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a b s t r a c t 

We investigate the time-optimal control problem in SIR (Susceptible-Infected-Recovered) epidemic mod- 

els, focusing on different control policies: vaccination, isolation, culling, and reduction of transmission. 

Applying the Pontryagin’s Minimum Principle (PMP) to the unconstrained control problems (i.e. without 

costs of control or resource limitations), we prove that, for all the policies investigated, only bang–bang 

controls with at most one switch are admitted. When a switch occurs, the optimal strategy is to delay the 

control action some amount of time and then apply the control at the maximum rate for the remainder 

of the outbreak. 

This result is in contrast with previous findings on the unconstrained problems of minimizing the total 

infectious burden over an outbreak, where the optimal strategy is to use the maximal control for the 

entire epidemic. Then, the critical consequence of our results is that, in a wide range of epidemiolog- 

ical circumstances, it may be impossible to minimize the total infectious burden while minimizing the 

epidemic duration, and vice versa. 

Moreover, numerical simulations highlighted additional unexpected results, showing that the optimal 

control can be delayed also when the control reproduction number is lower than one and that the 

switching time from no control to maximum control can even occur after the peak of infection has been 

reached. Our results are especially important for livestock diseases where the minimization of outbreaks 

duration is a priority due to sanitary restrictions imposed to farms during ongoing epidemics, such as 

animal movements and export bans. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

The emergence and re-emergence of infectious diseases repre-

sent a major threat to public health and may cause heavy eco-

nomic and social losses. Recent epidemics of Ebola in West Africa

and MERS-CoV in South Korea highlighted once again the require-

ment for strong public health interventions for fast disease eradi-

cation [1,2] . 

In a similar way, outbreaks of infectious diseases in domestic

animals may cause significant consequences for both the sustain-

ability of the livestock industry and the costs associated to disease

surveillance, control, and eradication. Moreover, the economic bur-

dens imposed by livestock diseases exceed the agricultural com-

partment, by affecting also commerce, tourism, and even human

health in the infected areas. Consequently, minimizing the time pe-
∗ Corresponding author. 
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iod needed for outbreaks eradication in the affected areas repre-

ents a public health priority. 

There exist several examples of livestock epidemics causing

uge sanitary and economic impacts, such as the 1996 epidemic

f classical swine fever in The Netherlands [3] , the 2001 epidemic

f foot-and-mouth in the UK [4] , and the 2015 epidemic of high

athogenic avian influenza in Midwestern USA [5] . From the epi-

emiological point of view, the main indicators generally used to

escribe the severity of these infection events in livestock are: ( i )

he total number of infected animals and farms during an epi-

emic, and ( ii ) the duration of the epidemic. The rationale behind

hese indicators is based on the evidence that epidemic surveil-

ance and control costs are directly related to spatial and tempo-

al extension of the epidemic events [6] . Furthermore, the effect of

he epidemic duration on the socio-economic burdens associated

o livestock diseases is larger than in human diseases. This is due

o the sanitary restrictions imposed to farms in infected areas dur-

ng ongoing outbreaks, such as animal movement and export bans.

oreover, the block or the restriction of farm activities can go over

http://dx.doi.org/10.1016/j.mbs.2017.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2017.07.011&domain=pdf
mailto:luca.bolzoni@izsler.it
http://dx.doi.org/10.1016/j.mbs.2017.07.011
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he time of infection, carrying on until the disease-free status is

ormally regained [7] . Examples of costly restrictions for the live-

tock industry include: the export ban of UK cattle because of the

996 bovine spongiform encephalopathy epidemic [8] and the ex-

ort ban of poultry and poultry related products in Hong Kong,

aos, Thailand, and The Netherlands due to outbreaks of highly

athogenic avian influenza [9–11] . 

By using a stochastic modeling framework for classical swine

ever in The Netherlands pig farms, Mangen et al. [12] showed that

he increase of the epidemic duration affects the sanitary costs

ssociated to disease outbreaks more than a proportional growth

n the number of infected farms. This prediction followed from

he observation that longer epidemics are more widespread, in-

olving a larger number of animals slaughtered. The estimate of

he epidemic duration appears almost invariably in the simulation

utputs of data-driven mathematical models developed to evalu-

te the effectiveness and the efficiency of surveillance and con-

rol policies for several infections in livestock, such as foot-and-

outh disease [13] , classical swine fever [14] , bovine tuberculosis

15] , and avian influenza [16] . However, few attempts have been

ade to address the problem of minimizing the epidemic dura-

ion from a theoretical point of view by using optimal control the-

ry. To our knowledge, the only example of analytic characteriza-

ion of the control function in a time-optimal framework is due to

iang [17] , who focused on the analysis of isolation strategies in a

ubsystem of the model proposed in Zhang et al. [18] to describe

ARS spread. On the other hand, the optimal control theory has

een widely applied to solve the problem of minimizing the to-

al number of infected individuals (or the total infectious burden)

n basic SIR (Susceptible-Infected-Recovered) epidemic models by

eans of different control policies, such as: the implementation of

mergency prophylactic vaccination plans, the isolation of infected

ndividuals, the reduction of disease transmission through the lim-

tation of contacts between individuals, and non-selective culling

19–25] . 

Prophylactic vaccination consists in the vaccination of suscep-

ible individuals; its goal is to prevent the development of dis-

ases. Isolation consists in the quarantine of infected individuals.

s regards livestock diseases, in SIR models isolation is mathemat-

cally equivalent to removal of infected individuals through test-

nd-cull procedures. Non-selective culling consists in the slaugh-

ering of both infected and healthy individuals and it is usually

mplemented in wildlife and livestock when no other options are

vailable (e.g. no diagnostic tests available, lack of time or re-

ources). The rationale for culling healthy individuals resides in the

ositive relationship between the rate at which individuals become

nfected and the abundance of susceptible individuals. Among hu-

ans, the reduction of transmission can be obtained through infor-

ation campaigns or emergency movement bans (e.g. school clo-

ures, flight limitations), while in livestock it can be obtained by

mposing limitations on animal, vehicle, and personnel movements

mong farms. 

The previously cited studies solved the optimal control prob-

em for the minimization of the infectious burden in unconstrained

onditions (i.e. without costs of control or resource limitations).

hey showed that the optimal strategy always relies in the adop-

ion of the maximum control for the entire epidemic. In this con-

ext, maximum control is intended as the implementation of the

ontrol policy at its maximum available rate. 

Here, by using simple SIR models in an optimal control frame-

ork [26] , we thoroughly investigate the problem of minimizing

he epidemic duration by using prophylactic vaccination, isolation,

on-selective culling, or reduction of transmission controls. In this

tudy, we will show that the optimal control strategies to mini-

ize the epidemic duration in SIR models can substantially differ

rom those minimizing the infectious burden. Specifically, we will
rove that: ( i ) using the maximum control for the entire epidemic

uration may not be the optimal strategy (even in unconstrained

onditions); and ( ii ) when the maximum control for the entire epi-

emic is not an optimal strategy, a delayed control is optimal. Con-

equently, our results lead to the conclusion that minimizing the

pidemic duration does not always imply minimizing the total in-

ectious burden, and vice versa. 

. Optimal control problem: general setting 

We describe the evolution of the infection in a host popula-

ion with a standard deterministic SIR model [27] , that can be de-

cribed by the following system of two ordinary differential equa-

ions (ODEs): 

˙ S = f 1 ( S, I ) = −βSI 

˙ I = f 2 ( S, I ) = βSI − μI, 
(1) 

here S ( t ) and I ( t ) represent the number of susceptible and in-

ected hosts, respectively, β represents the transmission rate of

he infection and μ represents the loss rate of infected individu-

ls through both mortality and recovery. If we denote by x (t) =
(S(t) , I(t)) T the column vector that describes the state of the sys-

em at time t , we can rewrite system (1) in the more compact form

˙ 
 = f (x ) . 

In our analysis, we consider four different control policies,

amely: vaccination, isolation, culling, and reduction of transmis-

ion. We denote the generic control policy rate applied at time t

y u ( t ), which is assumed to be a piecewise continuous function

hat takes values in a positive bounded set U = [0 , u max ] . We ap-

ly the different policies separately by adding a linear term in the

ontrol variable u ( t ) to model (1) , namely considering the general

ystem 

˙ 
 (t) = f (x (t)) + u (t ) g(x (t )) , (2)

here the function g depends on the chosen control policy. Specif-

cally, we define a general linear term policy 

 l (x ) = 

(
−α1 S 
−α2 I 

)
(3) 

hich is a linear function of S and I that allows to model 

accination α1 = 1 , α2 = 0 : g v (x ) = 

(
−S 
0 

)
(4) 

solation α1 = 0 , α2 = 1 : g i (x ) = 

(
0 

−I 

)
(5) 

ulling α1 = 1 , α2 = 1 : g c (x ) = 

(
−S 
−I 

)
(6) 

nd, in addition, we consider the nonlinear term policy 

eduction of transmission g r (x ) = 

(
−βSI 
−βSI 

)
. (7) 

We define the basic reproduction number for model (1) as R 0 =
S(0) /μ, which represents the average number of secondary in-

ections produced by a single infected individual in a completely

usceptible population in the absence of control [27] . In addition,

or each policy we will define the control reproduction number R C 

hat represents the average number of secondary infections pro-

uced by a single infected individual in a completely susceptible

opulation with control measures in place [28] . From this defi-

ition, it follows that, when R C < 1 , control measures applied at

he beginning of the epidemic are able to immediately reduce the

umber of the infected individuals (i.e. ˙ I (0) < 0 ). 
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Fig. 1. Schematization of the four types of admissible optimal control and legend 

of the plot colors that will be used throughout the paper. White (panel a) denotes 

a constant control at its maximum value. Different shades of gray denote delayed 

controls applied at the switching time τ ∗
s . We distinguish three different behaviors, 

depending on the position of τ ∗
s with respect to the infectious dynamics: the switch 

occurs before the peak of the infection (panel b, light gray), in correspondence of 

the peak (panel c, gray) or after the peak of infection (panel d, dark gray). 
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The target will be the minimization of the eradication time of

the infection. Existence of the eradication time in problem (2) is

guaranteed by the results in Appendix A . 

Definition 1: (Eradication Time) . The eradication time T of the

controlled SIR problem (2) is the first time at which the number

of infected individuals reaches the threshold ε, where ε < 1 is a

fixed positive constant. 

We will chose initial conditions of infected individuals I (0)

strictly greater than ɛ . As a consequence, T being the first time at

which the variable I reaches ɛ , it holds ˙ I (T ) < 0 . 

We can then write the optimal control problem [26] where the

goal is: 

minimize: J(u ) = 

∫ T 

0 

1 dt (Eradication time) 

subject to: ˙ x (t) = f (x (t)) + u (t ) g(x (t )) , t ≥ 0 ; (8)

x (0) = x 0 , x (T ) ∈ C = { (S, I) : I = ε} 
u : [0 , + ∞ ) → U = [0 , u 

max ] piecewise continuous , 

where g is defined by the chosen control policy. 

Given the optimal control problem (8) with f, g ∈ C ∞ ( R 

2 ) , we

apply the Pontryagin’s Minimum Principle [26] in order to find a

characterization of the optimal control strategy. 

Theorem 1: (Pontryagin’s Minimum Principle for linear time-

optimal control problem [26] ) . Suppose that u ∗( t ) is a minimizer for

the optimal control problem (8) and let x ∗(t) = (S ∗(t ) , I ∗(t )) T and T ∗

denote the optimal solution of problem (2) and the optimal eradica-

tion time, respectively. Then, there exists a piecewise C 1 vector func-

tion λ∗(t) = (λ∗
S (t) , λ∗

I (t)) T � = 0 such that 

˙ λ∗(t) = −∇ x H(x ∗(t) , u 

∗(t) , λ∗(t)) T , 

where the Hamiltonian is defined as H(x , u, λ) = 1 + λT ( f (x ) +
ug(x )) , and: 

1. the function h (w ) = H(x ∗(t) , w, λ∗(t)) attains its minimum on U

at w = u ∗(t) : 

H(x ∗(t) , u 

∗(t) , λ∗(t)) ≤ H(x ∗(t) , w, λ∗(t)) , ∀ w ∈ U 

for every t ∈ [0, T ∗] ; 

2. the Hamiltonian is constant equal to zero along the optimal solu-

tion: 

H(x ∗(t) , u 

∗(t) , λ∗(t)) = 0 ;
3. the following transversality condition holds: λ∗

S (T ∗) = 0 . 

Moreover, because the Hamiltonian is linear in the control variable,

the value of u ∗( t ) is determined by the sign of the switching function

ψ(x , λ) = λT g(x ) for all the time instants t at which ψ( x ∗( t ), λ∗( t ))

does not vanish: 

u 

∗( t ) = 

{ 

0 if ψ 

(
x ∗( t ) , λ∗( t ) 

)
> 0 

u 

max if ψ 

(
x ∗( t ) , λ∗( t ) 

)
< 0 . 

2.1. Admissible optimal controls and numerical method 

The results that we will prove in the next sections can be sum-

marized in the following theorem. 

Theorem 2. For each considered control policy the optimal control

for problem (8) is bang-bang. The optimal strategy consists either in

a constant control u ∗(t) ≡ u max or in a delayed control 0 → u max 

with a single switching time τ ∗
s , namely u ∗(t) = 0 for t ∈ [0 , τ ∗

s ) and

u ∗(t) = u max for t ∈ (τ ∗
s , T 

∗] . In addition, if the optimal control is de-

layed, three different behaviors are allowed, depending on the position

of the switching time τ ∗
s compared to the peak of infection, leading to

the four different types of admissible optimal control sketched in Fig. 1 .

 

We will denote the set of such admissible optimal controls by 

 = 

{ 

u : [0 , + ∞ ) → { 0 , u 

max } piecewise constant with at most 

one jump from 0 to u 

max , lim t→ + ∞ 

u (t) = u 

max 

} 

. (9)

As regards the numerical solution, several numerical methods

or the optimal solution of both minimum time and bang–bang

ontrol problems can be found in literature. Such techniques are

ainly based on shooting methods [29–31] , smooth regularizations

f the control function [32] , or pseudospectral methods [33] . How-

ver, since our problem is characterized by the particular class of

ptimal controls A in (9) , for our numerical simulations we will

se a simpler ad hoc numerical scheme. The method is based on

he idea of identifying each bang-bang function u (t) ∈ A with a

eal parameter. Since the delayed optimal control function is not

efined at the switching time instant, for numerical simulations

e fix by convention u ∗(τ ∗
s ) = u max . Then, we can generalize the

oncept of switching time, defined as the zero of the switching

unction ψ , introducing the starting intervention time 

= 

{
0 in case of constant maximum control 

τs in case of delayed control 
(10)

hich represents the first time instant at which the control u (t) ∈
 assumes the value u max . Since a delayed control can be charac-

erized by its switching time τ s , we can then identify each admis-

ible optimal control in A , constant or delayed, by the value of τ
nd write it in the more general form: 

 ( t; τ ) = 

{
0 0 < t < τ

u 

max τ ≤ t < + ∞ . 
(11)

Therefore, the functional to be minimized J ( u ) can be seen as

he function J : τ → T , that links the starting intervention time τ ≥ 0

o the eradication time T of the problem 

˙ x (t) = f (x (t)) + u (t ; τ ) g(x (t )) , t ≥ 0 ;
x (0) = x 0 , x (T ) ∈ C = { (S, I) : I = ε} . (12)
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Fig. 2. Numerical analysis of the optimal vaccination problem. (a) Different colors 

represent different optimal control types obtained by varying u max 
v (that ranges from 

0 to μ) and R 0 (β) . Color meanings are specified in Fig. 1 . (b) Plot of the optimal 

starting intervention time τ ∗ , the optimal eradication time T ∗ , and the eradication 

time T τ=0 as functions of u max 
v , with R 0 (β) = 3 . Other parameters: S(0) = 20 0 0 , 

μ = 5 , I(0) = 1 , ε = 0 . 5 . 
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n optimal control u ∗ will be identified by a starting intervention

ime such that τ ∗ = argmin J, since it can be proved that J always

dmits at least a minimum value (see Theorem A.1 ). 

The numerical solution will be computed by evaluating the

unction J ( τ ) over a suitable interval and looking for its mini-

um value. In particular, we fix a uniform mesh { τi , i = 1 , . . . , M}
ver the interval [0, T unc ], where T unc is the eradication time of

he uncontrolled epidemic. For each mesh point we consider the

elated control function u ( t ; τ i ) and numerically integrate the

auchy problem (12) using the Crank–Nicholson method with uni-

orm time steps { t k , k = 1 , . . . , N} , obtaining the numerical solution

 

(i ) 
k 

= (S (i ) 
k 

, I (i ) 
k 

) T , k = 1 , . . . , N. Then, we set the eradication time T i 
elevant to the mesh point τ i as the first time step t 

k̄ 
at which

he computed solution I (i ) 

k̄ 
≤ ε. Finally, we take the minimum over

he set of computed eradication times T j = min { T i , i = 1 , . . . , M} as

he optimal eradication time, and set the corresponding τ j as the

ptimal starting intervention time. 

In the following sections, we investigate the four different con-

rol policies considered. For each policy we will present theoret-

cal and numerical results. In our numerical simulations, we set

 = 0 . 5 , as in [24] . Then, through a sensitivity analysis, we explore

he solutions of optimal control problems (4) –(7) on a wide range

f parameter settings describing different epidemiological condi-

ions (represented by R 0 = βS(0) /μ), different possible control ef-

orts (represented by u max ), and a different number of initially

ntroduced infected individuals in the population (represented by

 (0)). 

. Linear term policies 

We consider SIR model (1) with the general linear term control,

enoted by u l ( t ), obtaining an optimal control problem as the one

efined in (8) , with g l ( x ) as in (3) . 

heorem 3. If u ∗
l 

is the optimal control strategy for the linear term

ontrol problem, then u ∗
l 

is a bang-bang control with at most one

witching time τ ∗
s from no control to maximum control. 

roof. See B.1 . �

We proceed now to analyze the peculiarities of each policy in-

olved in the general formulation. 

.1. Vaccination 

We consider the vaccination control, denoted by u v ( t ) in the op-

imal control problem (8) , with g v ( x ) as in (4) . The control repro-

uction number for vaccination is defined as R 

v 
C 

= R 0 = βS(0) /μ. 

For this policy, it is easy to prove that there exists a unique

ime instant t p (possibly 0) at which the function 

˙ I changes sign.

n particular, ˙ I (t) > 0 for t < t p and 

˙ I (t) < 0 for t > t p . We call t p the

eak time, because it represents the time at which the number of

nfected individuals reaches its maximum. Therefore, in addition to

he general result of Theorem 3 , it is possible to prove the follow-

ng. 

heorem 4. The switch of the optimal control u ∗v can occur only be-

ore the peak of the infection. Moreover, if R 0 < 1 or u max 
v > μ, the

ptimal control is the constant control u ∗v (t) ≡ u max 
v . 

roof. See B.2 . �

The numerical analyses on the time-optimal vaccination prob-

em are illustrated in Fig. 2 . In Fig. 2 (a), we show the results of

he simulations performed in the parameter space [ u max 
v , R 0 (β) ].

s explained in the color codes in Fig. 1 , the light gray and
hite regions in Fig. 2 (a) represent the combinations of parame-

ers [ u max 
v , R 0 (β) ] for which the time-optimal vaccination prob-

em selects for delayed and constant control, respectively. As high-

ighted by the analytic results, Fig. 2 (a) displays that the switch-

ng time always occurs before the peak of infection (light gray re-

ion) and that higher vaccination effort s always select f or a con-

tant control. Fig. 2 (b) shows the optimal starting intervention time

 τ ∗), the eradication time for the optimal vaccination strategy ( T ∗,

olid curve), and the eradication time for the constant vaccination

 T τ=0 , dashed curve) as functions of the maximum effort, u max 
v .

n Fig. 2 (b), we notice that the optimal starting intervention time

ndergoes a “catastrophic” transition ( sensu [34] ) from delayed to

onstant control for increasing values of u max 
v . Then, small changes

n u max 
v can cause an abrupt change in the starting point of the

ptimal vaccination campaign. On the other hand, Fig. 2 (b) shows

hat, when delaying the onset of vaccination is optimal, the dif-

erences in the final time of the epidemic between optimal con-

rol and constant control (i.e. variation in the objective function) is

arginal. 
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Fig. 3. Numerical analysis of the optimal isolation problem. Different colors represent different optimal control types obtained by varying: (a) u max 
i 

and R 0 (β) ; (b) I (0) and 

R 0 (β) . Color meanings are specified in Fig. 1 . (c) Plot of the optimal starting intervention time τ ∗ , the optimal eradication time T ∗ , and the eradication time T τ=0 as functions 

of u max 
i 

, with R 0 (β) = 2 . (d) Number of susceptible individuals at the end of the epidemic obtained using the optimal control, S ( T ∗), and the constant control u (t) = u max 
i 

, 

S(T τ=0 ) , as functions of u max 
i 

, with R 0 (β) = 2 . In panel (b) u max 
i 

= 1 . In panels (c) and (d) is also highlighted the value of u max 
i 

for which R 

i 
C = 1 (gray lines). Other parameter 

values as in Fig. 2 . 
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3.2. Isolation 

We consider SIR model (1) with isolation control, denoted by

u i ( t ), obtaining an optimal control problem as the one defined in

(8) , with g i ( x ) as in (5) . The control reproduction number for iso-

lation is defined as R 

i 
C 

= βS(0) / (μ + u max 
i 

) . 

The numerical analyses on the time-optimal isolation problem

are illustrated in Fig. 3 . In Fig. 3 (a), we show the results of the

simulations performed in the parameter space [ u max 
i 

, R 0 (β) ]. Con-

versely to vaccination, our results show that the time-optimal iso-

lation problem can select for delayed strategies also for high values

of maximum effort, u max 
i 

. Moreover, the switching time for the op-

timal isolation strategy can occur after the peak of infection (see

the dark gray region in Fig. 3 (a)). In Fig. 3 (b), we show that the iso-

lation problem selects for optimal delayed control in a wide range

of parameter settings also when the number of infected individuals

firstly introduced in the population increases (i.e. I (0) > 1). Fig. 3 (c)

displays the optimal starting intervention time ( τ ∗), the final time

for the optimal isolation strategy ( T ∗, solid curve), and the final

time for the constant isolation ( T τ=0 , dashed curve) as functions

of the maximum effort, u max 
i 

. As in the vaccination problem, the

optimal starting intervention time for isolation undergoes a “catas-

i  
rophic” transition from delayed to constant control for increasing

alues of maximum effort. Fig. 3 (c) shows that delayed control can

e optimal also when R C < 1 , i.e. when an prompt intervention at

 = 0 could have implied an immediate decline in the number of

nfected individuals. In addition, when delaying the onset of iso-

ation is optimal, the differences in the final time of the epidemic

etween optimal control and constant control can be significant.

ig. 3 (d) shows the number of susceptible individuals at the end of

he epidemic for the optimal isolation strategy ( S ( T ∗), solid curve)

nd the constant isolation ( S(T τ=0 ) , dashed curve) as functions of

he maximum effort, u max 
i 

. Similarly to the switching time, S ( T ∗)

xhibits a discontinuous increase at the boundary between delayed

nd constant control. 

.3. Culling 

We consider the culling control, denoted by u c ( t ), in the optimal

ontrol problem defined in (8) , with g c ( x ) as in (6) . The control

eproduction number for culling is defined as R 

c 
C 

= βS(0) / (μ +
 

max 
c ) . 

The numerical analyses on the time-optimal culling problem are

llustrated in Fig. 4 . In Fig. 4 (a), we show the results of the simula-
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Fig. 4. Numerical analysis of the optimal culling problem. (a) Different colors rep- 

resent different optimal control types obtained by varying u max 
c and R 0 (β) . Color 

meanings are specified in Fig. 1 . (b) Plot of the optimal starting intervention time 

τ ∗ , the optimal eradication time T ∗ , and the eradication time T τ=0 as functions of 

u max 
c , with R 0 (β) = 3 . Other Parameter values as in Fig. 2 . 
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r  
ions performed in the parameter space [ u max 
c , R 0 (β) ]. We display

hat, when R 0 is low, delayed control is selected for small values

f culling effort ( u max 
c ), while, when R 0 is high, delayed control is

elected for intermediate values of u max 
c . In addition, in the afore-

entioned cases, the starting of the optimal culling generally oc-

urs before the peak of infection (light gray region in Fig. 4 (a)).

owever, we can notice that there exists a small region in the

arameter space [ u max 
c , R 0 (β) ] where the starting of the optimal

trategy can occur after the peak of infection (see the dark gray re-

ion in the box). Fig. 4 (b) shows the optimal starting intervention

ime ( τ ∗), the final time for the optimal culling strategy ( T ∗, solid

urve), and the final time for the constant culling ( T τ=0 , dashed

urve) as functions of the maximum effort, u max 
c . Also in this case

he optimal starting intervention time undergoes a “catastrophic”

ransition from delayed to constant control for increasing values of

 

max 
c and, when delaying the onset of culling is optimal, the dif-

erences in the final time between optimal control and constant

ontrol is marginal, analogously to the case of vaccination. 
. Reduction of transmission policy 

We consider SIR model (1) with reduction of transmission con-

rol, denoted by u r ( t ), obtaining an optimal control problem as the

ne defined in (8) , with g r ( x ) as in (7) and 0 < u max 
r ≤ 1 . The con-

rol reproduction number for reduction of transmission is defined

s R 

r 
C 

= β(1 − u max 
r ) /μ. Despite the nonlinear term included in the

eduction of transmission policy, it is possible to find the same

ype of optimal strategy of the linear term policies. 

heorem 5. If u ∗r is the optimal control strategy for the reduction of

ransmission problem, then u ∗r is a bang–bang control with at most

ne switching time τ ∗
s from no control to maximum control. 

roof. See B.3 . �

The numerical analyses on the time-optimal reduction of trans-

ission problem are illustrated in Fig. 5 . In Fig. 5 (a), we show the

esults of the simulations performed in the parameter space [ u max 
r ,

 0 (β) ]. We display that, when delayed control is selected, the

tarting of the optimal reduction of transmission generally oc-

urs after the peak of infection (dark gray region in Fig. 5 (a)). In

ig. 5 (b), we show that the reduction of transmission problem se-

ects for optimal delayed control in a wide range of parameter set-

ings also when the number of infected individuals firstly intro-

uced in the population increases (i.e. I (0) > 1). Fig. 5 (c) shows the

ptimal starting intervention time ( τ ∗), the final time for the op-

imal reduction of transmission strategy ( T ∗, solid curve), and the

nal time for the constant reduction of transmission ( T τ=0 , dashed

urve) as functions of the maximum effort, u max 
r . Similarly to the

solation problem, we find that: ( i ) delayed control for reduction of

ransmission can be optimal also when R C < 1 ; and ( ii ) when de-

aying the starting of reduction of transmission is optimal, the dif-

erences in the final time of the epidemic between optimal control

nd constant control can be significant. Fig. 5 (d) shows the num-

er of susceptible individuals at the end of the epidemic for the

ptimal reduction of transmission strategy ( S ( T ∗), solid curve) and

he constant reduction of transmission ( S(T τ=0 ) , dashed curve) as

unctions of the maximum effort, u max 
r . Similarly to the isolation

roblem, S ( T ∗) exhibits a discontinuous increase at the boundary

etween delayed and constant control. 

. Discussion and conclusions 

In this work, we investigated the problem of minimizing the

pidemic duration by using different control policies. Specifically,

e characterized analytically the time-optimal control strategies

or prophylactic vaccination, isolation, non-selective culling, and

eduction of transmission by using a family of simple SIR models

n an optimal control framework [26] . Our analyses led to the non-

rivial result that, even in the unconstrained optimal control prob-

em (i.e. without costs of control or resource limitations), using the

aximal effort for the entire epidemic period may not be the op-

imal strategy to minimize the epidemic duration. In addition, we

ound that, when applying the maximal effort for the entire epi-

emic is sub-optimal, then a delayed control represents the opti-

al strategy in all the cases investigated. We even found that the

ptimal amount of delay applied to the control may be sufficiently

arge to postpone the beginning of the intervention after the peak

f the infection (see Fig. 1 and dark gray regions in Figs. 3 (a), 4 (a),

nd 5 (a)). In addition, we showed that the delayed control may

epresent the optimal strategy for minimizing the epidemic dura-

ion even when a prompt intervention could immediately reduce

he number of infected individuals (i.e. reduce R C below 1, see

igs. 3 (c) and 5 (c)). 

The biological explanation for the optimality of delayed controls

elies on the remark that, at the beginning of the epidemic, the in-
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Fig. 5. Numerical analysis of the optimal reduction of transmission problem. Different colors represent different optimal control types obtained by varying: (a) u max 
r and 

R 0 (β) ; (b) I (0) and R 0 (β) . Color meanings are specified in Fig. 1 . (c) Plot of the optimal starting intervention time τ ∗ , the optimal eradication time T ∗ , and the eradication 

time T τ=0 as functions of u max 
r , with R 0 (β) = 2 . (d) Number of susceptible individuals at the end of the epidemic obtained using the optimal control, S ( T ∗), and the constant 

control u (t) = u max 
r , S(T τ=0 ) , as functions of u max 

i 
, with R 0 (β) = 2 . In panel (b) u max 

r = 0 . 9 . In panels (c) and (d) is also highlighted the value of u max 
r for which R 

r 
C = 1 (gray 

lines). Other parameter values as in Fig. 2 . 
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fection process can be more efficient in depleting the reservoir of

susceptibles (which represents the mechanism leading to epidemic

extinctions) than the applied control. In other words, reducing via

external interventions the number of individuals involved in the

infection process at the beginning of the outbreak (especially the

infected ones) may lead to slower epidemic dynamics, which im-

plies longer times for the epidemic to go extinct. Two evidences

support this explanation: (1) delayed control is generally optimal

when the effectiveness of the control is low (i.e. low u max ); and (2)

isolation and reduction of transmission policies (which do not re-

duce directly the number of susceptibles) tend to select for delayed

control in wider ranges of parameter settings than vaccination and

culling. 

Our results differ from those previously obtained for the time-

optimal problem in specific epidemic contexts. By analyzing a

subsystem of an epidemic model describing SARS spread, Jiang

[17] proved that, according to Pontryagin’s Minimum Principle,

maximizing the isolation effort f or the entire epidemic period

would reduce epidemics in minimum time. Similarly, by numer-

ically testing scenarios in an SIR model where the control al-

ways reduces the disease reproduction number below 1, Iacoviello

& Liuzzi [35] showed that maximizing the combined vaccination
nd isolation effort s f or the entire epidemic period eradicates epi-

emics in minimum time. 

Our results substantially differ also from those obtained mini-

izing the total number of infected (or the infectious burden) in

IR epidemic models. By characterizing optimal controls accord-

ng to Pontryagin’s Minimum Principle, different works showed

hat the unconstrained problems for isolation [22,24] , vaccination

21,24] , and culling [25] only support the trivial solution of apply-

ng the maximal effort for the entire epidemic. Then, from our re-

ults it follows that the infectious burden may not be minimized

hile minimizing the epidemic duration in simple SIR models. 

Minimizing the infectious burden in the optimal control prob-

em for isolation and reduction of transmission is equivalent to

aximize the final number of susceptibles, S ( T ). Some examples

f the tension between minimizing the epidemic duration and the

nfectious burden can be observed in Figs. 3 and 5 . In particular,

igs. 3 (c) and 5 (c) display the eradication time, T , and Figs. 3 (d)

nd 5 (d) display the number of susceptible individuals at the end

f the epidemic, S ( T ), as functions of u max for both the time-

ptimal control and the constant control (corresponding to the

ptimal solution for the unconstrained problem of infectious bur-

en minimization). From these figures, we notice that the differ-
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nt objective functions provide similar results when the control

ffort s are sufficiently large to rapidly lead the epidemic to ex-

inction (high u max ), while they provide substantially different re-

ults in the case of less efficient strategies (low u max ). Specifically,

he time-optimal control strategy performs poorly in minimizing

he infectious burden at the boundary between delayed and con-

tant control (see Figs. 3 (d) and 5 (d)), while the infectious burden

inimization strategy performs poorly in minimizing the epidemic

uration for slightly higher values of R C (see the peak of T τ=0 in

igs. 3 (c) and 5 (c)). 

Moreover, we find that small changes in the control parameter

 

max can cause large changes in the shape of the optimal strategies.

n analogous result was found by Hansen & Day [24] investigating

he problem of minimizing the infectious burden through isolation

n a SIR framework with limited resources. Hansen & Day [24] also

ound that a “catastrophic” shift in the shape of the isolation strat-

gy corresponds to an abrupt variation in the objective function

i.e. the infectious burden). Conversely, here we find that “catas-

rophic” shifts in the shape of the control strategies correspond to

ontinuous variations in the objective functions (i.e. the final time

f epidemics). 

We believe our findings can be useful in throwing light on over-

ooked results obtained with more complex models developed in

pecific epidemiological contexts. For instance, Roche et al. [13] in-

estigated the performances of different spatially explicit models

or the spread of foot-and-mouth disease in the UK farms, consid-

ring different control scenarios. Among other scenarios, they com-

ared the effect of suppressive vaccination strategies started at 7

nd 14 days after the outbreak beginning. They found that, in two

ut of the four models investigated, the medians and/or the 95 th

ercentiles of the epidemic duration decreased when the control is

elayed by 7 days [ 13 , see models ‘IS+’ and ‘NL’ in table 4 therein].

n the other hand, they found that the number of infected farms

lways increases when the vaccination is delayed [see table 4 in

3 ]. In a similar way, by investigating the effectiveness of com-

ined culling and movement restriction to control classical swine

ever in Switzerland pig farms, Dürr et al. [14] found that delaying

he starting of the control from 6 to 16 days after the outbreak be-

inning reduced the median outbreak duration in three out of the

ight analyzed scenarios [see Fig. 4 in 14 ]. 

Previous works have already shown that delayed control

ight represent an optimal strategy in some epidemiological ap-

lications. For instance, Handel et al. [36] and Hansen & Day

37] showed that delaying the controls may be optimal in prevent-

ng the re-emergence of the epidemic or the emergence of resis-

ant epidemics. Bolzoni et al. [25] showed that the delayed con-

rol may be optimal in wildlife diseases where the host population

rowth is density-dependent. 

The numerical analyses performed here under the assumption

f constant control highlighted that increasing the control effort s

ay lead to a substantial increase of the eradication time. This is

specially true in the case of isolation and reduction of transmis-

ion, where the eradication time may increase from two- to five-

old with respect to the “do-nothing” alternative (see Figs. 3 (c) and

 (c)). Similar negative effects of constant efforts on disease con-

rol have also been highlighted when the target of the interven-

ion was the reduction of the number of infected individuals [38–

1] . All these counter-intuitive findings suggest that the implemen-

ation of simple time-dependent strategies may crucially improve

he control of infectious diseases. 

Other aspects of diseases control implementation that were not

ncluded in the present work – such as combined controls [24] ,

he costs of control [23] , resources limitation [24] , and availabil-

ty of surveillance information [42] – can play a significant role in

haping the optimal strategy. These aspects are essential in defin-

ng optimal protocols of intervention for diseases eradication. How-

h

ver, thanks to the generality of the model formulation, we believe

ur results can be used as a landmark for future investigations in

he directions listed above. 
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ppendix A 

heorem A.1. There exists an optimal solution of the optimal control

roblem (8) . 

roof. By definition, there exists an optimal solution of (8) if the

unctional J ( u ), which gives the eradication time of the controlled

IR problem (2) as a function of the control, has (at least) a min-

mum point u ∗ on the set of admissible controls. For each policy

heorem 2 holds, namely the set of admissible controls is A given

n (9) . As detailed in Section 2 , we can see J as a function that links

he starting intervention time τ (10) to the eradication time T : 

 : [ 0 , τ max ] → [ 0 , + ∞ ) 

τ → T 

ince the starting intervention time cannot be larger than the erad-

cation time of the uncontrolled epidemic, then there exists an up-

er bound τmax for τ . We prove that J admits at least a mini-

um point τ ∗ by proving that it is a continuous function on the

ounded interval [0 , τmax ] . 

First we prove that J is a continuous function in 0, namely that

im h → 0 + J(h ) = J(0) . We observe that by definition J (0) is the erad-

cation time T 0 (= T τ=0 ) of the solution x ( t ) of the controlled prob-

em 

˙ x (t) = f (x (t)) + u 

max g(x (t)) , t ≥ 0 ;
x (0) = x 0 , x (T 0 ) ∈ C = { (S, I) : I = ε} 
hile J ( h ) is the eradication time T h of the solution 

 ( t ) = 

{
y 1 ( t ) 0 ≤ t < h 

y 2 ( t ) t ≥ h 

here y 1 is the solution of the uncontrolled problem 

˙ y 1 ( t ) = f ( y 1 ( t ) ) , 0 ≤ t ≤ h ;
y 1 ( 0 ) = x 0 

hile y 2 is the solution of 

˙ y 2 (t) = f (y 2 (t)) + u 

max g(y 2 (t)) , t ≥ h ;
y 2 (h ) = y 1 (h ) , y 2 (T h ) ∈ C 

By the Continuous Dependence on Initial Conditions Theorem,

or a generic t ≥ h it holds: 

 y ( t ) − x ( t ) ‖ ∞ 

≤ e L ( t−h ) ‖ y ( h ) − x ( h ) ‖ ∞ 

≤ e L ( t−h ) ‖ y ( h ) − x 0 ‖ + ‖ x 0 − x ( h ) ‖ ∞ 

≤ e L ( t−h ) ( c y + c x ) h 

here the last inequality follows from the Mean Value Theorem.

his is true in particular for t = T h : || y(T h ) − x (T h ) || ∞ 

≤ ˜ c h . Let

s consider only the infected component of the two solutions:

 x ( t ) and I y ( t ). Then | I y (T h ) − I x (T h ) | ≤ ˜ c h, which leads to | I x (T 0 ) −
 x (T h ) | ≤ ˜ c h, since I y (T h ) = ε = I x (T 0 ) . This is equivalent to 

lim 

 → 0 + 
I x (T h ) = I x (T 0 ) . 
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I x ( t ) being a continuous positive function that is strictly monotone

in a neighborhood of T 0 , it is invertible and therefore we can state

that lim h → 0 + T h = T 0 , namely lim h → 0 + J(h ) = J(0) . The proof of the

continuity of J in a generic starting intervention time τ follows

from the continuity in 0, using translation arguments. �

Remark A.1. If we consider non-negative initial conditions S (0)

and I (0), then the solution of the differential system (2) is non-

negative at each time t > 0. 

Indeed, for all the chosen policies, the I axis is a trajectory for

the system; the S axis is also a trajectory (for vaccination and

culling policies) or is a set of stationary points (for isolation and

reduction of transmission policies). 

Remark A.2. For each k > 0 the set Q k = { S ≥ 0 , I ≥ 0 , S + I ≤ k } is
a positively invariant (trapping) region. 

Using results of Remark A.1 it is sufficient to prove that for

S, I > 0 the vector field evaluated on the boundary line S + I = k

points towards the internal part of the region Q k [43] ; it is

straightforward for each policy since the scalar product of the vec-

tor field f ( x ) and the outward pointing normal vector of the bound-

ary ˆ n = (1 , 1) T is negative in all cases. 

Corollary A.1. Given an initial condition x 0 = (S(0) , I(0)) ∈ R 

2 + , let

x (t) = (S(t ) , I(t )) be the solution of (2) . Then I ( t ) → 0 as t → + ∞ for

all control policies. 

Proof. By Remark A.2 , we know that the set Q N 0 
, where,

N 0 = S(0) + I(0) is a (trapping) region. Moreover, in this region the

function 

˙ S (t) has a constant negative sign, so there cannot be peri-

odic trajectories and all orbits must converge to a stationary point

x̄ ∈ Q N 0 
. It is easy to prove that the number of infected individu-

als of a stationary point is always zero. In fact, for the vaccination

and culling policies, the only stationary point is x̄ = (0 , 0) , while

for isolation and reduction of transmission policies the stationary

points are all those of the S axis. �

Appendix B 

Throughout all the proofs we omit the superscript ∗ for the op-

timal quantities, in order to simplify the notation. 

B.1. Proof for optimal linear term policies 

Let x (t) = (S(t ) , I(t )) T denote the optimal solution for the con-

trol problem with linear term policy, suitable to model vaccination,

isolation or culling for proper values of parameters α1 and α2 ; let

u l ( t ) be the control term, λ(t) = (λS (t ) , λI (t )) T the corresponding

adjoint variables and T the optimal eradication time. By the Pon-

tryagin’s Minimum Principle, the Hamiltonian function, the switch-

ing function and its derivative are respectively: 

H(x , λ, u l ) = 1 − (βSI + α1 u l S) λS + (βSI − μI − α2 u l I) λI (B.1)

ψ(x , λ) = −α1 SλS − α2 IλI , ˙ ψ (x , λ) = βSI(α1 λI − α2 λS ) , (B.2)

and the adjoint variables satisfy the following system of ODEs: {
˙ λS = (λS − λI ) βI + α1 u l λS 

˙ λI = (λS − λI ) βS + μλI + α2 u l λI . 
(B.3)

The sketch of the proof of Theorem 3 is as follows. 

(i) First we prove that the control is non-singular, namely that the

function ψ vanishes only in isolated points. Suppose in fact

that ψ vanishes in an open interval B . Then also all the deriva-

tives vanish there and in particular ψ = 

˙ ψ = 0 in B , which

yields by some algebra λ = λ = 0 by (B.2) , since S, I > 0 when
S I 
S (0), I (0) > 0 (see Remark A.1 ). This is in contradiction with

Theorem 1 , as the adjoint variables λS and λI cannot vanish si-

multaneously by construction, therefore ψ vanishes only in iso-

lated points. As a consequence, the control is a piecewise con-

stant function u l ( t ) that can assume only two values: 0 and

u max . The switching times are defined as the time instants at

which the function ψ( t ) changes its sign and, consequently, the

function u l ( t ) changes its value. Therefore two types of switch

can occur: either the value of u l ( t ) is 0 in a left-neighborhood

of the switching time and is u max in a right-neighborhood, and

we denote it by 0 → u max , or the converse, which is denoted by

u max → 0. 

ii) Next we show that the optimal control in a left-neighborhood

of the eradication time T must be equal to u max . By con-

dition 3 of Theorem 1 ψ(T ) = −α2 I(T ) λI (T ) and 

˙ ψ (T ) =
α1 βS(T ) I(T ) λI (T ) . The sign of the function ψ in the left-

neighborhood of T will then be determined by the sign of

λI ( T ). Substituting λS (T ) = 0 in (B.1) and by condition 2 of

Theorem 1 we get λI (T ) = − ˙ I (T ) −1 , which is positive, since
˙ I (T ) < 0 . As a consequence, ψ( T ) ≤ 0 and 

˙ ψ (T ) ≥ 0 . Since they

cannot vanish simultaneously, as α1 and α2 are not simultane-

ously zero, ψ is negative in a left-neighborhood of T . 

ii) Now we prove that there can be at most one switching time,

relevant to the switch 0 → u max . Let τ s be a generic switching

time, namely ψ(τs ) = 0 . Then −α1 S(τs ) λS (τs ) = α2 I(τs ) λI (τs )

by (B.2) . Suppose α2 � = 0, then at the switching time λI =
−α1 SλS 

α2 I 
. Substituting this relation in (B.1) and by condition 2

of Theorem 1 , we can write λS , and therefore λI and 

˙ ψ , as

functions of Q(t) = βI(t) + 

α1 
α2 

(βS(t) − μ) , which is a decreas-

ing function since ˙ Q (t) < 0 : 

λS ( τs ) = ( Q ( τs ) S ( τs ) ) 
−1 

, λI ( τs ) = −α1 

α2 
( Q ( τs ) I ( τs ) ) 

−1 
, 

˙ ψ = −β

Q 

(
α2 

1 

α2 

S + α2 I 

)
. 

In particular, we can see that the sign of ˙ ψ is opposite to the

ign of Q . Suppose that there are multiple switching times τ ( j) 
s , j =

 , . . . , n . We have already proved that u l (T ) = u max , so at the last

witching time ˙ ψ (τ (n ) 
s ) < 0 must hold, thus Q(τ (n ) 

s ) > 0 . Since Q is

 decreasing function, this means that Q is positive in the interval

0 , τ (n ) 
s ] , and it implies that all the switching times τ ( j) 

s are from

o control (positive values of ψ) to maximum control (negative

alues of ψ). This is not possible, therefore there can be at most a

nique switch from no control to the maximum control rate u max ,

amely ˙ ψ (τs ) < 0 . 

Now suppose α2 = 0 . We still prove that there can be at most

ne switching time, relevant to the switch 0 → u max and that, in

ddition, the switch can only occur before the peak time. Let τ s be

 generic switching time, namely ψ(τs ) = 0 . Then λS (τs ) = 0 by

B.2) and, analogously to what happens at the eradication time T ,

I (τs ) = − ˙ I (τs ) −1 . Thus, the sign of ˙ ψ (τs ) is opposite to the sign of
˙ 
 (τs ) , which is positive (respectively, negative) before (resp. after)

he peak time of the infection t p . The only possible change in sign

f the function ψ after the peak is then from negative to positive,

hich is not admissible, since we proved that ψ is negative in a

eft-neighborhood of T . Thus the switch can only occur before the

eak and, being ˙ ψ (τs ) always negative, it must be unique. More-

ver, since ψ changes its sign from positive to negative values, the

ontrol switches from 0 to the maximum rate u max . 

.2. Proof for optimal vaccination policy 

The sketch of the proof of Theorem 4 is as follows. 
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Fig. B.6. Optimal vaccination problem with delayed control. Schematization of the 

switching function ψ( t ) and of the adjoint variables λS ( t ), λI ( t ) on the interval [ τ s , 

T ]. 
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(i) The position of the switch with respect to the peak of infection

follows from B.1 , point (iii) (case α2 = 0 ). 

ii) By definition of the basic reproduction number, we know that if

R 0 < 1 then the number of infected individual is monotonically

decreasing in time, namely the peak of the infection is t p = 0 .

As we already proved that there cannot be a switch for t > t p ,

in this case the optimal control must be u v (t) ≡ u max 
v . 

Suppose that R 0 > 1 and that the optimal control is delayed

ith switch 0 → u max 
v at time τ s > 0. Then we prove that the re-

ation μ > u max 
v must hold. 

First we prove that, under those hypotheses, the function ψ 

as a minimum point m ψ 

in ( τ s , T ) at which λI ( m ψ 

) < λS ( m ψ 

),

s sketched in Fig. B.6 . The function ψ vanishes at τ s (by defini-

ion) and at T (by the transversality condition), while it is strictly

egative between the two points, therefore it must have at least

 minimum point. Since ψ is a C 1 function, in such points ˙ ψ = 0

nd thus also λI = 0 , by (B.2) . Substituting this latter value in the

econd derivative of the switching function and recalling the defi-

ition of ψ in (B.2) we obtain 

¨
 = βSI(βSλS − βIλI − u 

max λI ) = β2 S 2 IλS = −β2 SIψ. 

hen ψ̈ is positive and we can state that ψ has only an extremal

oint in that interval, and more specifically that it is a minimum

oint, which we denote by m ψ 

. Moreover, since λI (m ψ 

) = 0 and

S ( m ψ 

) > 0, it is straightforward that λI ( m ψ 

) < λS ( m ψ 

). 

Similarly, we prove that the function λS has a unique maximum

 λS 
in the interval [ τ s , T ] at which λI (M λS 

) > λS (M λS 
) , as sketched

n Fig. B.6 . In fact, it vanishes at τ s (since ψ(τs ) = 0 ) and at T (for

he transversality condition) and it is strictly positive between the

wo points, since ψ < 0. On the interval [ τ s , T ], being u (t) = u max 
v ,

S is a C 1 function, therefore its maximum and minimum points

re characterized by ˙ λS = 0 , namely λS = βIλI / (βI + u max 
v ) from

B.3) . Substituting this value in (B.1) and recalling that H = 0 we

btain that in the extremal points λI = 1 / (μI) . Substituting those

alues in the second derivative of λS we obtain: 

¨
S = λS [(βI + u 

max 
v ) 2 −μβI] −λI βI(βI + u 

max 
v ) = −β2 I/ (βI + u 

max 
v )

hich is negative and therefore in the interval ( τ s , T ) the function

S has a unique maximum point, which we denote by M λS 
. More-

ver 

S (M λ ) = βI(M λ ) λI (M λ ) / (βI(M λ ) + u 

max 
v ) < λI (M λ ) . 
S S S S S 
Evaluating ˙ λS at the point m ψ 

, by (B.3) we obtain 

˙ 
S (m ψ 

) = (βI(m ψ 

) + u 

max 
v ) λS (m ψ 

) > 0 , 

herefore m ψ 

< M λS 
. Being λI ( m ψ 

) < λS ( m ψ 

) and λI (M λS 
) >

S (M λS 
) , there must exist a point σ ∈ (m ψ 

, M λS 
) such that

S (σ ) = λI (σ ) and 

˙ λI (σ ) > 

˙ λS (σ ) , as sketched in Fig. B.6 . This

ast inequality reduces to μλI (σ ) > u max 
v λS (σ ) , therefore μ > u max 

v 
s a necessary condition for having a positive switching time. In

onclusion, if u max 
v > μ the optimal control is the constant control

 v (t) ≡ u max 
v . 

3. Proof for optimal reduction of transmission policy 

Let x (t) = (S(t ) , I(t )) T denote the optimal solution for the re-

uction of the transmission control problem, with control term

 r ( t ), λ(t) = (λS (t ) , λI (t )) T the corresponding adjoint variables and

 the optimal eradication time. By the Pontryagin’s Minimum Prin-

iple, the Hamiltonian function, the switching function and its

erivative are respectively: 

(x , λ, u r ) = 1 + (λI − λS ) β(1 − u r ) SI − μIλI (B.4) 

(x , λ) = (λS − λI ) βSI, ˙ ψ (x , λ) = −μβSIλS , (B.5) 

nd the adjoint variables satisfy the following system of ODEs: 
 

˙ λS = (λS − λI ) β(1 − u r ) I 

˙ λI = (λS − λI ) β(1 − u r ) S + μλI . 

For the proof of Theorem 5 , first we show that the control is

on-singular, namely that the function ψ vanishes only in iso-

ated points. Suppose that ψ vanishes in an open interval B . Then

 = 

˙ ψ = 0 in B , namely λS = λI = 0 (see (B.5) ), which is in con-

radiction with the statement of the Theorem 1 . Therefore, ψ can

anish only in isolated points. Substituting λS (T ) = 0 (the transver-

ality condition) in (B.4) and by condition 2 of Theorem 1 we get

I (T ) = − ˙ I (T ) −1 , which is positive, being ˙ I (T ) < 0 . As a conse-

uence, ψ( T ) < 0 by (B.5) . 

Let τ s be a generic switching time, namely ψ(τs ) = 0 . Then

S (τs ) = λI (τs ) by (B.5) and, by equation (B.4) , they are both equal

o (μI(τs )) −1 . Substituting this value in (B.5) we obtain 

˙ ψ (τs ) =
βS(τs ) , which is negative. Therefore, since the sign of the deriva-

ive of ψ is constant at every switching time τ s , there can be at

ost a unique switch from no control (positive values of ψ) to the

aximum rate of control u max 
r (negative values of ψ). 
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