0.25 h of a JA stimulus and GRX480 within 1 h. Direct binding of STZ/ZAT10 to 

ERF6 was detected in ChIP-seq assays (Supplementary Table 11). WRKY40 and WRKY70 

are both early brassinosteroid response components that repress defense responses 56. DDF1 

promotes resistance to drought, cold, heat and salinity stress by reducing endogenous 

gibberellin abundance 57. ERF6 similarly promotes drought resistance by reducing 

gibberellin abundance 58. GRX480 regulates the negative crosstalk between salicylic acid 

and both JA/ethylene signaling through the direct interactions with TGA TFs 59,60. The 

model also predicts that ERF6, WRKY70 and DDF1 exert negative feedback on STZ/ZAT10 

by activating JAZ8 within 0.25 h of the JA stimulus (Fig. 5a and Supplementary Table 17). 

JAZ8 is a known repressor of JA signaling and is predicted to repress STZ/ZAT10 61. In sum 

the gene regulatory network predicts that STZ/ZAT10 is an important hub for JA signaling to 

be prioritized over other hormone and stress response pathways (Fig. 5a).

Large-scale data-mediated identification of new JA regulators

We next utilized our regulatory network and large-scale datasets to identify novel regulators 

of the JA pathway using the JA root growth inhibition assay as our experimental readout. 

First, we focused on ABO3 (ABA overly sensitive 3), which is directly targeted by MYC2 

and MYC3 (Supplementary Table 1) and whose subnetwork is comprised of 26 predicted 

regulated genes, the majority of which is positively regulated (22 of 26 genes) (Fig. 5b). 

ABO3 encodes the Arabidopsis WRKY TF gene WRKY63, which is involved in stress gene 

expression and drought tolerance 62. To investigate the importance of the ABO3 subnetwork 
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in JA signaling, we tested abo3 T-DNA mutant seedlings (SALK_075986C) in a JA-induced 

root growth inhibition assay. We found that abo3 mutants show a weak JA hypo-sensitive 

root growth inhibition phenotype (Fig. 5c–e) indicating that ABO3 is positive regulator of 

JA signaling and that our network approach is able to identify new pathway components.

Next, we expanded our phenotyping analysis to T-DNA lines of genes that display the 

strongest binding of MYC2 and MYC3 in their promoters (Supplementary Table 1, 18). The 

rationale behind this approach is that master TFs target the majority of key signaling 

components in their regulated respective pathways and that these are often the most strongly 

bound targets 2,3,27. Of 99 genes tested (194 T-DNA lines in total, Supplementary Table 19), 

we discovered six genes that, when mutated, display mild JA root growth phenotypes 

(Extended Data Fig. 10c and Supplementary Table 19). Mild phenotypes as well as their low 

frequency were not surprising since gene redundancy is very common in the Arabidopsis 
genome and even the mutation of the master TF MYC2 only causes a mild JA-hyposensitive 

root growth phenotype (Fig. 5c–e)15. Among these genes was the cytochrome P450 enzyme 

CYP708A2 gene from which both tested T-DNA mutant alleles exhibit a JA hypersensitive 

root phenotype (Fig. 5f–h). Interestingly, our network analysis also discovered CYP708A2 

as a regulatory hub (Extended Data Fig. 9a, 10d). CYP708A2 is involved in triterpene 

synthesis, which is known to be stimulated by JA 63; future studies are however needed to 

further decipher the role of CYP708A2 in JA signaling. Another interesting uncharacterized 

gene that we discovered caused a JA phenotype is a Sec14p-like phosphatidylinositol 

transfer family protein (AT5G47730) (Extended Data Fig. 10c and Supplementary Table 19). 

Phosphatidylinositol transfer proteins (PITPs) are crucial for the phosphatidylinositol 

homeostasis in plants 64 and inositol polyphosphates have been implicated in COI1-

mediated JA perception 65. Taken together, these data show that our multi-omic approach 

goes beyond network description ultimately enabling the identification of novel JA pathway 

regulators.

Discussion

An important unanswered question in plant biology is how multiple signaling pathways 

interact to coordinate control of growth and development. In this study we have 

comprehensively characterized the cellular response to the plant hormone JA and generated 

a network-level understanding of the MYC2/MYC3-regulated JA signaling pathway. We 

used this to identify several new points at which JA signaling may have cross-regulation 

with other hormone and stress response pathways in order to prioritize itself. The results 

increase knowledge of how JA functions in the etiolated seedling, a less well characterized 

model for JA responses. Moreover, the general principles described here provide a 

framework for analysis of cross-regulation between hormone and stress signaling pathways. 

We provide our data in a web-based genome and network browsers to encourage deeper 

exploration (http://signal.salk.edu/interactome/JA.php, http://neomorph.salk.edu/MYC2).

The major insight provided by our study is that multiple points of crosstalk are likely to exist 

between JA signaling and other pathways. This was evident from the interactions within the 

genome regulatory network model and supported by our observation that many (37 to 59%) 

genes from other hormone signaling pathways are bound by MYC2/3 and JA-regulated. The 
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WRKY family TF ABO3 was identified as a candidate JA response regulator and genetic 

analyses determined a mutant of the gene was JA hyposensitive. ABO3 is also a regulator of 

ABA responses 62 suggesting that ABO3 functions in the cross-communication between the 

JA and ABA pathway. The repressive zinc-finger family TF STZ/ZAT10, working with 

JAZ8, emerged as a potentially important point of contact with salt and drought stress, as 

well as the salicylic acid, brassinosteroid and gibberellin hormone signaling pathways. 

Combined these results illustrate the importance of transcriptional cross-regulation during a 

JA response in modulating the correct cellular output for the stimuli a plant perceives.

Our multi-omic analysis determined that the master TF MYC2 and its relative MYC3 

directly target thousands of JA responsive genes including hundreds of JA-responsive TFs, 

thereby enabling a robust cascade of transcriptional reprogramming. Secondary TFs 

downstream of MYC2/3 directly targeted overlapping but distinct cohorts of genes, 

indicating they have distinct roles within the JA response. This illustrates the complexity of 

hormone-response genome regulatory programs; we have assayed only a fraction of the JA-

responsive TFs and find that any individual JA-responsive gene may be bound by multiple 

TFs. How the final quantitative output of any individual gene is determined by combinatorial 

binding of TFs remains a major challenge to address. Achieving this will require analyses at 

cell-type resolution, resolving differences in TF activity between tissues that would be 

obscured by our bulk-tissue analyses. We further demonstrated the importance of MYC2/3 

target genes in JA responses by analyzing JA root growth phenotypes in mutants of 99 genes 

strongly targeted by MYC2/3. Mutations in six genes caused clear disruption of JA 

responses, both hyper and hypo-sensitivity. It is probable that genetic redundancy accounts 

for a proportion of the mutants not causing phenotype changes. The structure of hormone-

response genome regulatory programs will likely differ between cells and tissues and, while 

our findings can be translated between etiolated and light grown seedlings, exploration of 

other developmental stage-specific regulatory programs is needed to generalize these 

findings.

Our study also highlights that many different regulatory mechanisms are utilized by JA to 

exert its effects upon the cell. Expression of a large number of protein kinases was regulated 

by MYC2. Consistent with this, substantial MYC2-dependent changes in phosphopeptide 

abundance occurred in JA-treated seedlings. It is also likely that JA modulates alternative 

splicing through MYC2. Genes encoding splicing factors were differentially expressed 

between myc2 and WT and the spliceosome pathway was enriched amongst myc2-
dependent JA-regulated phosphopeptides. Accordingly, isoform switch events occurred 

following JA-treatment. Collectively these findings indicate that investigation of post-

transcriptional and post-translational layers of regulation are required to better understand 

the complexity of JA signaling. The targets of JA-regulated protein kinases are a notable 

prospect.

Another layer of regulatory complexity within the JA signaling pathway, and within 

signaling pathways in general, is the presence of multiple feedforward and feedback loops 

that are activated simultaneously. The interactions between these subnetworks through their 

kinetics and the strength of their regulatory impact on the broader network is not well 

understood. For example, we discovered that MYC2 and MYC3 stimulate JA biosynthesis 
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but also target the entire JAZ repressor family from which the majority of members is also 

transcriptionally activated. Uncoupling these subnetworks would be an effective way to 

determine how they interact to drive very robust activation of the JA pathway. The 

combination of our multi-omic framework approach coupled with powerful genetic 

approaches such as the generation of the jaz decuple mutant 29 should significantly 

contribute to a better understanding of JA response pathways.

Material & Methods

Plant material and growth conditions

The myc2 mutant in this study is jin1–8 (SALK_061267) 15 and was obtained from the 

Arabidopsis Biological Resource Center (ABRC). Col-0 MYC2::MYC2-Ypet and Col-0 

MYC3::MYC3-Ypet, generated by recombineering, have been described previously 66. For 

the generation of all large scale datasets, three-day-old etiolated seedlings were used (Col-0 

(WT), myc2, MYC2::MYC2-Ypet, MYC3::MYC3-Ypet). Seedlings were grown in the dark 

in closed lightproof containers. Gaseous methyl jasmonate treatments for the respective 

times were performed in these containers as previously described 17 with 1µl of methyl 

jasmonate (95% purity; Sigma-Aldrich) per 1 litre of container volume dropped on 

Whatman paper. For the JA-induced root growth inhibition assay, surface-sterilized WT, 

myc2 and T-DNA mutant seeds (Supplementary Table 19) were grown on agar plates 

containing LS medium supplemented with or without 20 µM MeJA (392707, Millipore 

Sigma) for 9 days. Plates were scanned afterwards and root length was measured using 

ImageJ.

ChIP-seq

Three-day-old etiolated Col-0 MYC2::MYC2-Ypet, Col-0 MYC3::MYC3-Ypet, Col-0 and 

myc2 seedlings were used for ChIP-seq experiments. ChIP assays were performed as 

previously described 67. ChIP-seq assays were conducted with antibodies against H2A.Z 

(39647, Active Motif), H3K4me3 (04–745, Millipore Sigma) and GFP (11814460001, 

Millipore Sigma or goat anti-GFP supplied by David Dreschel, Max Planck Institute of 

Molecular Cell Biology and Genetics). As a negative control, mouse or goat IgG (015–

000-003 or 005–000-003, Jackson ImmunoResearch) was used. The respective antibodies or 

IgG were coupled for 4–6 hour to Protein G Dynabeads (50µl, 10004D, Thermo Fisher 

Scientific) and subsequently incubated overnight with equal amounts of sonicated 

chromatin. Beads were washed twice with high salt buffer (50 mM Tris HCl pH 7.4, 150 

mM NaCl, 2 mM EDTA, 0.5% Triton X-100) low salt (50 mM Tris HCl pH 7.4, 500 mM 

NaCl, 2 mM EDTA, 0.5% Triton X-100) and wash buffer (50 mM Tris HCl pH 7.4, 50 mM 

NaCl, 2 mM EDTA) before samples were de-crosslinked, digested with proteinase K and 

DNA was precipitated. Sequencing libraries were generated following the manufacturer’s 

instructions (Illumina). Libraries were sequenced on the Illumina HiSeq 2500 and HiSeq 

4000 Sequencing system and sequencing reads were aligned to the TAIR10 genome 

assembly using Bowtie2 68.
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DAP-seq

DAP-seq assays were carried out as previously described 69,70 using recombinantly 

expressed ERF1 (AT3G23240, ERF1B, AtERF092), ORA59 (AT1G06160), ATAF1 

(AT1G01720), DREB2B (AT3G11020), ZAT18 (AT3G53600), RVE2 (AT5G37260), 

WRKY51 (AT5G64810), HY5 (AT5G11260) and TCP23 (AT1G35560).

RNA-seq

Three-day-old etiolated seedlings were used for expression analyses. Total RNA was 

extracted with the RNeasy Plant Mini Kit (74903, Qiagen). cDNA library preparation and 

subsequent single read sequencing was carried as previously described 3.

RNA-seq analyses

Sequencing reads were quality trimmed using TrimGalore 0.4.5 https://github.com/

FelixKrueger/TrimGalore) then aligned to the TAIR10 genome assembly using TopHat 2.1.1 
71. Reads within gene models were counted using HTSeq 72. Differentially expressed genes 

in time series RNA-seq were identified using EdgeR 3.6.2 with a likelihood ratio test 

(functions glmFit and glmLRT), batch correction Benjamini & Hochberg correction for 

multiple tests 73. Differentially expressed genes in the Col-0 versus myc2 mutant RNA-seq 

were determined using EdgeR 3.18.1 and quasi-likelihood F-tests (function glmQLFit) 74. 

Temporal co-regulation of transcripts was determined using the Short Time-Series 

Expression Miner (STEM) 75. A minimum correlation coefficient of 0.7 was applied and up 

to 50 permutations permitted to identify correct cluster/gene matches. Significant clusters 

were those having a Bonferroni-corrected p-value < 0.05. Full STEM model parameters are 

given in Supplementary Table 7. Known A. thaliana TFs were identified by reference to 

PlantTFDB 4.0 76.

ChIP-seq and DAP-seq analyses

ChIP-seq and DAP-seq sequence reads were mapped to the TAIR10 reference genome using 

Bowtie 2 v.2–2.0.5 with default parameters 77. For TF and histone ChIP-seq, we first 

assessed the quality of the ChIP data by using PhantomPeakQualTools v.2.0 to calculate 

normalized strand correlation (NSC), relative strand correlation (RSC) and shift size 78. 

Enriched binding sites were then identified using MACS2 v.2.1 (options -p 99e-2 --nomodel 

–shiftsize --down-sample --call-summits) against sequence reads from whole IgG control 

samples 79. Subsequent analyses used summits only. Summit lists were filtered with a cut-

off of p≤1*10−25 and remaining summits expanded from single nucleotides to 150 nt. Only 

summits with at least 10% nt overlap between at least two biological replicates were 

retained. These overlapping summits were merged between replicates using BEDtools 

v.2.17.0 to give the final set of high confidence binding sites, which were then annotated 

using ChIPpeakAnno v.2.2.0 to any gene within 500 nt of the center of the summit or, 

alternatively, the nearest neighbor if there was no gene within 500 nt 80,81. Venn diagrams 

were drawn using Venny and Intervene (http://bioinfogp.cnb.csic.es/tools/venny/) 82. Top-

ranked MYC2/3 binding sites were identified by applying IDR to the summits from the two 

biological replicates that had the greatest number of summits above the MACS2 cut-off of p 

≤ 1*10−25. TF binding motifs were determined using the MEME-ChIP webserver with 
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default parameters on the sequences of the high-stringency MYC2 summits 83. To identify 

potential partner TFs that may enable indirect MYC2 binding we removed all MYC2 high-

stringency summits that contained the MYC2 motif (CACGTG, CATGTG or CACGTT). 

This was done by scanning them with FIMO set to default parameters (http://meme-

suite.org/tools/fimo) against the position weight matrix for the MYC2 motif we previously 

identified by MEME-ChIP. We then conducted MEME-ChIP analyses on the remaining 

high-stringency summits as above. The Genome wide Event finding and Motif discovery 

(GEM) tool 84 was used to identify the target summits in DAP-seq data. Significant 

enrichments of histone modifications and histone variants were identified with the SICER 

software 85 using the TAIR10 genome assembly. The Intersect tool from BEDtools 80 was 

used to identify the genes in the histone ChIP-seq datasets most proximal to the binding 

sites. The fraction of reads in peak score (FRiP) score was calculated for DAP-Seq and 

histone ChIP-seq data using BEDtools and SAMtools 85,86. For both ChIP-seq and DAP-seq 

gene ontology enrichment was assessed using clusterProfiler with default parameters87. 

Protein domain enrichment was assessed using Thalemine (https://apps.araport.org/

thalemine/) with default parameters 88.

Mass spectrometry analysis

Ground untreated/JA-treated Col-0 and myc2 seedlings tissue was ground and lysed in 

YeastBuster (71186, Millipore Sigma). Proteins (100 µg per sample) were precipitated using 

methanol- chloroform. Dried pellets were dissolved in 8 M urea, 100 mM triethylammonium 

bicarbonate (TEAB), reduced with 5 mM tris (2-carboxyethyl) phosphine hydrochloride 

(TCEP), and alkylated with 50 mM chloroacetamide. Proteins were then trypsin digested 

overnight at 37 °C. The digested peptides were labeled with TMT10plex™ Isobaric Label 

Reagent Set (90309, Thermo Fisher Scientific, lot TE264412) and combined. One hundred 

micrograms (the pre-enriched sample) was fractionated by basic reverse phase (84868, 

Thermo Fisher Scientific). Phospho-peptides were enriched from the remaining sample (900 

µg) using High-Select Fe-NTA Phospho-peptide Enrichment Kit (A32992, Thermo Fisher 

Scientific). The TMT labeled samples were analyzed on a Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific). Samples were injected directly onto a 25 cm, 100 μm ID column 

packed with BEH 1.7 μm C18 resin (186002350, Waters) and subsequently separated at a 

flow rate of 300 nL/min on a nLC 1200 (LC140, Thermo Fisher Scientific). Buffer A and B 

were 0.1% formic acid in water and 90% acetonitrile, respectively. A gradient of 1–20% B 

over 180 min, an increase to 40% B over 30 min, an increase to 100% B over another 20 min 

and held at 90% B for a final 10 min of washing was used for 240 min total run time. 

Column was re-equilibrated with 20 μL of buffer A prior to the injection of sample. Peptides 

were eluted directly from the tip of the column and Nano sprayed directly into the mass 

spectrometer by application of 2.8 kV voltage at the back of the column. The Lumos was 

operated in a data dependent mode. Full MS1 scans were collected in the Orbitrap at 120000 

resolution. The cycle time was set to 3 s, and within this 3 s the most abundant ions per scan 

were selected for CID MS/MS in the ion trap. MS3 analysis with multinotch isolation 

(SPS3) was utilized for detection of TMT reporter ions at 60000 resolution. Monoisotopic 

precursor selection was enabled and dynamic exclusion was used with exclusion duration of 

10 s.
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The raw data were analyzed using MaxQuant version 1.6.3.3 89. Spectra were searched, 

using the Andromeda search engine 90 against the Tair10 proteome file entitled 

“TAIR10_pep_20101214” that was downloaded from the TAIR website (https://

www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_files%2FProteins

%2FTAIR10_protein_lists) and was complemented with reverse decoy sequences and 

common contaminants by MaxQuant. Carbamidomethyl cysteine was set as a fixed 

modification while methionine oxidation and protein N-terminal acetylation were set as 

variable modifications. For the phoshoproteome “Phosho STY” was also set as a variable 

modification. The sample type was set to “Reporter Ion MS3” with “10plex TMT selected 

for both lysine and N-termini”. Digestion parameters were set to “specific” and “Trypsin/

P;LysC”. Up to two missed cleavages were allowed. A false discovery rate, calculated in 

MaxQuant using a target-decoy strategy 91 less than 0.01 at both the peptide spectral match 

and protein identification level was required. The ‘second peptide’ option identify co-

fragmented peptides was not used. Differentially expressed proteins and phospho-sites were 

identified using PoissonSeq 92 with a q-value cutoff of 0.1. Sample loading normalization 

was performed before differential expression analysis.

Transcript quantification and identification of isoform switches

Quantification of transcripts was performed using Salmon v0.8.1 in conjunction with the 

AtRTD2-QUASI transcript reference 93,94 The quasi mapping-based index was built using 

an auxiliary k-mer hash over k-mers of length 31 (k=31). For quantification, all parameters 

of Salmon were kept at default, except that the option to correct for the fragment-level GC 

biases (“–gcBias”) was turned on. The TSIS R package, which is designed for detecting 

alternatively spliced isoform switch events in time-series transcriptome data, was used to 

perform the isoform switch analysis 95 Only transcripts whose average transcript per million 

(TPM) across all time points was >1 were included in the TSIS analysis. The mean 

expression approach was used to search interaction points. Significant switch events were 

identified using the following filtering parameters: (1) probability cutoff >0.5; (2) 

differences cutoff >1; (3) p-value cutoff < 0.05; (4) min time in interval > 1.

Gene regulatory network (GRN) inference

All GRNs were constructed using the Regression Tree Pipeline for Spatial, Temporal, and 

Replicate data (RTP-STAR) 96,97. Prior to GRN inference, genes were clustered based on 

transcriptome, proteome, or phosphoproteome data using Dynamic Time Warping (DTW) 

(and the dtwclust package in R 98. These clusters were then used in the RTP-STAR pipeline. 

For the transcriptome networks, one network was inferred for genes differentially expressed 

at each time point (8 networks total), and then the networks were combined in a union. For 

each network, the biological replicates for that individual time point and the 0 h (control) 

time point were used to infer the network. The sign (activation/repression) of each edge was 

inferred using all of the time points in the time course. For the proteome and 

phosphoproteome networks, one network was inferred for genes differentially expressed in 

any of the comparisons. The biological replicates for all of the (phospho) proteome samples 

were used to infer the network. The sign of each edge was not inferred as the (phospho) 

proteome data only consisted of one time point. After the transcriptome, proteome, and 

phosphoproteome networks were combined in a union, a Network Motif Score (NMS) 99 

Zander et al. Page 16

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

https://www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_files%2FProteins%2FTAIR10_protein_lists
https://www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_files%2FProteins%2FTAIR10_protein_lists
https://www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_files%2FProteins%2FTAIR10_protein_lists


was calculated to determine the importance of each gene. Feedback loop, feedforward loop, 

bi-fan, and diamond motifs were used in this score as they have been previously shown to 

contain genes important for biological processes 100–102. All motifs were significantly 

enriched in the combined network compared to a randomly generated network of the same 

size. The number of times each gene appeared in each motif was counted, the counts were 

normalized to a scale of 0 to 1, and the counts were summed to calculate the NMS. The 

higher the NMS, the more functionally important the gene is. All code for RTP-STAR is 

available at https://github.com/nmclark2/RTP-STAR. The parameters used for all networks 

in this paper are provided in Supplementary Table 20.

Extended Data
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Extended Data Fig. 1. Overview of quality metrics of generated ChIP-seq datasets
a-c, Correlation plot of the respective TF ChIP-seq samples is shown. The MYC2 and 

MYC3 ChIP-seq replicates are shown together in (a). Clustering is determined by the degree 

of correlation (Pearson correlation). ChIP-seq data is derived from at least three independent 

experiments: MYC2 (JA, n=4), MYC3 (JA, n=3), ZAT10 (air, n=3; JA, n=2), ANAC055 (JA, 

n=3). d-i, Cross-correlation (Pearson correlation) plot for the respective TF and histone 

ChIP-Seq sample is shown. NSC means normalized strand cross-correlation coefficient and 

RSC means relative strand cross-correlation coefficient. Qtag means quality tag based on 

thresholded RSC (codes = −2: very low, −1: low, 0: medium, 1: high, 2: very high). All 

shown TF ChIP-seq replicates are derived from independent experiments: MYC2 (JA, n=4), 

MYC3 (JA, n=3), ZAT10 (air, n=3; JA, n=2), ANAC055 (JA, n=3). Histone ChIP-seq data is 

derived from a single experiment (n=1).
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Extended Data Fig. 2. Overview of quality metrics of generated RNA-seq and proteome data.
a, b, Multidimensional scaling (MDS) plots of replicate samples of the 24 h JA treatment 

RNA-seq time-series in WT (a) and the 4 h JA-treatment RNA-seq time-series in WT and 

myc2 seedlings (b) are shown. Both JA treatment time series consist of three independent 

samples (n=3) for each time point and genotype. c, d, Principal component analysis (PCA) 

plots of independent biological replicate samples analyzed by proteomics (c) and 

phosphoproteomics (d).

Zander et al. Page 19

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Extended Data Fig. 3. MYC2 and MYC3 act predominantly as activators for a functionally 
diverse range of target genes.
a, b, Gene ontology (GO) analyses using a hypergeometric distribution of all MYC2 and 

MYC3 targets (a) as well as MYC2 only and MYC2/MYC3 shared targets (b) are shown. 

Data is derived from four independent MYC2 (n=4) and three independent MYC3 (n=3) 

ChIP-seq samples. Analyses were conducted using clusterProfiler. c, Bar plots shows the 

portion of JA-induced and JA-repressed genes that are bound by MYC2 and MYC3. d, e, 

The CACG[A/C]G motif (286 sites, E = 2*10−52) (d) and the AT[A/T][A/T] [A/T]ATA 

motif (714 sites, E = 8.9*10−35) (e) were enriched in MYC2 high-confidence target regions 

that do not contain a G-box or the degenerate G-box motifs CATGTG or CACGTT.
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Extended Data Fig. 4. MYC2 and MYC3 regulate the majority of JA signaling pathway 
components.
a, Schematic overview of known MYC2/MYC3-targeted JA pathway components. Genes 

that are directly targeted by MYC2/MYC3 are highlighted in orange. b, Binding behavior of 

MYC2 and MYC3 at known JA genes (Supplementary Table 6) is shown. Known JA genes 

are grouped into non-differentially expressed and JA differentially expressed genes. c, 

AnnoJ genome browser screenshot visualizes MYC2 and MYC3 binding at all 13
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Extended Data Fig. 5. MYC2 and MYC3 target a large number of TFs.
a. Cluster analysis revealed the 5 other main clusters in the JA time course experiment. 

Clusters visualize the log2 fold change expression dynamics over the indicated 24 hours’ 

time period. The three strongest enriched gene ontology terms for each cluster are shown as 

well. b, Pie chart indicates the proportions of TFs that are transcriptionally induced by JA, 

bound by MYC2/MYC3, or both. c, d, Overview of MYC2/MYC3-bound plant hormone 

genes (c) and TFs (d) is shown. Plant hormones are abbreviated (ET (ethylene), BR 

(brassinosteroids), GA (gibberellic acid), ABA (abscisic acid), SA (salicylic acid), CK 

(cytokinin), AUX (Auxin), K (karrikin), SL (strigolactones)).
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Extended Data Fig. 6. Overview of MYC-controlled TF network.
a. Significantly enriched (adjusted p < 0.05) gene ontology terms amongst the target of each 

TF. For each TF the 4 terms with the lowest p-value are shown, some of which are redundant 

between TFs. No enriched terms were detected for DREB2B targets. ChIP-seq data is 

indicated by presence of *, all other data was generated by DAP-seq. ChIP-seq data is 

derived from at least three independent experiments: MYC2 (JA, n=4), MYC3 (JA, n=3), 

ZAT10 (air, n=3; JA, n=2), ANAC055 (JA, n=3). DAP-seq data is derived from a single 

experiment (n=1).
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Extended Data Fig. 7. MYC2 partially controls expression of JAZ repressors.
a, Individual plots show expression of all JAZ/TIFYs and NINJA in WT (blue) and myc2 
(orange) seedlings following JA treatment. log2 fold change (FC) was calculated relative to 

their respective 0 h (ie. non-treated) control samples. b, Bar chart shows the number of 

differentially expressed (DE) genes at each time point after JA treatment between WT and 

myc2 seedlings. The bar chart also indicates how many of these DE genes were direct 

binding targets of MYC2 (in ChIP-seq assays) and whether they were more highly expressed 

in WT (blue) or myc2 (orange) seedlings. c, Charts indicates of how MYC2 indirectly 

affects the expression of downstream genes through secondary TFs. The expression of genes 

in pairwise comparisons of WT and myc2 transcriptomes at 0, 0.5, 1 and 4 h was assessed. 

Only genes that were direct targets of the TFs ATAF2, ZAT10, ANACO55 and ERF1, and 

not direct targets of MYC2, were analyzed which are termed “non-MYC2 target genes”. 

ATAF2, ZAT10, ANACO55 and ERF1 are themselves direct targets of MYC2 and their 

expression levels were decreased in myc2 relative to WT, indicating they are directly 

regulated by MYC2. DE indicates differentially expressed genes.
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Extended Data Fig. 8. JA shapes the local chromatin architecture.
a, Bar plot shows the impact of two hours JA treatment on the genome-wide distribution of 

H3K4me3 and H2A.Z domains. Occupancy was determined in untreated/JA-treated WT and 

myc2 seedlings using ChIP-seq. SICER was used to identify the number of histone domains 

that show an increase (blue) or decrease (orange) of enrichment in response to JA. b, c, 

Heatmaps show the occupancy of H3K4me3 and H2A.Z from 1 kb upstream to 2 kb 

downstream of the transcriptional start site (TSS) at all Arabidopsis genes (TAIR10). 

Heatmaps are shown for H3K4me3 (b) and H2A.Z (c) in untreated and JA-treated (4 h) WT 

and myc2 seedlings. d, Quantification of H3K4me3 occupancy at JAZ2 and GRX480 is 

shown. It was calculated as the ratio between the respective ChIP-seq sample and the WT 

IgG control. e, f, Aggregated profiles show the log2 fold change enrichment of H3K4me3 at 

JA DEGs that are directly (e) and not directly targeted (f) by MYC2 from 2 kb upstream to 2 

kb downstream of the transcriptional start site (TSS). g, h, Plot profiles show the log2 fold 

change enrichment of H2A.Z in WT (g) and myc2 mutants (h) from 2 kb upstream to 2 kb 

downstream of the transcriptional start site (TSS) at JA-induced and JA-repressed genes.
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Extended Data Fig. 9. The JA gene regulatory network.
a, Illustration of JA gene regulatory network for 1, 2 and 4 h time points. Edges were 

predicted using phosphoproteome (green), proteome (orange) and transcriptome (blue) data. 

Node sizes are scaled by normalized motif score, with larger nodes indicating greater scores 

and likely greater importance within the network. Edges predicted early in the time-series 

transcriptomic data are red (0.25 – 2 h), edges predicted late are blue (4 – 24 h). Proteome 

and phosphoproteome-data-predicted edges are grey and green, respectively.
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Extended Data Fig. 10. Gene regulatory network validation against ChIP/DAP-seq data.
a, The MYC2 subnetwork is shown. Edges are directional and red edges exist at early time 

points (0.25 – 2 h), blue only at late time points (4 – 24 h). Thicker edges with chevrons 

indicate that MYC2 were directly bound to that gene in our ChIP-seq experiments. b, 

Validated edges are those between TFs and first neighbors in the JA gene regulatory network 

for which the first neighbor was also a direct target of the TF in ChIP/DAP-seq assays. 

These edges are indicated by chevrons. Early time-series transcriptome-predicted edges 

(0.25 – 2 h) are red and later edges (4 – 24 h) are blue. Edges detected in the proteomic data 

are grey and those detected in the phosphoproteomic data are green. c, Bar plot shows 

quantification of JA-induced root growth inhibition in the indicated T-DNA alleles. 

Seedlings were grown on LS media with or without 20µM MeJA. WT seedlings serve as 

independent controls for each tested T-DNA line. Sample size number n is shown within the 

respective bars. Samples are derived from three independent experiments. Asterisks 
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represent significant differences between WT (−/+ JA) and indicated T-DNA lines (−/+ JA) 

(two-way ANOVA with Bonferroni post test, ns (not significant) p > 0.05, *p < 0.05, **p < 

0.01, ***p < 0.001). d, Subnetwork of CYP708A2 is shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

We thank several postdocs, undergrads and technicians who contributed technical assistance to the project; 
Mingtang Xie, Liang Song, Raul Carlos Serrano, Candice Sy, Lourdes Tames, Julie Park, Omar Romero, Raymond 
Luong, Waina Ho, Yusuke Koga, Sasha Hazelton, Mark Urich, Tsegaye Dabi. We thank Shao-shan Carol Huang for 
computational assistance and James Moresco and Jolene Diedrich for proteomics support.

Funding: M.Z. was supported by a Deutsche Forschungsgemeinschaft (DFG) research fellowship (Za-730/1–1) and 
also by the Salk Pioneer Postdoctoral Endowment Fund. M.G.L. was supported by an EU Marie Curie FP7 
International Outgoing Fellowship (252475). In addition, this work was supported by the Mass Spectrometry Core 
of the Salk Institute with funding from NIH-NCI CCSG (P30 014195) and the Helmsley Center for Genomic 
Medicine. This work was supported by grants from the National Science Foundation (NSF) (MCB-1818160 and 
IOS-1759023 to J.W.W, MCB-1024999 to J.R.E), the National Institutes of Health (R01GM120316), the Division 
of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of 
Energy (DE-FG02–04ER15517) and the Gordon and Betty Moore Foundation (GBMF3034). Research in R.S. lab 
was supported by grant BIO2016–77216-R (MINECO/FEDER) from the Ministry of Economy, Industry and 
Competitiveness. J.W.W. is supported as a Faculty Scholar of the ISU Plant Sciences Institute. J.R.E. is an 
Investigator of the Howard Hughes Medical Institute.

References

1. Vanstraelen M & Benkova E. Hormonal interactions in the regulation of plant development. Annu 
Rev Cell Dev Biol 28, 463–487 (2012). [PubMed: 22856461] 

2. Chang KN, et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-
regulation in Arabidopsis. Elife 2, e00675 (2013). [PubMed: 23795294] 

3. Song L, et al. A transcription factor hierarchy defines an environmental stress response network. 
Science 354 (2016).

4. Hickman R, et al. Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant 
Cell 29, 2086–2105 (2017). [PubMed: 28827376] 

5. Pauwels L, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism 
and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A 105, 1380–1385 
(2008). [PubMed: 18216250] 

6. Wang C, Liu Y, Li SS & Han GZ. Insights into the origin and evolution of the plant hormone 
signaling machinery. Plant Physiol 167, 872–886 (2015). [PubMed: 25560880] 

7. Huang H, Liu B, Liu L & Song S. Jasmonate action in plant growth and development. J Exp Bot 68, 
1349–1359 (2017). [PubMed: 28158849] 

8. Thines B, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate 
signalling. Nature 448, 661–665 (2007). [PubMed: 17637677] 

9. Chini A, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 
666–671 (2007). [PubMed: 17637675] 

10. Fonseca S, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat 
Chem Biol 5, 344–350 (2009). [PubMed: 19349968] 

11. Sheard LB, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. 
Nature 468, 400–405 (2010). [PubMed: 20927106] 

12. Xie DX, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. 
Science 280, 1091–1094 (1998). [PubMed: 9582125] 

Zander et al. Page 28

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



13. Fernandez-Calvo P, et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are 
targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. 
Plant Cell 23, 701–715 (2011). [PubMed: 21335373] 

14. Song S, et al. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and 
Defense Responses. Plant Cell Physiol 58, 1752–1763 (2017). [PubMed: 29017003] 

15. Lorenzo O, Chico JM, Sanchez-Serrano JJ & Solano R. JASMONATE-INSENSITIVE1 encodes a 
MYC transcription factor essential to discriminate between different jasmonate-regulated defense 
responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004). [PubMed: 15208388] 

16. Zhang F, et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate 
signalling. Nature 525, 269–273 (2015). [PubMed: 26258305] 

17. Schweizer F, et al. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and 
MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 
25, 3117–3132 (2013). [PubMed: 23943862] 

18. Bao S, et al. Molecular Basis of Natural Variation in Photoperiodic Flowering Responses. Dev Cell 
(2019).

19. Du M, et al. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates 
Jasmonate-Mediated Plant Immunity in Tomato. Plant Cell 29, 1883–1906 (2017). [PubMed: 
28733419] 

20. Dombrecht B, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in 
Arabidopsis. Plant Cell 19, 2225–2245 (2007). [PubMed: 17616737] 

21. Yadav V, et al. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a 
repressor of blue light-mediated photomorphogenic growth. Plant Cell 17, 1953–1966 (2005). 
[PubMed: 15923349] 

22. Gangappa SN & Chattopadhyay S. MYC2, a bHLH transcription factor, modulates the adult 
phenotype of SPA1. Plant Signal Behav 5, 1650–1652 (2010). [PubMed: 21512327] 

23. Zhang X, et al. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to 
antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105–1117 
(2014). [PubMed: 24668749] 

24. Gimenez-Ibanez S, et al. JAZ2 controls stomata dynamics during bacterial invasion. New Phytol 
213, 1378–1392 (2017). [PubMed: 28005270] 

25. Fernandez PC, et al. Genomic targets of the human c-Myc protein. Genes Dev 17, 1115–1129 
(2003). [PubMed: 12695333] 

26. Godoy M, et al. Improved protein-binding microarrays for the identification of DNA-binding 
specificities of transcription factors. Plant J 66, 700–711 (2011). [PubMed: 21284757] 

27. Xie M, et al. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-
regulation and shoot development. Nat Commun 9, 1604 (2018). [PubMed: 29686312] 

28. Liu Y, et al. MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory 
Negative Feedback Loop. Plant Cell 31, 106–127 (2019). [PubMed: 30610166] 

29. Guo Q, et al. JAZ repressors of metabolic defense promote growth and reproductive fitness in 
Arabidopsis. Proc Natl Acad Sci U S A 115, E10768–E10777 (2018). [PubMed: 30348775] 

30. Pauwels L, et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 
788–791 (2010). [PubMed: 20360743] 

31. Huot B, Yao J, Montgomery BL & He SY. Growth-defense tradeoffs in plants: a balancing act to 
optimize fitness. Mol Plant 7, 1267–1287 (2014). [PubMed: 24777989] 

32. Chen X, et al. New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility 
in arabidopsis. Plant Signal Behav 11, e1135280 (2016). [PubMed: 26829586] 

33. Hou X, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 
19, 884–894 (2010). [PubMed: 21145503] 

34. Lorenzo O, Piqueras R, Sanchez-Serrano JJ & Solano R. ETHYLENE RESPONSE FACTOR1 
integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165–178 
(2003). [PubMed: 12509529] 

35. Pre M, et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and 
ethylene signals in plant defense. Plant Physiol 147, 1347–1357 (2008). [PubMed: 18467450] 

Zander et al. Page 29

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



36. Bu Q, et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 
in regulating jasmonic acid-signaled defense responses. Cell Res 18, 756–767 (2008). [PubMed: 
18427573] 

37. Gao QM, Venugopal S, Navarre D & Kachroo A. Low oleic acid-derived repression of jasmonic 
acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 
155, 464–476 (2011). [PubMed: 21030507] 

38. Pauwels L & Goossens A. Fine-tuning of early events in the jasmonate response. Plant Signal 
Behav 3, 846–847 (2008). [PubMed: 20140232] 

39. Schweizer F, et al. Differential Contribution of Transcription Factors to Arabidopsis thaliana 
Defense Against Spodoptera littoralis. Front Plant Sci 4, 13 (2013). [PubMed: 23382734] 

40. Taki N, et al. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a 
role in wound-induced gene expression in Arabidopsis. Plant Physiol 139, 1268–1283 (2005). 
[PubMed: 16258017] 

41. Xiao J, Jin R & Wagner D. Developmental transitions: integrating environmental cues with 
hormonal signaling in the chromatin landscape in plants. Genome Biol 18, 88 (2017). [PubMed: 
28490341] 

42. Wang H, et al. MED25 connects enhancer-promoter looping and MYC2-dependent activation of 
jasmonate signalling. Nat Plants 5, 616–625 (2019). [PubMed: 31182849] 

43. Rothbart SB & Strahl BD. Interpreting the language of histone and DNA modifications. Biochim 
Biophys Acta (2014).

44. Coleman-Derr D & Zilberman D. Deposition of histone variant H2A.Z within gene bodies 
regulates responsive genes. PLoS Genet 8, e1002988 (2012). [PubMed: 23071449] 

45. Kawaguchi R & Bailey-Serres J. mRNA sequence features that contribute to translational 
regulation in Arabidopsis. Nucleic Acids Res 33, 955–965 (2005). [PubMed: 15716313] 

46. Walley JW, et al. Integration of omic networks in a developmental atlas of maize. Science 353, 
814–818 (2016). [PubMed: 27540173] 

47. Hartmann L, et al. Alternative Splicing Substantially Diversifies the Transcriptome during Early 
Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis. Plant Cell 28, 
2715–2734 (2016). [PubMed: 27803310] 

48. Chung HS, et al. Alternative splicing expands the repertoire of dominant JAZ repressors of 
jasmonate signaling. Plant J 63, 613–622 (2010). [PubMed: 20525008] 

49. Moreno JE, et al. Negative feedback control of jasmonate signaling by an alternative splice variant 
of JAZ10. Plant Physiol 162, 1006–1017 (2013). [PubMed: 23632853] 

50. Nakata M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE 
TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively 
regulate jasmonate signaling in arabidopsis. Plant Cell 25, 1641–1656 (2013). [PubMed: 
23673982] 

51. Sasaki-Sekimoto Y, et al. Basic helix-loop-helix transcription factors JASMONATE-
ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate 
responses in Arabidopsis. Plant Physiol 163, 291–304 (2013). [PubMed: 23852442] 

52. Xu J, et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and 
enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283, 26996–27006 (2008). 
[PubMed: 18693252] 

53. Hentrich M, et al. The jasmonic acid signaling pathway is linked to auxin homeostasis through the 
modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74, 626–637 (2013). [PubMed: 
23425284] 

54. Wild M, et al. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates 
jasmonate signaling responses. Plant Cell 24, 3307–3319 (2012). [PubMed: 22892320] 

55. Mittler R, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to 
abiotic stress. FEBS Lett 580, 6537–6542 (2006). [PubMed: 17112521] 

56. Lozano-Duran R, et al. The transcriptional regulator BZR1 mediates trade-off between plant innate 
immunity and growth. Elife 2, e00983 (2013). [PubMed: 24381244] 

Zander et al. Page 30

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



57. Magome H, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-
deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56, 613–626 (2008). 
[PubMed: 18643985] 

58. Dubois M, et al. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically 
Regulate Mannitol-Induced Growth Inhibition in Arabidopsis. Plant Physiol 169, 166–179 (2015). 
[PubMed: 25995327] 

59. Zander M, et al. Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense 
pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5, 
831–840 (2012). [PubMed: 22207719] 

60. Ndamukong I, et al. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and 
suppresses JA-responsive PDF1.2 transcription. Plant J 50, 128–139 (2007). [PubMed: 17397508] 

61. Shyu C, et al. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional 
repression of jasmonate responses in Arabidopsis. Plant Cell 24, 536–550 (2012). [PubMed: 
22327740] 

62. Ren X, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and 
drought tolerance in Arabidopsis. Plant J 63, 417–429 (2010). [PubMed: 20487379] 

63. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 
(2000). [PubMed: 11130711] 

64. Huang J, Ghosh R & Bankaitis VA. Sec14-like phosphatidylinositol transfer proteins and the 
biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta 1861, 1352–
1364 (2016). [PubMed: 27038688] 

65. Mosblech A, et al. Jasmonic acid perception by COI1 involves inositol polyphosphates in 
Arabidopsis thaliana. Plant J 65, 949–957 (2011). [PubMed: 21205029] 

66. Zhou R, Benavente LM, Stepanova AN & Alonso JM. A recombineering-based gene tagging 
system for Arabidopsis. Plant J 66, 712–723 (2011). [PubMed: 21294796] 

67. Kaufmann K, et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed 
by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5, 
457–472 (2010). [PubMed: 20203663] 

68. Langmead B. Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 
11, Unit 11 17 (2010).

69. O’Malley RC, et al. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. 
Cell 165, 1280–1292 (2016). [PubMed: 27203113] 

70. Bartlett A, et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat 
Protoc 12, 1659–1672 (2017). [PubMed: 28726847] 

71. Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions 
and gene fusions. Genome Biol 14, R36 (2013). [PubMed: 23618408] 

72. Anders S, Pyl PT & Huber W. HTSeq--a Python framework to work with high-throughput 
sequencing data. Bioinformatics 31, 166–169 (2015). [PubMed: 25260700] 

73. Robinson MD, McCarthy DJ & Smyth GK. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). [PubMed: 
19910308] 

74. Lun AT, Chen Y & Smyth GK. It’s DE-licious: A Recipe for Differential Expression Analyses of 
RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR. Methods Mol Biol 1418, 391–
416 (2016). [PubMed: 27008025] 

75. Ernst J & Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. 
BMC Bioinformatics 7, 191 (2006). [PubMed: 16597342] 

76. Jin J, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory 
interactions in plants. Nucleic Acids Res 45, D1040–D1045 (2017). [PubMed: 27924042] 

77. Langmead B & Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 
(2012). [PubMed: 22388286] 

78. Kharchenko PV, Tolstorukov MY & Park PJ. Design and analysis of ChIP-seq experiments for 
DNA-binding proteins. Nat Biotechnol 26, 1351–1359 (2008). [PubMed: 19029915] 

Zander et al. Page 31

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



79. Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008). 
[PubMed: 18798982] 

80. Quinlan AR & Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics 26, 841–842 (2010). [PubMed: 20110278] 

81. Zhu LJ, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. 
BMC Bioinformatics 11, 237 (2010). [PubMed: 20459804] 

82. Khan A & Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or 
genomic region sets. BMC Bioinformatics 18, 287 (2017). [PubMed: 28569135] 

83. Machanick P & Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 
1696–1697 (2011). [PubMed: 21486936] 

84. Guo Y, Mahony S & Gifford DK. High resolution genome wide binding event finding and motif 
discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 8, e1002638 
(2012). [PubMed: 22912568] 

85. Zang C, et al. A clustering approach for identification of enriched domains from histone 
modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009). [PubMed: 19505939] 

86. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 
(2009). [PubMed: 19505943] 

87. Yu G, Wang LG, Han Y & He QY. clusterProfiler: an R package for comparing biological themes 
among gene clusters. Omics 16, 284–287 (2012). [PubMed: 22455463] 

88. Krishnakumar V, et al. Araport: the Arabidopsis information portal. Nucleic Acids Res 43, D1003–
1009 (2015). [PubMed: 25414324] 

89. Tyanova S, Temu T & Cox J. The MaxQuant computational platform for mass spectrometry-based 
shotgun proteomics. Nat Protoc 11, 2301–2319 (2016). [PubMed: 27809316] 

90. Cox J, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J 
Proteome Res 10, 1794–1805 (2011). [PubMed: 21254760] 

91. Elias JE & Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics. 
Methods Mol Biol 604, 55–71 (2010). [PubMed: 20013364] 

92. Li J, Witten DM, Johnstone IM & Tibshirani R. Normalization, testing, and false discovery rate 
estimation for RNA-sequencing data. Biostatistics 13, 523–538 (2012). [PubMed: 22003245] 

93. Patro R, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat 
Methods 14, 417–419 (2017). [PubMed: 28263959] 

94. Zhang R, et al. AtRTD - a comprehensive reference transcript dataset resource for accurate 
quantification of transcript-specific expression in Arabidopsis thaliana. New Phytol 208, 96–101 
(2015). [PubMed: 26111100] 

95. Guo W, Calixto CPG, Brown JWS & Zhang R. TSIS: an R package to infer alternative splicing 
isoform switches for time-series data. Bioinformatics 33, 3308–3310 (2017). [PubMed: 29028262] 

96. Shibata M, et al. GTL1 and DF1 regulate root hair growth through transcriptional repression of 
ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development 145 (2018).

97. Clark NM, et al. Auxin Induces Widespread Proteome Remodeling in Arabidopsis Seedlings. 
Proteomics 19, e1900199 (2019). [PubMed: 31381813] 

98. Giorgino T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw 
Package. Journal of Statistical Software 31 (2012).

99. Clark NM, et al. Stem-cell-ubiquitous genes spatiotemporally coordinate division through 
regulation of stem-cell-specific gene networks. https://www.biorxiv.org/content/10.1101/517250v2 
(2019).

100. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet 8, 450–461 (2007). 
[PubMed: 17510665] 

101. Milo R, et al. Network motifs: simple building blocks of complex networks. Science 298, 824–
827 (2002). [PubMed: 12399590] 

102. Ingram PJ, Stumpf MP & Stark J. Network motifs: structure does not determine function. BMC 
Genomics 7, 108 (2006). [PubMed: 16677373] 

Zander et al. Page 32

Nat Plants. Author manuscript; available in PMC 2020 September 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

https://www.biorxiv.org/content/10.1101/517250v2


Figure 1. Design of our study and key datasets utilized.
a, b, Overview of profiled regulatory layers (a) and detailed description of collected samples 

(b). c, AnnoJ genome browser screenshot visualizes the binding of MYC2 and MYC3 to the 

three example genes (IAR3/UR3, ACT1, JAZ9/TIFY7). MYC2/3 binding was determined 

with ChIP-seq using JA-treated (2 hours) Col-0 MYC2::MYC2-Ypet and Col-0 

MYC3::MYC3-Ypet seedlings. Three independent biological ChIP-seq replicates are shown. 

In addition, mRNA expression of the three example genes WT seedlings (−/+ 2 hours JA) is 

shown as well. Expression data is derived from RNA-seq analysis. d, Venn diagram 

illustrates the overlap between MYC2, MYC3 target genes and genes that are differentially 

expressed after two hours of JA treatment (JA 2h DEGs). e, f, The top-ranked motif in 

MYC2 (e) and MYC3 (f) ChIP-seq data was the G-box (CAC/TGTG). Motifs were 

determined by MEME analysis using the top-ranked peaks that were identified by GEM.
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Figure 2. MYC2 and MYC3 target a large proportion of JA-responsive genes that encode TFs.
a, b, Cluster analysis revealed the two main clusters in the JA time course experiment. The 

JA cluster (a) with 796 genes reflects the majority of JA-induced genes and the cell wall 

cluster (b) with 647 genes represents the largest cluster of JA repressed genes. Clusters 

visualize the log2 fold change expression dynamics over the indicated 24 hours’ time period. 

The three strongest enriched gene ontology terms for each cluster are shown as well. 

Clusters were identified by STEM clustering (Pearson correlation, minimum correlation 0.7, 

up to 50 permutations, significant clusters had Bonferroni corrected p < 0.05). For each of 

the indicated time points, the expression of three independent samples (n=3) was measured 

using RNA-seq. c, Bar plots illustrates the potential of MYC2 and/or MYC3 to bind to a 

portion of JA differentially expressed genes (JA DEGs) at the indicated time points. JA 

DEGs for all time points were identified with RNA-seq. MYC2/3 targets are derived from 

ChIP-seq analysis using Col-0 MYC2::MYC2-Ypet and Col-0 MYC3::MYC3-Ypet 
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seedlings that were treated for two hours with JA. d, MYC2 and MYC3 target genes from a 

wide range of TF families. TF families are classified into four different groups; MYC2/

MYC3 targets and differentially expressed after JA treatment (blue), MYC2/MYC3 targets 

and not differentially expressed (orange), not bound by MYC2/MYC3 but differentially 

expressed (grey) and not bound by MYC2/MYC3 but not differentially expressed (green). e, 

Nodes represent JA TFs for which direct binding data was generated. ChIP-seq data is 

indicated by presence of *, all other data was DAP-seq. Edges represent binding events and 

are directed. Self-loops indicate TF binds to its own locus, indicative of potential auto-

regulation. Expression of the TF at 0.5 h after JA treatment is represented by color scale. f, 

Pearson correlation of TFs’ target sets of genes. Numerals in brackets indicate total number 

of target genes. ChIP-seq data is indicated by presence of *, all other data was generated by 

DAP-seq. ChIP-seq data is derived from at least three independent experiments: MYC2 (JA, 

n=4), MYC3 (JA, n=3), ZAT10 (air, n=3; JA, n=2), ANAC055 (JA, n=3). DAP-seq data is 

derived from a single experiment (n=1).
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Figure 3. The JA-responsive epigenome.
a, b, c, Aggregated profiles show the log2 fold change enrichment of MYC2 (a) and 

H3K4me3 (b, c) from 2 kb upstream to 2 kb downstream of the transcriptional start site 

(TSS) at JA-induced and JA-repressed genes. Profile of MYC2 is shown for Col-0 

MYC2::MYC2-Ypet (a) seedlings and H3K4me3 profiles are shown are shown for WT (b) 

and myc2 (c) seedlings. d, AnnoJ genome browser screenshot visualizes MYC2 binding, 

mRNA expression and H3K4me3 occupancy at two example genes (JAZ2, GRX480) in WT 

and myc2 seedlings. All tracks were normalized to the respective sequencing depth.
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Figure 4. Loss of functional MYC2 impacts the global proteome and phosphoproteome.
a, Total significantly differentially abundant (False discovery rate q < 0.1 (estimated using a 

modified permutation plug-in method) proteins and phosphopeptides detected in 

comparisons between JA-treated (2 h) WT and myc2 seedlings and air controls. Three 

independent experiments (+/− 2h JA) (n=3) were conducted for WT and myc2 seedlings. For 

the third experiment, only the JA treatment was conducted. b, Venn diagram showing the 

overlap between significantly differentially abundant proteins, transcripts and differentially 

phosphorylated proteins in JA-treated WT seedlings compared to mock-treated WT controls. 

Also shown is the overlap with MYC2/3 target genes. c, Correlation between rank-

normalized log2(FPKM)s of detected proteins and transcripts in WT seedlings treated with 

JA for 2 h (p-value cut-off was < 0.05 using paired t-tests). Scatter plot of log2 fold change 

in WT JA-regulated transcript levels versus log2 fold change in levels of corresponding 

proteins. Protein and transcript data is derived from three independent experiments (n=3) 
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using WT and myc2 seedlings. d, Heatmap represents relative TPM of 137 isoform pairs 

exhibiting isoform switch events. Ratio calculated as logTPM (isoform 1/isoform 2). e, Plot 

shows an example of a transcript pair originating from AT2G43680 that had isoform switch 

events following JA treatment. Expression data is derived from a JA time course experiment. 

For each of the indicated time points, the expression of three independent samples (n=3) was 

measured using RNA-seq. Line indicates mean TPM of three independent samples. Shaded 

regions indicate standard error of these data.
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Figure 5. JA response genome regulatory model positions known and new components.
a, b, Subnetworks of STZ (a) and ABO3 (b) are shown. Edges are directed. Red edges exist 

at early time points (0.25 – 2 h), blue only at late time points (4 – 24 h). Thicker edges with 

chevrons indicate a MYC2 directly bound that gene in ChIP-seq experiments. c, d, JA-

induced root growth inhibition assay identified ABO3 as a positive JA regulator. Seedlings 

were grown on LS media with (d) or without 50µM MeJA (c). WT and myc2 seedlings 

served as controls. e, Quantification (± SEM) of JA-induced root growth inhibition in WT, 

myc2 and abo3 seedlings is shown. Sample size number n is shown within the respective 

bars. Samples are derived from three independent experiments. Asterisks represent 

significant differences between WT (−/+ JA) and abo3 mutants (−/+ JA) (two-way ANOVA 

with Bonferroni post test, ***p < 0.001). f, g, Root growth inhibition assay identified two 

cyp708A2 T-DNA alleles as JA hypersensitive. Seedlings were grown on LS media with (f) 

or without 50µM MeJA (g) and WT and myc2 seedlings serve as controls. h, Bar plot shows 

quantification (± SEM) of JA-induced root growth inhibition in WT and cyp708A2 
seedlings. Sample size number n is shown within the respective bars. Samples are derived 

from three independent experiments. Asterisks represent significant differences between WT 
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(−/+ JA) and cyp708A2 (−/+ JA) seedlings (two-way ANOVA with Bonferroni post test, **p 

< 0.01, ***p < 0.001).
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